1
|
Sorbara NT, Black AKA, Bearne SL. Bulky substrates of isoleucine 2-epimerase: α-Neopentylglycine and NV-5138. Bioorg Med Chem Lett 2025; 122:130160. [PMID: 40037494 DOI: 10.1016/j.bmcl.2025.130160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Isoleucine 2-epimerase from Lactobacillus buchneri (LbIleE) catalyzes the pyridoxal 5'-phosphate-dependent, reversible, racemization or epimerization of nonpolar amino acids at the C-2 position. The integral role of the enzyme in the biosynthesis of branched-chain d-amino acids makes it a potential target for the development of antimicrobial agents. Probing the hydrophobic active-site pocket with a series of alkyl boronic acids, we show that the hydrophobic pocket accommodates the neopentyl group with enhanced binding affinity relative to the sec-butyl group. Subsequently, we show that LbIleE catalyzes the racemization of l- and d-α-neopentylglycine, exhibiting binding affinities for these substrates 6- and 24-fold greater than those for l-Ile and d-allo-Ile, but with catalytic efficiencies (kcat/Km) reduced 46- and 27-fold, respectively. NV-5138 is a ligand of the leucine-binding site of Sestrin2, which activates the mechanistic target of rapamycin complex1 (mTORC1) and is structurally similar to α-neopentylglycine. Our demonstration that LbIleE catalyzes the racemization of l-NV-5138 (kcat/Km = 2.2 ± 0.2 s-1 mM-1), along with the fact that L. buchneri can be present in the human gut microbiome, suggests that formation of d-NV-5138 could occur in humans when l-NV-5138 is used as a pharmacological intervention for depression.
Collapse
Affiliation(s)
- Noa T Sorbara
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Amanda K A Black
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
2
|
Zhang Y, Yang S, Deng Z, Song H, Xie N, Tian Y, Qin S, Liu J, Guo Y, Wang D, Liu J, Wu C, Shen J, Ma S, Wang Y, Liu D. Antifungal agent tavaborole as a potential broad-spectrum serine and metallo-β-lactamases inhibitor. EBioMedicine 2025; 116:105754. [PMID: 40367640 DOI: 10.1016/j.ebiom.2025.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The global emergence and spread of carbapenem-resistant Enterobacteriaceae in clinical settings have driven the search for inhibitors that can counteract carbapenemases. These enzymes include several serine β-lactamases (SBLs, such as KPC) and metallo-β-lactamases (MBLs, such as NDM) that hydrolyse almost all β-lactams including carbapenems. This endeavour has successful developed some SBL inhibitors, including the boron-containing compound vaborbactam. However, the challenge posed by MBLs remains unresolved. METHODS A high-throughput screening was conducted on 1718 FDA-approved drugs as potential adjuvants to meropenem. The synergistic effect was determined by checkerboard assay. The underlying mechanisms were elucidated using enzyme inhibition assays, molecular docking and dynamics simulations. The safety and efficacy were evaluated using a murine model. FINDINGS We have identified another boron-containing broad-spectrum serine and metallo-β-lactamase inhibitor, the benzoxaborole antifungal agent tavaborole. In vitro, tavaborole enhances the antibacterial activity of multiple β-lactam antibiotics against bacteria producing either SBLs or MBLs. In vivo, injectable administration of tavaborole has demonstrated good safety in mice and has restored the efficacy of meropenem against blaNDM-5 and blaKPC-2-positive bacterial infection in a mouse intraperitoneal model. Tavaborole may effectively inhibit the activity of SBLs and MBLs by covalently bonding with the active serine residue of SBLs and chelating the Zn2+ at the active center of MBLs. INTERPRETATION Tavaborole shows good potential as an agent for use in combination with β-lactam antibiotics for treating multidrug-resistant Gram-negative bacterial infections. FUNDING National Key Research and Development Program of China, National Natural Science Foundation of China, Pinduoduo-China Agricultural University Research Fund.
Collapse
Affiliation(s)
- Yan Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyuan Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhaoju Deng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huangwei Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Ning Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunrui Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Dongli Wang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Dejun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Santi N, Piccirilli A, Corsini F, Taracila MA, Perilli M, Bonomo RA, Fini F, Prati F, Caselli E. Discovery of Boronic Acids-Based β-Lactamase Inhibitors Through In Situ Click Chemistry. Int J Mol Sci 2025; 26:4182. [PMID: 40362418 PMCID: PMC12071365 DOI: 10.3390/ijms26094182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
In this study, we evaluated in situ click chemistry as a platform for discovering boronic acid-based β-lactamase inhibitors (BLIs). Unlike conventional drug discovery approaches requiring multi-step synthesis, protection strategies, and extensive screening, the in situ method can allow for the generation and identification of potent β-lactamase inhibitors in a rapid, economic, and efficient way. Using KPC-2 (class A carbapenemase) and AmpC (class C cephalosporinase) as templates, we demonstrated their ability to catalyse azide-alkyne cycloaddition, facilitating the formation of triazole-based β-lactamase inhibitors. Initial screening of various β-lactamases and boronic warheads identified compound 3 (3-azidomethylphenyl boronic acid) as the most effective scaffold for kinetic target-guided synthesis (KTGS). KTGS experiments with AmpC and KPC-2 yielded triazole inhibitors with Ki values as low as 140 nM (compound 10a, AmpC) and 730 nM (compound 5, KPC-2). Competitive inhibition studies confirmed triazole formation within the active site, while an LC-MS analysis verified that the reversible covalent interaction of boronic acids did not affect detection of the in situ-synthesised product. While KTGS successfully identified potent inhibitors, limitations in amplification coefficients and spatial constraints highlight the need for optimised warhead designs. This study validates KTGS as a promising strategy for BLI discovery and provides insights for further refinement in fighting β-lactamase-mediated antibiotic resistance.
Collapse
Affiliation(s)
- Nicolò Santi
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Federico Corsini
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| | - Magdalena A. Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (M.A.T.); (R.A.B.)
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100 L’Aquila, Italy; (A.P.); (M.P.)
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (M.A.T.); (R.A.B.)
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Veteran Affair Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, OH 44106, USA
| | - Francesco Fini
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| | - Fabio Prati
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| | - Emilia Caselli
- Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia (UNIMORE), via Campi 103, 41125 Modena, Italy; (N.S.); (F.C.); (F.F.); (F.P.)
| |
Collapse
|
4
|
Rojas LJ, Nielsen TB, Pantapalangkoor P, Taracila MA, Introvigne ML, Sharma R, Yeshwante S, Mojica MF, Papp-Wallace KM, Hujer AM, Prati F, Caselli E, Spellberg B, Rather PN, Rao GG, Bonomo RA. Restoring cefepime activity against multidrug-resistant KPC-producing Klebsiella pneumoniae by combination with boronic acid inhibitors, MB076 and S02030. Antimicrob Agents Chemother 2025; 69:e0096424. [PMID: 39873501 PMCID: PMC11881554 DOI: 10.1128/aac.00964-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Foremost in the design of new β-lactamase inhibitors (BLIs) are the boronic acid transition state inhibitors (BATSIs). Two highly potent BATSIs being developed are S02030 and MB076 strategically designed to be active against cephalosporinases and carbapenemases, especially KPC. When combined with cefepime, S02030 and MB076 demonstrated potent antimicrobial activity against laboratory and clinical strains of Enterobacterales expressing a variety of class A and class C β-lactamases, including blaKPC-2 and blaKPC-3. Static time-kill assays revealed the bactericidal activity of cefepime in combination with S02030 and MB076 against a multidrug-resistant KPC-producing K. pneumoniae (KPC-Kpn-1), in which a ≥ 3-log10 decrease in the bacterial density was observed by 6 h. In vivo efficacy of MB076 in combination with cefepime was evaluated in a lung infection model where male C57BL/6 mice were infected intranasally with KPC-Kpn-1. Cefepime alone administered at 2 h post infection resulted in a 1.07 log10 CFU reduction at 24 h, while cefepime in combination with MB076 resulted in an enhanced reduction of 2.70 log10 CFU (P < 0.0001) compared to the no treatment control group. In a survival analysis where mice were infected via the tail vein with KPC-Kpn-1, all mice treated with placebo or cefepime alone (100 mg/kg) died, whereas those treated with a 1:4 molar ratio of cefepime-MB076 survived. Our data demonstrate bactericidal activity and in vivo efficacy of cefepime-MB076 comparable to ceftazidime-avibactam and support the continued development of this combination as a new treatment option for infections caused by class A carbapenemase producing Enterobacterales, particularly KPC-Kpn.
Collapse
Affiliation(s)
- Laura J. Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Travis B. Nielsen
- Division of Infectious Diseases, Keck School of Medicine of the University of Southern California (USC), Los Angeles, California, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California (USC), Los Angeles, California, USA
| | - Paul Pantapalangkoor
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California (USC), Los Angeles, California, USA
| | - Magdalena A. Taracila
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Maria L. Introvigne
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rajnikant Sharma
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Shekhar Yeshwante
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | - Andrea M. Hujer
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Brad Spellberg
- Division of Infectious Diseases, Keck School of Medicine of the University of Southern California (USC), Los Angeles, California, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California (USC), Los Angeles, California, USA
- Los Angeles County-USC (LAC+USC) Medical Center, Los Angeles, California, USA
| | - Philip N. Rather
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Introvigne ML, Destro L, Mologni L, Crippa V, Zardi P, Fini F, Prati F, Caselli E, Zambon A. α-Triazolylboronic Acids: A Novel Scaffold to Target FLT3 in AML. ChemMedChem 2025; 20:e202400622. [PMID: 39331039 PMCID: PMC11694611 DOI: 10.1002/cmdc.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
The treatment of acute myeloid leukemia (AML) presents a challenge to current therapies because of the development of drug resistance. Genetic mutation of FMS-like tyrosine kinase-3 (FLT3) is a target of interest for AML treatment, but the use of FLT3-targeting agents on AML patients has so far resulted in poor overall clinical outcomes.[1] The incorporation of the boronic group in a drug scaffold could enhance the bioavailability and pharmacokinetic profile of conventional anticancer chemotypes. Boronic acids represent an intriguing and unexplored class of compounds in the context of AML, and they are only scantly reported as inhibitors of protein kinases. We identified α-triazolylboronic acids as a novel chemotype for targeting FLT3 by screening a library of structurally heterogeneous in-house boronic acids. Selected compounds show low micromolar activities on enzymatic and cellular assays, selectivity against control cell lines and a recurring binding mode in in-silico studies. Furthermore, control analogues synthesized ad hoc and lacking the boronic acid are inactive, confirming that this group is essential for the activity of the series. All together, these results suggest α-triazolylboronic acids could be a promising novel chemotype for FLT3 inhibition, laying the ground for the design of further compounds.
Collapse
Affiliation(s)
| | - Lorenza Destro
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Luca Mologni
- Department of Medicine and SurgeryUniversity of Milano-BicoccaMonzaItaly
| | - Valentina Crippa
- Department of Medicine and SurgeryUniversity of Milano-BicoccaMonzaItaly
| | - Paolo Zardi
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Francesco Fini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Fabio Prati
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Emilia Caselli
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alfonso Zambon
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
6
|
Konaklieva MI, Plotkin BJ. Activity of Organoboron Compounds against Biofilm-Forming Pathogens. Antibiotics (Basel) 2024; 13:929. [PMID: 39452196 PMCID: PMC11504661 DOI: 10.3390/antibiotics13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Bacteria have evolved and continue to change in response to environmental stressors including antibiotics. Antibiotic resistance and the ability to form biofilms are inextricably linked, requiring the continuous search for alternative compounds to antibiotics that affect biofilm formation. One of the latest drug classes is boron-containing compounds. Over the last several decades, boron has emerged as a prominent element in the field of medicinal chemistry, which has led to an increasing number of boron-containing compounds being considered as potential drugs. The focus of this review is on the developments in boron-containing organic compounds (BOCs) as antimicrobial/anti-biofilm probes and agents.
Collapse
Affiliation(s)
- Monika I. Konaklieva
- Department of Chemistry, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, 555 31st St., Downers Grove, IL 60515, USA;
| |
Collapse
|
7
|
Hafeez S, Zafar Paracha R, Adnan F. Designing of fragment based inhibitors with improved activity against E. coli AmpC β-lactamase compared to the conventional antibiotics. Saudi J Biol Sci 2024; 31:103884. [PMID: 38125736 PMCID: PMC10730856 DOI: 10.1016/j.sjbs.2023.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
One of the most common primary resistance mechanism of multi-drug resistant (MDR) Gram negative pathogenic bacteria to combat β-lactam antibiotics, such as penicillins, cephalosporins and carbapenems is the generation of β- lactamases. The uropathogenic E. coli is mostly getting multi-drug resistance due to the synthesis of AmpC β-lactamases and therefore new antibiotics and inhibitors are needed to treat the evolving infections. The current study was designed for targetting AmpC β-lactamase of E. coli using molecular docking based virtual screening, linking fragments for designing novel compounds and binding mode analysis using molecular dynamic simulation with target protein. The FCH group all-purpose fragment library consisting of 9388 fragments has been screened against AmpC β-lactamase protein of E. coli and the antibiotics and anti-infectives used in treatment of Urinary tract Infections (UTIs) were also screened with AmpC β-lactamase protein. Among the 9388 fragments, 339 fragment candidates were selected and linked with cefepime antibiotic having maximum binding affinity for AmpC target protein. Computational analysis of interactions as well as molecular dynamics (MD) simulations were also conducted for identifying the most promising ligand-pocket complexes from docking investigations to comprehend their thermodynamic properties and verify the docking outcomes as well. Overall, the linked complexes (LCs) showed good binding interactions with AmpC β-lactamase. Interestingly, our fragment-based LCs remained relatively stable in comparison with cefepime antibiotic. Moreover, S12 fragment linked complex remained the most stable during 50 ns with remarkable number of interactions indicating it as promising candidate in novel lead discovery against MDR E. coli infections.
Collapse
Affiliation(s)
- Sidrah Hafeez
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Fazal Adnan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Kuehm OP, Hayden JA, Bearne SL. A Phenylboronic Acid-Based Transition State Analogue Yields Nanomolar Inhibition of Mandelate Racemase. Biochemistry 2023. [PMID: 37285384 DOI: 10.1021/acs.biochem.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mandelate racemase (MR) catalyzes the Mg2+-dependent interconversion of (R)- and (S)-mandelate by stabilizing the altered substrate in the transition state (TS) by ∼26 kcal/mol. The enzyme has been employed as a model to explore the limits to which the free energy of TS stabilization may be captured by TS analogues to effect strong binding. Herein, we determined the thermodynamic parameters accompanying binding of a series of bromo-, chloro-, and fluoro-substituted phenylboronic acids (PBAs) by MR and found that binding was predominately driven by favorable entropy changes. 3,4-Dichloro-PBA was discovered to be the most potent inhibitor yet identified for MR, binding with a Kdapp value of 11 ± 2 nM and exceeding the binding of the substrate by ∼72,000-fold. The ΔCp value accompanying binding (-488 ± 18 cal·mol-1 K-1) suggested that dispersion forces contribute significantly to the binding. The pH-dependence of the inhibition revealed that MR preferentially binds the anionic, tetrahedral form of 3,4-dichloro-PBA with a pH-independent Ki value of 5.7 ± 0.5 nM, which was consistent with the observed upfield shift of the 11B NMR signal. The linear free energy relationship between log(kcat/Km) and log(1/Ki) for wild-type and 11 MR variants binding 3,4-dichloro-PBA had a slope of 0.8 ± 0.2, indicating that MR recognizes the inhibitor as an analogue of the TS. Hence, halogen substitution may be utilized to capture additional free energy of TS stabilization arising from dispersion forces to enhance the binding of boronic acid inhibitors by MR.
Collapse
Affiliation(s)
- Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Joshua A Hayden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
9
|
Boronic Acid Transition State Inhibitors as Potent Inactivators of KPC and CTX-M β-Lactamases: Biochemical and Structural Analyses. Antimicrob Agents Chemother 2023; 67:e0093022. [PMID: 36602311 PMCID: PMC9872677 DOI: 10.1128/aac.00930-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Design of novel β-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-β-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum β-lactamase [ESBL]) β-lactamases were evaluated. The 50% inhibitory concentrations (IC50s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k2/K for CTX-M-96 (24,000 M-1 s-1) was twice the reported value for KPC-2 (12,000 M-1 s-1); for MB_076, the k2/K values ranged from 1,200 M-1 s-1 (KPC-2) to 3,900 M-1 s-1 (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to β-lactamase inhibitor design.
Collapse
|
10
|
Li R, Chen X, Zhou C, Dai QQ, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem 2022; 242:114677. [PMID: 35988449 DOI: 10.1016/j.ejmech.2022.114677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly influenced by serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which can hydrolyze β-lactam antibiotics. The development of effective β-lactamase inhibitors is an important direction to extend use of β-lactam antibiotics. Although six SBL inhibitors have been approved for clinical use, but no MBL inhibitors or MBL/SBL dual-action inhibitors are available so far. Broad-spectrum targeting clinically relevant MBLs and SBLs is currently desirable, while it is not easy to achieve such a purpose owing to structural and mechanistic differences between MBLs and SBLs. In this review, we summarized recent advances of inhibitor chemotypes targeting MBLs and SBLs and their inhibition mechanisms, particularly including lead discovery and structural optimization strategies, with the aim to provide useful information for future efforts to develop new MBL and SBL inhibitors.
Collapse
Affiliation(s)
- Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Cong Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China.
| |
Collapse
|
11
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
12
|
Asghari-Sana F, Khoshbakht S, Azarbayjani AF. New approach to treat methicillin resistant Staphylococcus aureus with the application of boric acid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
14
|
Christensen SB. Drugs That Changed Society: History and Current Status of the Early Antibiotics: Salvarsan, Sulfonamides, and β-Lactams. Molecules 2021; 26:6057. [PMID: 34641601 PMCID: PMC8512414 DOI: 10.3390/molecules26196057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
The appearance of antibiotic drugs revolutionized the possibilities for treatment of diseases with high mortality such as pneumonia, sepsis, plaque, diphtheria, tetanus, typhoid fever, and tuberculosis. Today fewer than 1% of mortalities in high income countries are caused by diseases caused by bacteria. However, it should be recalled that the antibiotics were introduced in parallel with sanitation including sewerage, piped drinking water, high standard of living and improved understanding of the connection between food and health. Development of salvarsan, sulfonamides, and β-lactams into efficient drugs is described. The effects on life expectancy and life quality of these new drugs are indicated.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Immel JR, Chilamari M, Bloom S. Combining flavin photocatalysis with parallel synthesis: a general platform to optimize peptides with non-proteinogenic amino acids. Chem Sci 2021; 12:10083-10091. [PMID: 34377401 PMCID: PMC8317666 DOI: 10.1039/d1sc02562g] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Most peptide drugs contain non-proteinogenic amino acids (NPAAs), born out through extensive structure-activity relationship (SAR) studies using solid-phase peptide synthesis (SPPS). Synthetically laborious and expensive to manufacture, NPAAs also can have poor coupling efficiencies allowing only a small fraction to be sampled by conventional SPPS. To gain general access to NPAA-containing peptides, we developed a first-generation platform that merges contemporary flavin photocatalysis with parallel synthesis to simultaneously make, purify, quantify, and even test up to 96 single-NPAA peptide variants via the unique combination of boronic acids and a dehydroalanine residue in a peptide. We showcase the power of our newly minted platform to introduce NPAAs of diverse chemotypes-aliphatic, aromatic, heteroaromatic-directly into peptides, including 15 entirely new residues, and to evolve a simple proteinogenic peptide into an unnatural inhibitor of thrombin by non-classical peptide SAR.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Maheshwerreddy Chilamari
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| |
Collapse
|
16
|
Trout RE, Zulli A, Mesaros E, Jackson RW, Boyd S, Liu B, Hamrick J, Daigle D, Chatwin CL, John K, McLaughlin L, Cusick SM, Weiss WJ, Pulse ME, Pevear DC, Moeck G, Xerri L, Burns CJ. Discovery of VNRX-7145 (VNRX-5236 Etzadroxil): An Orally Bioavailable β-Lactamase Inhibitor for Enterobacterales Expressing Ambler Class A, C, and D Enzymes. J Med Chem 2021; 64:10155-10166. [PMID: 34191513 PMCID: PMC8311649 DOI: 10.1021/acs.jmedchem.1c00437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A major
antimicrobial resistance mechanism in Gram-negative bacteria
is the production of β-lactamase enzymes. The increasing emergence
of β-lactamase-producing multi-drug-resistant “superbugs”
has resulted in increases in costly hospital Emergency Department
(ED) visits and hospitalizations due to the requirement for parenteral
antibiotic therapy for infections caused by these difficult-to-treat
bacteria. To address the lack of outpatient treatment, we initiated
an iterative program combining medicinal chemistry, biochemical testing,
microbiological profiling, and evaluation of oral pharmacokinetics.
Lead optimization focusing on multiple smaller, more lipophilic active
compounds, followed by an exploration of oral bioavailability of a
variety of their respective prodrugs, provided 36 (VNRX-7145/VNRX-5236
etzadroxil), the prodrug of the boronic acid-containing β-lactamase
inhibitor 5 (VNRX-5236). In vitro and in vivo studies demonstrated that 5 restored
the activity of the oral cephalosporin antibiotic ceftibuten against
Enterobacterales expressing Ambler class A extended-spectrum β-lactamases,
class A carbapenemases, class C cephalosporinases, and class D oxacillinases.
Collapse
Affiliation(s)
- Robert E Trout
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Allison Zulli
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Eugen Mesaros
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Randy W Jackson
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Steven Boyd
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Bin Liu
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Jodie Hamrick
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Denis Daigle
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Cassandra L Chatwin
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Kaitlyn John
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Lisa McLaughlin
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Susan M Cusick
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - William J Weiss
- UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107-2699, United States
| | - Mark E Pulse
- UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107-2699, United States
| | - Daniel C Pevear
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Luigi Xerri
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Christopher J Burns
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| |
Collapse
|
17
|
|
18
|
Lin H, Song Z, Bianco A. How macrophages respond to two-dimensional materials: a critical overview focusing on toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:333-356. [PMID: 33760696 DOI: 10.1080/03601234.2021.1885262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With wider use of graphene-based materials and other two-dimensional (2 D) materials in various fields, including electronics, composites, biomedicine, etc., 2 D materials can trigger undesired effects at cellular, tissue and organ level. Macrophages can be found in many organs. They are one of the most important cells in the immune system and they are relevant in the study of nanomaterials as they phagocytose them. Nanomaterials have multi-faceted effects on phagocytic immune cells like macrophages, showing signs of inflammation in the form of pro-inflammatory cytokine or reactive oxidation species production, or upregulation of activation markers due to the presence of these foreign bodies. This review is catered to researchers interested in the potential impact and toxicity of 2 D materials, particularly in macrophages, focusing on few-layer graphene, graphene oxide, graphene quantum dots, as well as other promising 2 D materials containing molybdenum, manganese, boron, phosphorus and tungsten. We describe applications relevant to the growing area of 2 D materials research, and the possible risks of ions and molecules used in the production of these promising 2 D materials, or those produced by the degradation and dissolution of 2 D materials.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, France
| |
Collapse
|
19
|
Sharma AN, Grandinetti L, Johnson ER, St Maurice M, Bearne SL. Potent Inhibition of Mandelate Racemase by Boronic Acids: Boron as a Mimic of a Carbon Acid Center. Biochemistry 2020; 59:3026-3037. [PMID: 32786399 DOI: 10.1021/acs.biochem.0c00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Boronic acids have been successfully employed as inhibitors of hydrolytic enzymes. Typically, an enzymatic nucleophile catalyzing hydrolysis adds to the electrophilic boron atom forming a tetrahedral species that mimics the intermediate(s)/transition state(s) for the hydrolysis reaction. We show that para-substituted phenylboronic acids (PBAs) are potent competitive inhibitors of mandelate racemase (MR), an enzyme that catalyzes a 1,1-proton transfer rather than a hydrolysis reaction. The Ki value for PBA was 1.8 ± 0.1 μM, and p-Cl-PBA exhibited the most potent inhibition (Ki = 81 ± 4 nM), exceeding the binding affinity of the substrate by ∼4 orders of magnitude. Isothermal titration calorimetric studies with the wild-type, K166M, and H297N MR variants indicated that, of the two Brønsted acid-base catalysts Lys 166 and His 297, the former made the greater contribution to inhibitor binding. The X-ray crystal structure of the MR·PBA complex revealed the presence of multiple H-bonds between the boronic acid hydroxyl groups and the side chains of active site residues, as well as formation of a His 297 Nε2-B dative bond. The dramatic upfield change in chemical shift of 27.2 ppm in the solution-phase 11B nuclear magnetic resonance spectrum accompanying binding of PBA by MR was consistent with an sp3-hybridized boron, which was also supported by density-functional theory calculations. These unprecedented findings suggest that, beyond substituting boron at carbon centers participating in hydrolysis reactions, substitution of boron at the acidic carbon center of a substrate furnishes a new approach for generating inhibitors of enzymes catalyzing the deprotonation of carbon acid substrates.
Collapse
Affiliation(s)
- Amar Nath Sharma
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lia Grandinetti
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
20
|
Jalde SS, Choi HK. Recent advances in the development of β-lactamase inhibitors. J Microbiol 2020; 58:633-647. [PMID: 32720096 DOI: 10.1007/s12275-020-0285-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
β-Lactam antibiotics are the most commonly prescribed antibiotics worldwide; however, antimicrobial resistance (AMR) is a global challenge. The β-lactam resistance in Gram-negative bacteria is due to the production of β-lactamases, including extended-spectrum β-lactamases, metallo-β-lactamases, and carbapenem-hydrolyzing class D β-lactamases. To restore the efficacy of BLAs, the most successful strategy is to use them in combination with β-lactamase inhibitors (BLI). Here we review the medically relevant β-lactamase families and penicillins, diazabicyclooctanes, boronic acids, and novel chemical scaffold-based BLIs, in particular approved and under clinical development.
Collapse
Affiliation(s)
- Shivakumar S Jalde
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, Republic of Korea
| | - Hyun Kyung Choi
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, Republic of Korea.
| |
Collapse
|
21
|
Kalluvettukuzhy NK, Pagidi S, Prasad Nandi R, Thilagar P. Exploiting N−H–π Interactions in 2‐(Dimesitylboraneyl)‐1H‐pyrrole for Luminescence Enhancement. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Neena K Kalluvettukuzhy
- Department of Inorganic and physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Sudhakar Pagidi
- Department of Inorganic and physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Rajendra Prasad Nandi
- Department of Inorganic and physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Pakkirisamy Thilagar
- Department of Inorganic and physical ChemistryIndian Institute of Science Bangalore 560012 India
| |
Collapse
|
22
|
An Update on Existing and Emerging Data for Meropenem-Vaborbactam. Clin Ther 2020; 42:692-702. [DOI: 10.1016/j.clinthera.2020.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/15/2023]
|
23
|
Potency of Vaborbactam Is Less Affected than That of Avibactam in Strains Producing KPC-2 Mutations That Confer Resistance to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2020; 64:AAC.01936-19. [PMID: 32015028 PMCID: PMC7179312 DOI: 10.1128/aac.01936-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/30/2020] [Indexed: 02/08/2023] Open
Abstract
Resistance to ceftazidime-avibactam due to mutations in KPC genes has been reported both in vitro and in clinical settings. The most frequently reported mutation leads to the amino acid substitution D179Y in the Ω loop of the enzyme. Bacterial cells that carry mutant KPC acquire a higher level of ceftazidime resistance, become more sensitive to other cephalosporins, and almost completely lose resistance to carbapenems. In this study, we demonstrated that two substitutions in KPC-2, D179Y and L169P, reduce the ability of avibactam to enhance the activity of ceftazidime, cefepime, or piperacillin against isogenic efflux-deficient strains of Pseudomonas aeruginosa, 8- to 32-fold and 4- to 16-fold for the D179Y and L169P variants, respectively, depending on the antibiotic. Resistance to ceftazidime-avibactam due to mutations in KPC genes has been reported both in vitro and in clinical settings. The most frequently reported mutation leads to the amino acid substitution D179Y in the Ω loop of the enzyme. Bacterial cells that carry mutant KPC acquire a higher level of ceftazidime resistance, become more sensitive to other cephalosporins, and almost completely lose resistance to carbapenems. In this study, we demonstrated that two substitutions in KPC-2, D179Y and L169P, reduce the ability of avibactam to enhance the activity of ceftazidime, cefepime, or piperacillin against isogenic efflux-deficient strains of Pseudomonas aeruginosa, 8- to 32-fold and 4- to 16-fold for the D179Y and L169P variants, respectively, depending on the antibiotic. In contrast, the potency of vaborbactam, the structurally unrelated β-lactamase inhibitor that was recently approved by the FDA in combination with meropenem, is reduced no more than 2-fold. Experiments with purified enzymes demonstrate that the D179Y substitution causes an ∼20-fold increase in the 50% inhibitory concentration (IC50) for inhibition of ceftazidime hydrolysis by avibactam, versus 2-fold for vaborbactam, and that the L169P substitution has an ∼4.5-fold-stronger effect on the affinity for avibactam than for vaborbactam. In addition, the D179Y and L169P variants hydrolyze ceftazidime with 10-fold and 4-fold-higher efficiencies, respectively, than that of wild-type KPC-2. Thus, microbiological and biochemical experiments implicate both decreased ability of avibactam to interact with KPC-2 variants and an increase in the efficiency of ceftazidime hydrolysis in resistance to ceftazidime-avibactam. These substitutions have a considerably lesser effect on interactions with vaborbactam, making the meropenem-vaborbactam combination a valuable agent in managing infections due to KPC-producing carbapenem-resistant Enterobacteriaceae.
Collapse
|
24
|
González-Bello C, Rodríguez D, Pernas M, Rodríguez Á, Colchón E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J Med Chem 2019; 63:1859-1881. [PMID: 31663735 DOI: 10.1021/acs.jmedchem.9b01279] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infections caused by resistant bacteria are nowadays too common, and some pathogens have even become resistant to multiple types of antibiotics, in which case few or even no treatments are available. In recent years, the most successful strategy in anti-infective drug discovery for the treatment of such problematic infections is the combination therapy "antibiotic + inhibitor of resistance". These inhibitors allow the repurposing of antibiotics that have already proven to be safe and effective for clinical use. Three main types of compounds have been developed to block the principal bacterial resistance mechanisms: (i) β-lactamase inhibitors; (ii) outer membrane permeabilizers; (iii) efflux pump inhibitors. This Perspective is focused on β-lactamase inhibitors that disable the most prevalent cause of antibiotic resistance in Gram-negative bacteria, i.e., the deactivation of the most widely used antibiotics, β-lactams (penicillins, cephalosporines, carbapenems, and monobactams), by the production of β-lactamases. An overview of the most recently identified β-lactamase inhibitors and of combination therapy is provided. The article also covers the mechanism of action of the different types of β-lactamase enzymes as a basis for inhibitor design and target inactivation.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Marina Pernas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ángela Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Esther Colchón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
25
|
González-Bello C. Recently developed synthetic compounds with anti-infective activity. Curr Opin Pharmacol 2019; 48:17-23. [DOI: 10.1016/j.coph.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
|
26
|
Sun S, Jia Q, Zhang Z. Applications of amide isosteres in medicinal chemistry. Bioorg Med Chem Lett 2019; 29:2535-2550. [PMID: 31377035 DOI: 10.1016/j.bmcl.2019.07.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Isosteric replacement of amide groups is a classic practice in medicinal chemistry. This digest highlights the applications of most commonly employed amide isosteres in drug design aiming at improving potency and selectivity, optimizing physicochemical and pharmacokinetic properties, eliminating or modifying toxicophores, as well as providing novel intellectual property of lead compounds.
Collapse
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada.
| | - Qi Jia
- Xenon Pharmaceuticals Inc., 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Zaihui Zhang
- Signalchem Lifesciences Corp., 110-13210, Vanier Place, Richmond, BC V6V 2J2, Canada
| |
Collapse
|
27
|
Fernandes GFS, Denny WA, Dos Santos JL. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur J Med Chem 2019; 179:791-804. [PMID: 31288128 DOI: 10.1016/j.ejmech.2019.06.092] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023]
Abstract
Advances in the field of boron chemistry have expanded the application of this element in Medicinal Chemistry. Boron-containing compounds represent a new class for medicinal chemists to use in their drug designs. Bortezomib (Velcade®), a dipeptide boronic acid approved by the FDA in 2003 for treatment of multiple myeloma, paved the way for the discovery of new boron-containing compounds. After its approval, two other boron-containing compounds have been approved, tavaborole (Kerydin®) for the treatment of onychomicosis and crisaborole (Eucrisa®) for the treatment of mild to moderate atopic dermatitis. A number of boron-containing compounds have been described and evaluated for a plethora of therapeutic applications. The present review is intended to highlight the recent advances related to boron-containing compounds and their therapeutic applications. Here, we focused only in those most biologically active compounds with proven in vitro and/or in vivo efficacy in the therapeutic area published in the last years.
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil; Institute of Chemistry, São Paulo State University, Araraquara, 14800-060, Brazil; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - William Alexander Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil.
| |
Collapse
|
28
|
Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, Lagacé-Wiens PRS, Walkty A, Denisuik A, Golden A, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018; 78:65-98. [PMID: 29230684 DOI: 10.1007/s40265-017-0851-9] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Relebactam (formerly known as MK-7655) is a non-β-lactam, bicyclic diazabicyclooctane, β-lactamase inhibitor that is structurally related to avibactam, differing by the addition of a piperidine ring to the 2-position carbonyl group. Vaborbactam (formerly known as RPX7009) is a non-β-lactam, cyclic, boronic acid-based, β-lactamase inhibitor. The structure of vaborbactam is unlike any other currently marketed β-lactamase inhibitor. Both inhibitors display activity against Ambler class A [including extended-spectrum β-lactamases (ESBLs), Klebsiella pneumoniae carbapenemases (KPCs)] and class C β-lactamases (AmpC). Little is known about the potential for relebactam or vaborbactam to select for resistance; however, inactivation of the porin protein OmpK36 in K. pneumoniae has been reported to confer resistance to both imipenem-relebactam and meropenem-vaborbactam. The addition of relebactam significantly improves the activity of imipenem against most species of Enterobacteriaceae [by lowering the minimum inhibitory concentration (MIC) by 2- to 128-fold] depending on the presence or absence of β-lactamase enzymes. Against Pseudomonas aeruginosa, the addition of relebactam also improves the activity of imipenem (MIC reduced eightfold). Based on the data available, the addition of relebactam does not improve the activity of imipenem against Acinetobacter baumannii, Stenotrophomonas maltophilia and most anaerobes. Similar to imipenem-relebactam, the addition of vaborbactam significantly (2- to > 1024-fold MIC reduction) improves the activity of meropenem against most species of Enterobacteriaceae depending on the presence or absence of β-lactamase enzymes. Limited data suggest that the addition of vaborbactam does not improve the activity of meropenem against A. baumannii, P. aeruginosa, or S. maltophilia. The pharmacokinetics of both relebactam and vaborbactam are described by a two-compartment, linear model and do not appear to be altered by the co-administration of imipenem and meropenem, respectively. Relebactam's approximate volume of distribution (V d) and elimination half-life (t ½) of ~ 18 L and 1.2-2.1 h, respectively, are similar to imipenem. Likewise, vaborbactam's V d and t½ of ~ 18 L and 1.3-2.0 h, respectively, are comparable to meropenem. Like imipenem and meropenem, relebactam and vaborbactam are both primarily renally excreted, and clearance correlates with creatinine clearance. In vitro and in vivo pharmacodynamic studies have reported bactericidal activity for imipenem-relebactam and meropenem-vaborbactam against various Gram-negative β-lactamase-producing bacilli that are not inhibited by their respective carbapenems alone. These data also suggest that pharmacokinetic-pharmacodynamic parameters correlating with efficacy include time above the MIC for the carbapenems and overall exposure for their companion β-lactamase inhibitors. Phase II clinical trials to date have reported that imipenem-relebactam is as effective as imipenem alone for treatment of complicated intra-abdominal infections and complicated urinary tract infections, including acute pyelonephritis. Imipenem-relebactam is currently in two phase III clinical trials for the treatment of imipenem-resistant bacterial infections, as well as hospital-associated bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP). A phase III clinical trial has reported superiority of meropenem-vaborbactam over piperacillin-tazobactam for the treatment of complicated urinary tract infections, including acute pyelonephritis. Meropenem-vaborbactam has recently demonstrated higher clinical cure rates versus best available therapy for the treatment of carbapenem-resistant Enterobacteriaceae (CRE), as well as for HABP and VABP. The safety and tolerability of imipenem-relebactam and meropenem-vaborbactam has been reported in various phase I pharmacokinetic studies and phase II and III clinical trials. Both combinations appear to be well tolerated in healthy subjects and hospitalized patients, with few serious drug-related treatment-emergent adverse events reported to date. In conclusion, relebactam and vaborbactam serve to broaden the spectrum of imipenem and meropenem, respectively, against β-lactamase-producing Gram-negative bacilli. The exact roles for imipenem-relebactam and meropenem-vaborbactam will be defined by efficacy and safety data from further clinical trials. Potential roles in therapy for these agents include the treatment of suspected or documented infections caused by resistant Gram-negative bacilli-producing ESBL, KPC, and/or AmpC β-lactamases. The usage of these agents in patients with CRE infections will likely become the standard of care. Finally, increased activity of imipenem-relebactam against P. aeruginosa may be of clinical benefit to patients with suspected or documented P. aeruginosa infections.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada. .,Department of Medicine, Winnipeg Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada.
| | | | - Heather Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| | - Frank Schweizer
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, Canada
| | | | - Michael Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Philippe R S Lagacé-Wiens
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medicine, Winnipeg Health Sciences Centre, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| | - Andrew Denisuik
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Alyssa Golden
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Alfred S Gin
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,College of Pharmacy, University of Manitoba, Winnipeg, Canada.,Department of Pharmacy, Winnipeg Health Sciences Centre, Winnipeg, Canada
| | - Daryl J Hoban
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care, Allergy and Clinical Immunology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Diagnostic Services Manitoba, Winnipeg, Canada
| |
Collapse
|
29
|
Bouza AA, Swanson HC, Smolen KA, VanDine AL, Taracila MA, Romagnoli C, Caselli E, Prati F, Bonomo RA, Powers RA, Wallar BJ. Structure-Based Analysis of Boronic Acids as Inhibitors of Acinetobacter-Derived Cephalosporinase-7, a Unique Class C β-Lactamase. ACS Infect Dis 2018; 4:325-336. [PMID: 29144724 DOI: 10.1021/acsinfecdis.7b00152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acinetobacter baumannii is a multidrug resistant pathogen that infects more than 12 000 patients each year in the US. Much of the resistance to β-lactam antibiotics in Acinetobacter spp. is mediated by class C β-lactamases known as Acinetobacter-derived cephalosporinases (ADCs). ADCs are unaffected by clinically used β-lactam-based β-lactamase inhibitors. In this study, five boronic acid transition state analog inhibitors (BATSIs) were evaluated for inhibition of the class C cephalosporinase ADC-7. Our goal was to explore the properties of BATSIs designed to probe the R1 binding site. Ki values ranged from low micromolar to subnanomolar, and circular dichroism (CD) demonstrated that each inhibitor stabilizes the β-lactamase-inhibitor complexes. Additionally, X-ray crystal structures of ADC-7 in complex with five inhibitors were determined (resolutions from 1.80 to 2.09 Å). In the ADC-7/CR192 complex, the BATSI with the lowest Ki (0.45 nM) and greatest Δ Tm (+9 °C), a trifluoromethyl substituent, interacts with Arg340. Arg340 is unique to ADCs and may play an important role in the inhibition of ADC-7. The ADC-7/BATSI complexes determined in this study shed light into the unique recognition sites in ADC enzymes and also offer insight into further structure-based optimization of these inhibitors.
Collapse
Affiliation(s)
- Alexandra A. Bouza
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Hollister C. Swanson
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Kali A. Smolen
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Alison L. VanDine
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Magdalena A. Taracila
- Research
Service, Louis Stokes Cleveland Department of Veterans Affairs Medical
Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Chiara Romagnoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Robert A. Bonomo
- Research
Service, Louis Stokes Cleveland Department of Veterans Affairs Medical
Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Rachel A. Powers
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Bradley J. Wallar
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| |
Collapse
|
30
|
Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Updat 2017; 36:13-29. [PMID: 29499835 DOI: 10.1016/j.drup.2017.11.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 11/27/2022]
Abstract
Antibiotic resistance, and the emergence of pan-resistant clinical isolates, seriously threatens our capability to treat bacterial diseases, including potentially deadly hospital-acquired infections. This growing issue certainly requires multiple adequate responses, including the improvement of both diagnosis methods and use of antibacterial agents, and obviously the development of novel antibacterial drugs, especially active against Gram-negative pathogens, which represent an urgent medical need. Considering the clinical relevance of both β-lactam antibiotics and β-lactamase-mediated resistance, the discovery and development of combinations including a β-lactamase inhibitor seems to be particularly attractive, despite being extremely challenging due to the enormous diversity, both structurally and mechanistically, of the potential β-lactamase targets. This review will cover the evolution of currently available β-lactamase inhibitors along with the most recent research leading to new β-lactamase inhibitors of potential clinical interest or already in the stage of clinical development.
Collapse
Affiliation(s)
- Jean-Denis Docquier
- Department of Medical Biotechnology, University of Siena, Viale Bracci 16, 53100 Siena, Italy.
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
31
|
González-Bello C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg Med Chem Lett 2017; 27:4221-4228. [PMID: 28827113 DOI: 10.1016/j.bmcl.2017.08.027] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
Resistance to available antibiotics in pathogenic bacteria is currently a global challenge since the number of strains that are resistant to multiple types of antibiotics has increased dramatically each year and has spread worldwide. To unlock this problem, the use of an 'antibiotic adjuvant' in combination with an antibiotic is now being exploited. This approach enables us to prolong the lifespan of these life-saving drugs. This digests review provides an overview of the main types of antibiotic adjuvants, the basis of their operation and the remaining issues to be tackled in this field. Particular emphasis is placed on those compounds that are already in clinical development, namely β-lactamase inhibitors.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
32
|
Abstract
This review describes available methods for the preparation of α-aminoboronic acids in their racemic or in their enantiopure form. Both, highly stereoselective syntheses and asymmetric procedures leading to the stereocontrolled generation of α-aminoboronic acid derivatives are included. The preparation of acyclic, carbocyclic and azacyclic α-aminoboronic acid derivatives is covered. Within each section, the different synthetic approaches have been classified according to the key bond which is formed to complete the α-aminoboronic acid skeleton.
Collapse
Affiliation(s)
- Patricia Andrés
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | | | | | | |
Collapse
|
33
|
Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design. Antimicrob Agents Chemother 2016; 60:1751-9. [PMID: 26729496 DOI: 10.1128/aac.02641-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022] Open
Abstract
Boronic acid transition state inhibitors (BATSIs) are competitive, reversible β-lactamase inhibitors (BLIs). In this study, a series of BATSIs with selectively modified regions (R1, R2, and amide group) were strategically designed and tested against representative class A β-lactamases of Klebsiella pneumoniae, KPC-2 and SHV-1. Firstly, the R1 group of compounds 1a to 1c and 2a to 2e mimicked the side chain of cephalothin, whereas for compounds 3a to 3c, 4a, and 4b, the thiophene ring was replaced by a phenyl, typical of benzylpenicillin. Secondly, variations in the R2 groups which included substituted aryl side chains (compounds 1a, 1b, 1c, 3a, 3b, and 3c) and triazole groups (compounds 2a to 2e) were chosen to mimic the thiazolidine and dihydrothiazine ring of penicillins and cephalosporins, respectively. Thirdly, the amide backbone of the BATSI, which corresponds to the amide at C-6 or C-7 of β-lactams, was also changed to the following bioisosteric groups: urea (compound 3b), thiourea (compound 3c), and sulfonamide (compounds 4a and 4b). Among the compounds that inhibited KPC-2 and SHV-1 β-lactamases, nine possessed 50% inhibitory concentrations (IC50s) of ≤ 600 nM. The most active compounds contained the thiopheneacetyl group at R1 and for the chiral BATSIs, a carboxy- or hydroxy-substituted aryl group at R2. The most active sulfonamido derivative, compound 4b, lacked an R2 group. Compound 2b (S02030) was the most active, with acylation rates (k2/K) of 1.2 ± 0.2 × 10(4) M(-1) s(-1) for KPC-2 and 4.7 ± 0.6 × 10(3) M(-1) s(-1) for SHV-1, and demonstrated antimicrobial activity against Escherichia coli DH10B carrying blaSHV variants and blaKPC-2 or blaKPC-3 and against clinical strains of Klebsiella pneumoniae and E. coli producing different class A β-lactamase genes. At most, MICs decreased from 16 to 0.5 mg/liter.
Collapse
|
34
|
Caselli E, Romagnoli C, Vahabi R, Taracila MA, Bonomo RA, Prati F. Click Chemistry in Lead Optimization of Boronic Acids as β-Lactamase Inhibitors. J Med Chem 2015; 58:5445-58. [PMID: 26102369 DOI: 10.1021/acs.jmedchem.5b00341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Boronic acid transition-state inhibitors (BATSIs) represent one of the most promising classes of β-lactamase inhibitors. Here we describe a new class of BATSIs, namely, 1-amido-2-triazolylethaneboronic acids, which were synthesized by combining the asymmetric homologation of boronates with copper-catalyzed azide-alkyne cycloaddition for the stereoselective insertion of the amido group and the regioselective formation of the 1,4-disubstituted triazole, respectively. This synthetic pathway, which avoids intermediate purifications, proved to be flexible and efficient, affording in good yields a panel of 14 BATSIs bearing three different R1 amide side chains (acetamido, benzylamido, and 2-thienylacetamido) and several R substituents on the triazole. This small library was tested against two clinically relevant class C β-lactamases from Enterobacter spp. and Pseudomonas aeruginosa. The K(i) value of the best compound (13a) was as low as 4 nM with significant reduction of bacterial resistance to the combination of cefotaxime/13a.
Collapse
Affiliation(s)
- Emilia Caselli
- †Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Romagnoli
- †Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Roza Vahabi
- †Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Magdalena A Taracila
- §Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University, , Cleveland, Ohio 44106, United States
| | - Robert A Bonomo
- ‡Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States.,§Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University, , Cleveland, Ohio 44106, United States
| | - Fabio Prati
- †Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| |
Collapse
|
35
|
Kurz SG, Hazra S, Bethel CR, Romagnoli C, Caselli E, Prati F, Blanchard JS, Bonomo RA. Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with Novel Boronic Acid Transition-State Inhibitors (BATSIs). ACS Infect Dis 2015; 1:234-42. [PMID: 27622739 DOI: 10.1021/acsinfecdis.5b00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BlaC, the single chromosomally encoded β-lactamase of Mycobacterium tuberculosis, has been identified as a promising target for novel therapies that rely upon β-lactamase inhibition. Boronic acid transition-state inhibitors (BATSIs) are a class of β-lactamase inhibitors which permit rational inhibitor design by combinations of various R1 and R2 side chains. To explore the structural determinants of effective inhibition, we screened a panel of 25 BATSIs to explore key structure-function relationships. We identified a cefoperazone analogue, EC19, which displayed slow, time-dependent inhibition against BlaC with a potency similar to that of clavulanate (Ki* of 0.65 ± 0.05 μM). To further characterize the molecular basis of inhibition, we solved the crystallographic structure of the EC19-BlaC(N172A) complex and expanded our analysis to variant enzymes. The results of this structure-function analysis encourage the design of a novel class of β-lactamase inhibitors, BATSIs, to be used against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Sebastian G. Kurz
- Department of Medicine, Tufts Medical Center, 600 Washington Street, No. 257, Boston, Massachusetts 02111, United States
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand 247667, India
| | - Christopher R. Bethel
- Research Service, Louis
Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Chiara Romagnoli
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Emilia Caselli
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Fabio Prati
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - John S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Robert A. Bonomo
- Research Service, Louis
Stokes Cleveland Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| |
Collapse
|
36
|
Olsen I. New promising β-lactamase inhibitors for clinical use. Eur J Clin Microbiol Infect Dis 2015; 34:1303-8. [DOI: 10.1007/s10096-015-2375-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/23/2015] [Indexed: 01/15/2023]
|
37
|
Sgrignani J, Novati B, Colombo G, Grazioso G. Covalent docking of selected boron-based serine beta-lactamase inhibitors. J Comput Aided Mol Des 2015; 29:441-50. [DOI: 10.1007/s10822-015-9834-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
38
|
Romagnoli C, Caselli E, Prati F. Synthesis of 1,2,3-triazol-1-yl-methaneboronic acids via click chemistry: an easy access to a new potential scaffold for protease inhibitors. European J Org Chem 2015; 2015:1075-1083. [PMID: 26257579 DOI: 10.1002/ejoc.201403408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stereoselective synthesis of previously unreported 1,2,3-triazol-1-yl-methaneboronic acids has been achieved from azidomethaneboronates by Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC). The proximity of the cycloaddition reaction center to the boronic group is not detrimental for the stability of the sp3-carbon-boron bond nor to the stereoisomeric composition, further expanding the field of application of click chemistry to new boronate substrates and offering a new potential scaffold for protease inhibitors.
Collapse
Affiliation(s)
- Chiara Romagnoli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio-Emilia, Via Campi 183, 41125 Modena (MO)
| | - Emilia Caselli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio-Emilia, Via Campi 183, 41125 Modena (MO)
| | - Fabio Prati
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio-Emilia, Via Campi 183, 41125 Modena (MO)
| |
Collapse
|
39
|
Jiao Y, Zhu B, Chen J, Duan X. Fluorescent sensing of fluoride in cellular system. Theranostics 2015; 5:173-87. [PMID: 25553106 PMCID: PMC4279002 DOI: 10.7150/thno.9860] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/22/2014] [Indexed: 12/24/2022] Open
Abstract
Fluoride ions have the important roles in a lot of physiological activities related with biological and medical system, such as water fluoridation, caries treatment, and bone disease treatment. Great efforts have been made to develop new methods and strategies for F(-) detection in the past decades. Traditional methods for the detection of F(-) including ion chromatography, ion-selective electrodes, and spectroscopic techniques have the limitations in the biomedicine research. The fluorescent probes for F(-) are very promising that overcome some drawbacks of traditional fluoride detection methods. These probes exhibit high selectivity, high sensitivity as well as quick response to the detection of fluoride anions. The review commences with a brief description of photophysical mechanisms for fluorescent probes for fluoride, including photo induced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and excited-state intramolecular proton transfer (ESIPT). Followed by a discussion about common dyes for fluorescent fluoride probes, such as anthracene, naphalimide, pyrene, BODIPY, fluorescein, rhodamine, resorufin, coumarin, cyanine, and near-infrared (NIR) dyes. We divide the fluorescent probes for fluoride in cellular application systems into nine groups, for example, type of hydrogen bonds, type of cleavage of Si-O bonds, type of Si-O bond cleavage and cylization reactions, etc. We also review the recent reported carriers in the delivery of fluorescent fluoride probes. Seventy-four typical fluorescent fluoride probes are listed and compared in detail, including quantum yield, reaction medium, excitation and emission wavelengths, linear detection range, selectivity for F(-), mechanism, and analytical applications. Finally, we discuss the future challenges of the application of fluorescent fluoride probes in cellular system and in vivo. We wish that more and more excellent fluorescent fluoride probes will be developed and applied in the biomedicine field in the future.
Collapse
Affiliation(s)
- Yang Jiao
- 1. State Key Laboratory of Military Stomatology, Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Baocun Zhu
- 2. School of Resources and Environment, University of Jinan, Jinan, Shandong, P. R. China
| | - Jihua Chen
- 3. State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Xiaohong Duan
- 1. State Key Laboratory of Military Stomatology, Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
40
|
Powers RA, Swanson HC, Taracila MA, Florek NW, Romagnoli C, Caselli E, Prati F, Bonomo RA, Wallar BJ. Biochemical and structural analysis of inhibitors targeting the ADC-7 cephalosporinase of Acinetobacter baumannii. Biochemistry 2014; 53:7670-9. [PMID: 25380506 PMCID: PMC4263437 DOI: 10.1021/bi500887n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
β-Lactam
resistance in Acinetobacter baumannii presents one
of the greatest challenges to contemporary antimicrobial chemotherapy.
Much of this resistance to cephalosporins derives from the expression
of the class C β-lactamase enzymes, known as Acinetobacter-derived cephalosporinases (ADCs). Currently, β-lactamase inhibitors
are structurally similar to β-lactam substrates and are not
effective inactivators of this class C cephalosporinase. Herein, two boronic acid transition state inhibitors
(BATSIs S02030 and SM23) that are chemically distinct from β-lactams
were designed and tested for inhibition of ADC enzymes. BATSIs SM23
and S02030 bind with high affinity to ADC-7, a chromosomal cephalosporinase
from Acinetobacter baumannii (Ki = 21.1 ± 1.9 nM and 44.5 ± 2.2 nM, respectively).
The X-ray crystal structures of ADC-7 were determined in both the
apo form (1.73 Å resolution) and in complex with S02030 (2.0
Å resolution). In the complex, S02030 makes several canonical
interactions: the O1 oxygen of S02030 is bound in the oxyanion hole,
and the R1 amide group makes key interactions with conserved residues
Asn152 and Gln120. In addition, the carboxylate group of the inhibitor
is meant to mimic the C3/C4 carboxylate found
in β-lactams. The C3/C4 carboxylate recognition
site in class C enzymes is comprised of Asn346 and Arg349 (AmpC numbering),
and these residues are conserved in ADC-7. Interestingly, in the ADC-7/S02030
complex, the inhibitor carboxylate group is observed to interact with
Arg340, a residue that distinguishes ADC-7 from the related class
C enzyme AmpC. A thermodynamic analysis suggests that ΔH driven compounds may be optimized to generate
new lead agents. The ADC-7/BATSI complex provides insight into recognition
of non-β-lactam inhibitors by ADC enzymes and offers a starting
point for the structure-based optimization of this class of novel
β-lactamase inhibitors against a key resistance target.
Collapse
Affiliation(s)
- Rachel A Powers
- Department of Chemistry, Grand Valley State University , 1 Campus Drive, Allendale, Michigan 49401, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The production of β-lactamase is one of the primary resistance mechanisms used by Gram-negative bacterial pathogens to counter β-lactam antibiotics, such as penicillins, cephalosporins and carbapenems. There is an urgent need to develop novel β-lactamase inhibitors in response to ever evolving β-lactamases possessing an expanded spectrum of β-lactam hydrolyzing activity. Whereas traditional high-throughput screening has proven ineffective against serine β-lactamases, fragment-based approaches have been successfully employed to identify novel chemical matter, which in turn has revealed much about the specific molecular interactions possible in the active site of serine and metallo β-lactamases. In this review, we summarize recent progress in the field, particularly: the identification of novel inhibitor chemotypes through fragment-based screening; the use of fragment-protein structures to understand key features of binding hot spots and inform the design of improved leads; lessons learned and new prospects for β-lactamase inhibitor development using fragment-based approaches.
Collapse
Affiliation(s)
- Derek A Nichols
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry & Small Molecule Discovery Center, University of California San Francisco, 1700 4th Street, Byers Hall S504, San Francisco, CA 94158, USA
| | - Yu Chen
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| |
Collapse
|
42
|
Del Rosso JQ, Plattner JJ. From the Test Tube to the Treatment Room: Fundamentals of Boron-containing Compounds and their Relevance to Dermatology. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2014; 7:13-21. [PMID: 24578778 PMCID: PMC3935647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The development of new drug classes and novel molecules that are brought to the marketplace has been a formidable challenge, especially for dermatologic drugs. The relative absence of new classes of antimicrobial agents is also readily apparent. Several barriers account for slow drug development, including regulatory changes, added study requirements, commercial pressures to bring drugs to market quickly by developing new generations of established compounds, and the greater potential for failure and higher financial risk when researching new drug classes. In addition, the return on investment is usually much lower with dermatologic drugs as compared to the potential revenue from "blockbuster" drugs for cardiovascular or gastrointestinal disease, hypercholesterolemia, and mood disorders. Nevertheless, some researchers are investigating new therapeutic platforms, one of which is boron-containing compounds. Boron-containing compounds offer a wide variety of potential applications in dermatology due to their unique physical and chemical properties, with several in formal phases of development. Tavaborole, a benzoxaborole compound, has been submitted to the United States Food and Drug Administration for approval for treatment of onychomycosis. This article provides a thorough overview of the history of boron-based compounds in medicine, their scientific rationale, physiochemical and pharmacologic properties, and modes of actions including therapeutic targets. A section dedicated to boron-based compounds in development for treatment of various skin disorders is also included.
Collapse
Affiliation(s)
- James Q. Del Rosso
- Clinical Professor (Dermatology Adjunct Faculty), Touro University College of Osteopathic Medicine, Henderson, Nevada; Private Dermatology Practice, Las Vegas Skin & Cancer Clinics/West Dermatology Group, Las Vegas and Hernderson, Nevada
| | - Jacob J. Plattner
- Senior Vice President of Research, Anacor Pharmaceuticals, Palo Alto, California
| |
Collapse
|
43
|
Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 2013; 58:1835-46. [PMID: 24379206 PMCID: PMC4023773 DOI: 10.1128/aac.00826-13] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the incidence of Gram-negative bacterial infections for which few effective treatments remain increases, so does the contribution of drug-hydrolyzing β-lactamase enzymes to this serious clinical problem. This review highlights recent advances in β-lactamase inhibitors and focuses on agents with novel mechanisms of action against a wide range of enzymes. To this end, we review the β-lactamase inhibitors currently in clinical trials, select agents still in preclinical development, and older therapeutic approaches that are being revisited. Particular emphasis is placed on the activity of compounds at the forefront of the developmental pipeline, including the diazabicyclooctane inhibitors (avibactam and MK-7655) and the boronate RPX7009. With its novel reversible mechanism, avibactam stands to be the first new β-lactamase inhibitor brought into clinical use in the past 2 decades. Our discussion includes the importance of selecting the appropriate partner β-lactam and dosing regimens for these promising agents. This "renaissance" of β-lactamase inhibitors offers new hope in a world plagued by multidrug-resistant (MDR) Gram-negative bacteria.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Krisztina M. Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
44
|
Abstract
Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade(®)), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin's lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans.
Collapse
|
45
|
Zimmermann TJ, Bürger M, Tashiro E, Kondoh Y, Martinez NE, Görmer K, Rosin-Steiner S, Shimizu T, Ozaki S, Mikoshiba K, Watanabe N, Hall D, Vetter IR, Osada H, Hedberg C, Waldmann H. Boron-Based Inhibitors of Acyl Protein Thioesterases 1 and 2. Chembiochem 2012; 14:115-22. [DOI: 10.1002/cbic.201200571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Indexed: 11/08/2022]
|
46
|
Fragment-guided design of subnanomolar β-lactamase inhibitors active in vivo. Proc Natl Acad Sci U S A 2012; 109:17448-53. [PMID: 23043117 DOI: 10.1073/pnas.1208337109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragment-based design was used to guide derivatization of a lead series of β-lactamase inhibitors that had heretofore resisted optimization for in vivo activity. X-ray structures of fragments overlaid with the lead suggested new, unanticipated functionality and points of attachment. Synthesis of three derivatives improved affinity over 20-fold and improved efficacy in cell culture. Crystal structures were consistent with the fragment-based design, enabling further optimization to a K(i) of 50 pM, a 500-fold improvement that required the synthesis of only six derivatives. One of these, compound 5, was tested in mice. Whereas cefotaxime alone failed to cure mice infected with β-lactamase-expressing Escherichia coli, 65% were cleared of infection when treated with a cefotaxime:5 combination. Fragment complexes offer a path around design hurdles, even for advanced molecules; the series described here may provide leads to overcome β-lactamase-based resistance, a key clinical challenge.
Collapse
|
47
|
Inglis SR, Strieker M, Rydzik AM, Dessen A, Schofield CJ. A boronic-acid-based probe for fluorescence polarization assays with penicillin binding proteins and β-lactamases. Anal Biochem 2011; 420:41-7. [PMID: 21925482 DOI: 10.1016/j.ab.2011.08.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 11/28/2022]
Abstract
Penicillin binding proteins (PBPs) and β-lactamases are involved in interactions with β-lactam antibiotics connected with both antibacterial activity and mediation of bacterial β-lactam resistance. Current methods for identifying inhibitors of PBPs and β-lactamases can be inefficient and are often not suitable for studying weakly and/or reversibly binding compounds. Therefore, improved ligand binding assays for PBPs and β-lactamases are needed. We report the development of a fluorescence polarization (FP) assay for PBPs and "serine" β-lactamases using a boronic-acid-based, reversibly binding "tracer." The tracer was designed based on a crystal structure of a covalent complex between a boronic acid and PBP1b from Streptococcus pneumoniae. The tracer bound to three different PBPs with modest affinity (K(d)=4-12 μM) and more tightly to the TEM1 serine β-lactamase (K(d)=109 nM). β-Lactams and other boronic acids were able to displace the tracer in competition assays. These results indicate that fluorescent boronic acids are suited to serve as reversibly binding tracers in FP-based assays with PBPs and β-lactamases and potentially with other related enzymes.
Collapse
Affiliation(s)
- Steven R Inglis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | | | | | | |
Collapse
|
48
|
Abstract
Relative to carbon, hydrogen, nitrogen and oxygen, very little is currently known about boron in therapeutics. In addition, there are very few boron-containing natural products identified to date to serve as leads for medicinal chemists. Perceived risks of using boron and lack of synthetic methods to handle boron-containing compounds have caused the medicinal chemistry community to shy away from using the atom. However, physical, chemical and biological properties of boron offer medicinal chemists a rare opportunity to explore and pioneer new areas of drug discovery. Boron therapeutics are emerging that show different modes of inhibition against a variety of biological targets. With one boron-containing therapeutic agent on the market and several more in various stages of clinical trials, the occurrence of this class of compound is likely to grow over the next decade and boron could become widely accepted as a useful element in future drug discovery.
Collapse
|
49
|
Chen H, Blizzard TA, Kim S, Wu J, Young K, Park YW, Ogawa AM, Raghoobar S, Painter RE, Wisniewski D, Hairston N, Fitzgerald P, Sharma N, Scapin G, Lu J, Hermes J, Hammond ML. Side chain SAR of bicyclic β-lactamase inhibitors (BLIs). 2. N-Alkylated and open chain analogs of MK-8712. Bioorg Med Chem Lett 2011; 21:4267-70. [DOI: 10.1016/j.bmcl.2011.05.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 12/27/2022]
|
50
|
Drawz SM, Taracila M, Caselli E, Prati F, Bonomo RA. Exploring sequence requirements for C₃/C₄ carboxylate recognition in the Pseudomonas aeruginosa cephalosporinase: Insights into plasticity of the AmpC β-lactamase. Protein Sci 2011; 20:941-58. [PMID: 21404358 DOI: 10.1002/pro.612] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 11/06/2022]
Abstract
In Pseudomonas aeruginosa, the chromosomally encoded class C cephalosporinase (AmpC β-lactamase) is often responsible for high-level resistance to β-lactam antibiotics. Despite years of study of these important β-lactamases, knowledge regarding how amino acid sequence dictates function of the AmpC Pseudomonas-derived cephalosporinase (PDC) remains scarce. Insights into structure-function relationships are crucial to the design of both β-lactams and high-affinity inhibitors. In order to understand how PDC recognizes the C₃/C₄ carboxylate of β-lactams, we first examined a molecular model of a P. aeruginosa AmpC β-lactamase, PDC-3, in complex with a boronate inhibitor that possesses a side chain that mimics the thiazolidine/dihydrothiazine ring and the C₃/C₄ carboxylate characteristic of β-lactam substrates. We next tested the hypothesis generated by our model, i.e. that more than one amino acid residue is involved in recognition of the C₃/C₄ β-lactam carboxylate, and engineered alanine variants at three putative carboxylate binding amino acids. Antimicrobial susceptibility testing showed that the PDC-3 β-lactamase maintains a high level of activity despite the substitution of C₃/C₄ β-lactam carboxylate recognition residues. Enzyme kinetics were determined for a panel of nine penicillin and cephalosporin analog boronates synthesized as active site probes of the PDC-3 enzyme and the Arg349Ala variant. Our examination of the PDC-3 active site revealed that more than one residue could serve to interact with the C₃/C₄ carboxylate of the β-lactam. This functional versatility has implications for novel drug design, protein evolution, and resistance profile of this enzyme.
Collapse
Affiliation(s)
- Sarah M Drawz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|