1
|
Ji S, Rizk MA, Galon EM, El-Alfy ES, Mizukawa Y, Kojima M, Ikegami-Kawai M, Kaya M, Liu M, Itoh I, Xuan X. Anti-babesial activity of a series of 6,7-dimethoxyquinazoline-2,4-diamines (DMQDAs). Acta Trop 2024; 249:107069. [PMID: 37952866 DOI: 10.1016/j.actatropica.2023.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Diminazene aceturate (DA), imidocarb dipropionate (ID), atovaquone (ATO), azithromycin (AZI), clindamycin, and quinine have been used to treat animal and human babesiosis for many years, despite their negative effects and rising indications of resistance. Thus, finding anti-babesial compounds that can either treat the infection or lower the dose of drugs given has been a primary objective. Quinazolines are one of the most important nitrogen heterocycles, with a wide range of pharmacological activities including analgesic, anti-inflammatory, sedative-hypnotic, anti-histaminic, anti-cancer, and anti-protozoan properties. The present study investigated the anti-babesial activities of twenty 6,7-dimethoxyquinazoline-2,4-diamines on Babesia spp. One candidate, 6,7-dimethoxy-N4-ethylisopropyl-N2-ethyl(pyridin-4-yl)quinazoline-2,4-diamine (SHG02), showed potent inhibition on Babesia gibsoni in vitro, as well as on B. microti and B. rodhaini in mice. Our findings indicate that the candidate compound SHG02 is promising for further development of anti-babesial drugs and provides a new structure to be explored for developing anti-Babesia therapeutics.
Collapse
Affiliation(s)
- Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eloiza May Galon
- College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Indang, Cavite 4122, Philippines
| | - El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yuki Mizukawa
- Synstar Japan Co., Ltd., 2-9-46 Sakaecho, Odawara, Kanagawa 250-0011, Japan
| | - Masayoshi Kojima
- Synstar Japan Co., Ltd., 2-9-46 Sakaecho, Odawara, Kanagawa 250-0011, Japan
| | - Mayumi Ikegami-Kawai
- Faculty of Pharmaceutical Science, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Motohiro Kaya
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Mingming Liu
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Isamu Itoh
- Synstar Japan Co., Ltd., 2-9-46 Sakaecho, Odawara, Kanagawa 250-0011, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
2
|
Kaczor A, Knutelska J, Kucwaj-Brysz K, Zygmunt M, Żesławska E, Siwek A, Bednarski M, Podlewska S, Jastrzębska-Więsek M, Nitek W, Sapa J, Handzlik J. The Subtype Selectivity in Search of Potent Hypotensive Agents among 5,5-Dimethylhydantoin Derived α 1-Adrenoceptors Antagonists. Int J Mol Sci 2023; 24:16609. [PMID: 38068933 PMCID: PMC10706087 DOI: 10.3390/ijms242316609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
In order to find new hypotensive drugs possessing higher activity and better selectivity, a new series of fifteen 5,5-dimethylhydantoin derivatives (1-15) was designed. Three-step syntheses, consisting of N-alkylations using standard procedures as well as microwaves, were carried out. Crystal structures were determined for compounds 7-9. All of the synthesized 5,5-dimethylhydantoins were tested for their affinity to α1-adrenergic receptors (α1-AR) using both in vitro and in silico methods. Most of them displayed higher affinity (Ki < 127.9 nM) to α1-adrenoceptor than urapidil in radioligand binding assay. Docking to two subtypes of adrenergic receptors, α1A and α1B, was conducted. Selected compounds were tested for their activity towards two α1-AR subtypes. All of them showed intrinsic antagonistic activity. Moreover, for two compounds (1 and 5), which possess o-methoxyphenylpiperazine fragments, strong activity (IC50 < 100 nM) was observed. Some representatives (3 and 5), which contain alkyl linker, proved selectivity towards α1A-AR, while two compounds with 2-hydroxypropyl linker (11 and 13) to α1B-AR. Finally, hypotensive activity was examined in rats. The most active compound (5) proved not only a lower effective dose than urapidil but also a stronger effect than prazosin.
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Joanna Knutelska
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Ewa Żesławska
- Institute of Biology and Earth Sciences, University of the National Education Commision, Podchorążych 2, 30-084 Krakow, Poland;
| | - Agata Siwek
- Department of Pharmacobiology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Marek Bednarski
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, 31-343 Krakow, Poland;
| | | | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Jacek Sapa
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| |
Collapse
|
3
|
Zohny YM, Awad SM, Rabie MA, Alsaidan OA. Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel Pyrimidine Derivatives as Potential Calcium Channel Blockers. Molecules 2023; 28:4869. [PMID: 37375424 DOI: 10.3390/molecules28124869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Pyrimidines play an important role in modern medical fields. They have a wide spectrum of biological activities such as antimicrobial, anticancer, anti-allergic, anti-leishmanial, antioxidant agents and others. Moreover, in recent years, 3,4-dihydropyrimidin-2(1H)ones have attracted researchers to synthesize them via Biginelli reaction and evaluate their antihypertensive activities as bioisosters of Nifedipine, which is a famous calcium channel blocker. Our new target compounds were prepared through one-pot reaction of thiourea 1, ethyl acetoacetate 2 and/or 1H-indole-2-carbaldehyde, 2-chloroquinoline-3-carbaldehyde, 1,3-diphenyl-1H-pyrazole-4-carbaldehyde, 3a-c in acid medium (HCl) yielding pyrimidines 4a-c, which in turn were hydrolyzed to carboxylic acid derivatives 5a-c which were chlorinated by SOCl2 to give acyl chlorides 6a-c. Finally, the latter were reacted with some selected aromatic amines, namely, aniline, p-toluidine and p-nitroaniline, producing amides 7a-c, 8a-c, and 9a-c. The purity of the prepared compounds was examined via TLC monitoring, and structures were confirmed by different spectroscopic techniques such as IR, 1HNMR, 13CNMR, and mass spectroscopy. The in vivo evaluation of the antihypertensive activity revealed that compounds 4c, 7a, 7c, 8c, 9b and 9c had comparable antihypertensive properties with Nifedipine. On the other hand, the in vitro calcium channel blocking activity was evaluated by IC50 measurement and results revealed that compounds 4c, 7a, 7b, 7c, 8c, 9a, 9b, and 9c had comparable calcium channel blocking activity with the reference Nifedipine. Based on the aforementioned biological results, we selected compounds 8c and 9c to be docked onto Ryanodine and dihydropyridine receptors. Furthermore, we developed a structure-activity relationship. The designed compounds in this study show promising activity profiles in reducing blood pressure and as calcium channel blockers, and could be considered as new potential antihypertensive and/or antianginal agents.
Collapse
Affiliation(s)
- Yasser M Zohny
- Pharmaceutical Sciences Department, College of Pharmacy, Shaqra University, Dawadmi 11911, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Samir M Awad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Maha A Rabie
- Pharmacy Practice Department, College of Pharmacy, Shaqra University, Dawadmi 11911, Saudi Arabia
- Pharmacology and Toxicology Department, School of Pharmacy, Cairo University, Cairo 11795, Egypt
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| |
Collapse
|
4
|
Balraj G, Rammohan K, Anilkumar A, Sharath Babu M, Ayodhya D. An improved eco-friendly and solvent-free method for the one-pot synthesis of tetrahydropyrimidine derivatives via Biginelli condensation reaction using ZrO2/La2O3 catalysts. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Dwivedi AR, Kumar V, Prashar V, Verma A, Kumar N, Parkash J, Kumar V. Morpholine substituted quinazoline derivatives as anticancer agents against MCF-7, A549 and SHSY-5Y cancer cell lines and mechanistic studies. RSC Med Chem 2022; 13:599-609. [PMID: 35694693 PMCID: PMC9132193 DOI: 10.1039/d2md00023g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
A series of morpholine substituted quinazoline derivatives have been synthesized and evaluated for cytotoxic potential against A549, MCF-7 and SHSY-5Y cancer cell lines. These compounds were found to be non-toxic against HEK293 cells at 25 μM and hence display anticancer potential. In these series compounds, AK-3 and AK-10 displayed significant cytotoxic activity against all the three cell lines. AK-3 displayed IC50 values of 10.38 ± 0.27 μM, 6.44 ± 0.29 μM and 9.54 ± 0.15 μM against A549, MCF-7 and SHSY-5Y cancer cell lines. Similarly, AK-10 showed IC50 values of 8.55 ± 0.67 μM, 3.15 ± 0.23 μM and 3.36 ± 0.29 μM against A549, MCF-7 and SHSY-5Y, respectively. In the mechanistic studies, it was found that AK-3 and AK-10 inhibit the cell proliferation in the G1 phase of the cell cycle and the primary cause of death of the cells was found to be through apoptosis. Thus, morpholine based quinazoline derivatives have the potential to be developed as potent anticancer drug molecules.
Collapse
Affiliation(s)
- Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India +91 164 286 4214
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India +91 164 286 4214
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab Bathinda Punjab 151401 India
| | - Akash Verma
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India +91 164 286 4214
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India +91 164 286 4214
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab Bathinda Punjab 151401 India
| | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India +91 164 286 4214
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India
| |
Collapse
|
6
|
Babatunde O, Hameed S, Salar U, Chigurupati S, Wadood A, Rehman AU, Venugopal V, Khan KM, Taha M, Perveen S. Dihydroquinazolin-4(1H)-one derivatives as novel and potential leads for diabetic management. Mol Divers 2022; 26:849-868. [PMID: 33650031 DOI: 10.1007/s11030-021-10196-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
Collapse
Affiliation(s)
- Oluwatoyin Babatunde
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Chemical Sciences, Ajayi Crowther University, Oyo, P.M.B 1066, Nigeria
| | - Shehryar Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi, 75280, Pakistan
| |
Collapse
|
7
|
Gore S, Baskaran S, König B. Synthesis of 5-unsubstituted dihydropyrimidinone-4-carboxylates from deep eutectic mixtures. Beilstein J Org Chem 2022; 18:331-336. [PMID: 35387381 PMCID: PMC8965339 DOI: 10.3762/bjoc.18.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 01/19/2023] Open
Abstract
A facile one-pot synthesis of 5-unsubstituted dihydropyrimidinones from β,γ-unsaturated ketoesters in low melting ʟ-(+)-tartaric acid-N,N-dimethylurea mixtures is reported. This solvent-free method is very general and provides easy access to 5-unsubstituted dihydropyrimidinone-4-carboxylate derivatives in good yields.
Collapse
Affiliation(s)
- Sangram Gore
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
8
|
Satyanarayana N, Boddu R, Sathish K, Nagaraju S, K D, Pawar R, Shirisha T, Kashinath D. Synthesis of 2-styryl-quinazoline and 3-styryl-quinoxaline based sulfonate esters via sp3 C-H activation and their evaluation for α-glucosidase inhibition. NEW J CHEM 2022. [DOI: 10.1039/d1nj05644a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of 2-styryl-quinazolines and 3-styryl-quinoxaline based sulfonates is reported via sp3 C-H functionalization in the presence of triethylamine (10 mol%). The resulting compounds were tested for the α-glucosidase enzyme inhibition...
Collapse
|
9
|
Mahgoub S, Kotb El-Sayed MI, El-Shehry MF, Mohamed Awad S, Mansour YE, Fatahala SS. Synthesis of novel calcium channel blockers with ACE2 inhibition and dual antihypertensive/anti-inflammatory effects: A possible therapeutic tool for COVID-19. Bioorg Chem 2021; 116:105272. [PMID: 34474305 PMCID: PMC8403975 DOI: 10.1016/j.bioorg.2021.105272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 02/08/2023]
Abstract
Hypertension has been recognized as one of the most frequent comorbidities and risk factors for the seriousness and adverse consequences in COVID-19 patients. 3,4-dihydropyrimidin-2(1H) ones have attracted researchers to be synthesized via Beginilli reaction and evaluate their antihypertensive activities as bioisosteres of nifedipine a well-known calcium channel blocker. In this study, we report synthesis of some bioisosteres of pyrimidines as novel CCBs with potential ACE2 inhibitory effect as antihypertensive agents with protective effect against COVID-19 infection by suppression of ACE2 binding to SARS-CoV-2 Spike RBD. All compounds were evaluated for their antihypertensive and calcium channel blocking activities using nifedipine as a reference standard. Furthermore, they were screened for their ACE2 inhibition potential in addition to their anti‐inflammatory effects on LPS-stimulated THP‐1 cells. Most of the tested compounds exhibited significant antihypertensive activity, where compounds 7a, 8a and 9a exhibited the highest activity compared to nifedipine. Moreover, compounds 4a,b, 5a,b, 7a,b, 8a,c and 9a showed promising ACE2:SARS-CoV-2 Spike RBD inhibitory effect. Finally, compounds 5a, 7b and 9a exerted a promising anti-inflammatory effect by inhibition of CRP and IL-6 production. Ultimately, compound 9a may be a promising antihypertensive candidate with anti-inflammatory and potential efficacy against COVID-19 via ACE2 receptor inhibition.
Collapse
Affiliation(s)
- Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, P.O. Box, 11795 Cairo, Egypt.
| | - Mohamed-I Kotb El-Sayed
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, P.O. Box, 11795 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed F El-Shehry
- Pesticide Chemistry Department, National Research Centre, P.O. Box, 12622 Dokki, Egypt
| | - Samir Mohamed Awad
- Pharmaceutical Organic Chemistry Department, Helwan University, P.O. Box, 11795 Cairo, Egypt
| | - Yara E Mansour
- Pharmaceutical Organic Chemistry Department, Helwan University, P.O. Box, 11795 Cairo, Egypt
| | - Samar S Fatahala
- Pharmaceutical Organic Chemistry Department, Helwan University, P.O. Box, 11795 Cairo, Egypt.
| |
Collapse
|
10
|
Zhang Y, Li S, Zhang H, Xu H. Design and Application of Receptor-Targeted Fluorescent Probes Based on Small Molecular Fluorescent Dyes. Bioconjug Chem 2021; 32:4-24. [PMID: 33412857 DOI: 10.1021/acs.bioconjchem.0c00606] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, a variety of receptor-targeted fluorescent probes have been developed and widely used to realize the visualization of certain receptors, which facilitates the early diagnosis and treatment of diseases. In this Review, we focus on the recent achievements in design, chemical structure, imaging characterization, and potential applications of receptor-targeted fluorescent probes from the past 10 years. The development and application of receptor-targeted fluorescent probes will expand our knowledge of the distribution and function of disease-related receptors, shed light on the drug discovery for clinical diseases where receptors are implicated, and feed into the diagnosis and treatment of a plethora of diseases, including tumors.
Collapse
Affiliation(s)
- Yujie Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
11
|
Srour AM, Dawood DH, Saleh DO. Synthesis, 3D-pharmacophore modelling and 2D-QSAR study of new pyridine-3-carbonitriles as vasorelaxant active agents. NEW J CHEM 2021. [DOI: 10.1039/d0nj06319c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new set of pyridine-3-carbonitriles (3a–v) conjugated with various five-membered ring systems at pyridinyl C-6 were designed and synthesized as vasorelaxant active agents.
Collapse
Affiliation(s)
- Aladdin M. Srour
- Department of Therapeutic Chemistry
- National Research Centre
- Dokki
- Egypt
| | - Dina H. Dawood
- Chemistry of Natural and Microbial Products Department
- Pharmaceutical and Drug Industries Research Division
- National Research Centre
- Dokki
- Egypt
| | - Dalia O. Saleh
- Pharmacology Department
- National Research Centre
- Dokki
- Egypt
| |
Collapse
|
12
|
Salem MS, Al‐Mabrook SAM, El‐Hashash MAEM. Synthesis and antiproliferative evaluation of some novel quinazolin‐4(
3
H
)‐one derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marwa Sayed Salem
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Selima Ali Mohamed Al‐Mabrook
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
- Chemistry Department Faculty of Science, El‐Margeb University Al Khums Libya
| | | |
Collapse
|
13
|
Microwave Assisted Synthesis of 4-Phenylquinazolin-2(1H)-one Derivatives that Inhibit Vasopressor Tonus in Rat Thoracic Aorta. Molecules 2020; 25:molecules25061467. [PMID: 32213966 PMCID: PMC7146288 DOI: 10.3390/molecules25061467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 11/16/2022] Open
Abstract
Quinazolinones have pharmacological effects on vascular reactivity through different mechanisms. We synthesized 4-phenylquinazolin-2(1H)-one derivatives under microwave irradiation and tested them on the rat thoracic aorta. The prepared compounds 2a–2f were obtained in about 1 h with suitable yields (31–92%). All derivatives produced vasorelaxant effects with IC50 values ranging from 3.41 ± 0.65 µM to 39.72 ± 6.77 µM. Compounds 2c, 2e and 2f demonstrated the highest potency in endothelium-intact aorta rings (IC50 4.31 ± 0.90 µM, 4.94 ± 1.21 µM and 3.41 ± 0.65 µM respectively), and they achieved around 90% relaxation (30 μM). In aorta rings without an endothelium, the effect of compound 2f was abolished. Using the MTT assay to test for cell viability, only compound 2b induced cytotoxicity at the maximum concentration employed (30 µM). The results show that vasorelaxation by 4-phenylquinazolin-2(1H)-one derivatives might depend on the activation of a signalling pathway triggered by endothelium-derived factors.
Collapse
|
14
|
Devkota S, Lee H, Kim SH, Lee YR. Direct Construction of Diverse Polyheterocycles Bearing Pyrrolidinediones via Rh(III)‐Catalyzed Cascade C−H Activation/Spirocyclization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shreedhar Devkota
- School of Chemical EngineeringYeungnam University Gyeongsan 38541 Republic of Korea
| | - Ha‐Jin Lee
- Western Seoul Center, Korea Basic Science Institute 150 Bugahyun-ro, Seoudaemun-gu Seoul 03759 Republic of Korea
| | - Sung Hong Kim
- Analysis Research DivisionDaegu Center, Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Yong Rok Lee
- School of Chemical EngineeringYeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
15
|
Wu H, Liu Y, He MX, Wen H, Cao W, Chen P, Tang Y. Preparation of isoquinazolines via metal-free [4 + 2] cycloaddition of ynamides with nitriles. Org Biomol Chem 2019; 17:8408-8416. [PMID: 31478045 DOI: 10.1039/c9ob01395d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TfOH-mediated [4 + 2] cycloaddition of ynamides with nitriles to construct 1,2-dihydroquinazolines is realized by a direct reaction in moderate to excellent yields (up to 93%) in a stereospecific manner. A rapid and efficient strategy has been employed for the syntheses of alkyl-substituted 1,2-dihydroquinazoline derivatives, and it exhibits good functional group tolerance, has a short reaction time, shows excellent diastereoselectivity, and is a simple and high-yielding reaction.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, P. R. China.
| | - Yu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, P. R. China.
| | - Ming-Xing He
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, P. R. China.
| | - Hao Wen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, P. R. China.
| | - Wei Cao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, P. R. China.
| | - Ping Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, P. R. China.
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao, 266003, P. R. China. and Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology Qingdao, 266237, P. R. China
| |
Collapse
|
16
|
Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02289-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Aziz MN, Panda SS, Shalaby EM, Fawzy NG, Girgis AS. Facile synthetic approach towards vasorelaxant active 4-hydroxyquinazoline-4-carboxamides. RSC Adv 2019; 9:28534-28540. [PMID: 35529643 PMCID: PMC9071013 DOI: 10.1039/c9ra04321g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/04/2019] [Indexed: 11/23/2022] Open
Abstract
A Facile synthetic approach is reported towards 4-hydroxyquinazoline-4-carboxamides 13a–i through ring expansion of 2,3-dioxoindoline-1-carboxamides 10a–c during secondary amine 11a–d nucleophilic reaction. Single crystal X-ray studies of 10c and 13d support the structures. Some of the synthesized quinazolinecarboxamides 13 show promising vasorelaxant properties with potency higher than that of Doxazosin through the pre-contracted (norepinephrine hydrochloride) rat aorta standard bioassay. Good molecular models (2D-QSAR, pharmacophore) describe the biological observations. A set of vasorelaxant active 4-hydroxyquinazoline-4-carboxamides was obtained in a novel synthetic approach via secondary amine nucleophilic reaction with 2,3-dioxoindoline-1-carboxamides.![]()
Collapse
Affiliation(s)
- Marian N. Aziz
- Department of Pesticide Chemistry
- National Research Centre
- Giza 12622
- Egypt
| | - Siva S. Panda
- Department of Chemistry & Physics
- Augusta University
- Augusta
- USA
| | - ElSayed M. Shalaby
- X-Ray Crystallography Lab
- Physics Division
- National Research Centre
- Giza 12622
- Egypt
| | - Nehmedo G. Fawzy
- Department of Pesticide Chemistry
- National Research Centre
- Giza 12622
- Egypt
| | - Adel S. Girgis
- Department of Pesticide Chemistry
- National Research Centre
- Giza 12622
- Egypt
| |
Collapse
|
18
|
Dandia A, Sharma R, Indora A, Parewa V. Kosmotropes Perturbation and Ambiphilic Dual Activation: Responsible Features for the Construction of C-N Bond towards the Synthesis of Quinazolin-4(3H
)-ones in Water. ChemistrySelect 2018. [DOI: 10.1002/slct.201801224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anshu Dandia
- Centre of Advanced Studies; Department of Chemistry; University of Rajasthan, Jaipur; India
| | - Ruchi Sharma
- Centre of Advanced Studies; Department of Chemistry; University of Rajasthan, Jaipur; India
| | - Aayushi Indora
- Centre of Advanced Studies; Department of Chemistry; University of Rajasthan, Jaipur; India
| | - Vijay Parewa
- Centre of Advanced Studies; Department of Chemistry; University of Rajasthan, Jaipur; India
| |
Collapse
|
19
|
Synthesis and Reactions of Some New Quinazoline Derivatives for In VitroEvaluation as Anticancer and Antimicrobial Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Keivanloo A, Soozani A, Bakherad M, Amin AH. A one-pot synthetic approach for the construction of a thiazolo[3,2-a]benzimidazole-linked quinazoline scaffoldviapalladium-catalyzed reactions. Org Chem Front 2018. [DOI: 10.1039/c7qo00751e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
4-(2-Substituted-[1,3]thiazolo[3,2-a]benzimidazol-3-yl)quinazolin-2-amines were prepared by the reaction of 2,4-dichloroquinazoline, terminal alkynes, secondary amines, and 1H-benzo[d]imidazole-2(3H)-thione in the presence of palladium catalyst.
Collapse
Affiliation(s)
- Ali Keivanloo
- School of Chemistry
- Shahrood University of Technology
- Shahrood 36199-95161
- Iran
| | - Atena Soozani
- School of Chemistry
- Shahrood University of Technology
- Shahrood 36199-95161
- Iran
| | - Mohammad Bakherad
- School of Chemistry
- Shahrood University of Technology
- Shahrood 36199-95161
- Iran
| | - Amir Hossein Amin
- School of Chemistry
- Shahrood University of Technology
- Shahrood 36199-95161
- Iran
| |
Collapse
|
21
|
Zeydi MM, Montazeri N, Fouladi M. Synthesis and Evaluation of Novel [1,2,4]Triazolo[1,5-c]quinazoline Derivatives as Antibacterial Agents. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Naser Montazeri
- Department of Chemistry, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| | - Mahdi Fouladi
- Department of Chemistry, Tonekabon Branch; Islamic Azad University; Tonekabon Iran
| |
Collapse
|
22
|
El-Shenawy AI. Synthesis, characterization and biological activity of new 3(4H)-quinazolinone derivatives. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Jaiswal D, Mishra A, Rai P, Srivastava M, Tripathi BP, Yadav S, Singh J, Singh J. A visible light-initiated, one-pot, multi-component synthesis of 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives under solvent- and catalyst-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3100-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Némethy A, Vavrinec P, Vavrincová-Yaghi D, Čepcová D, Mišúth S, Král'ová E, Čižmáriková R, Račanská E. Synthesis and Biological Evaluation of New Combined α/β-Adrenergic Blockers. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201600394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Andrej Némethy
- Department of Chemical Theory of Drugs; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovakia
| | - Peter Vavrinec
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovakia
| | - Diana Vavrincová-Yaghi
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovakia
| | - Diana Čepcová
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovakia
| | - Svetozár Mišúth
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovakia
| | - Eva Král'ová
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovakia
| | - Ružena Čižmáriková
- Department of Chemical Theory of Drugs; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovakia
| | - Eva Račanská
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Comenius University in Bratislava; Bratislava Slovakia
| |
Collapse
|
25
|
MOHAMMADHOSSEINI N, SAEEDI M, MORADI S, MAHDAVI M, FIRUZI O, FOROUMADI A, SHAFIEE A. Synthesis and cytotoxicity of novel thioxo-quinazolino[3,4-$a$]quinazolinones. Turk J Chem 2017. [DOI: 10.3906/kim-1512-80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
26
|
Bie Z, Li G, Wang L, Lv Y, Niu J, Gao S. A facile vanadium-catalyzed aerobic oxidative synthesis of quinazolinones from 2-aminobenzamides with aldehydes or alcohols. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Synthesis and In Vitro Cytotoxic Properties of Polycarbo-Substituted 4-(Arylamino)quinazolines. Molecules 2016; 21:molecules21101366. [PMID: 27754446 PMCID: PMC6274161 DOI: 10.3390/molecules21101366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 11/29/2022] Open
Abstract
Herein, we describe the synthesis of novel unsymmetrical polycarbo-substituted 4-anilinoquinazolines derived from the 2-aryl-6-bromo-8-iodoquinazolines via one-pot three-step reaction sequences involving initial amination and subsequent double cross-coupling (bis-Suzuki, Sonogashira/Stille or Sonogashira/Suzuki-Miyaura) reactions with different cross coupling partners for the two carbon–carbon bond formation steps. The 4-anilinoquinazolines were evaluated for potential cytotoxicity against three cancer cell lines, namely, human breast adenocarcinoma (MCF-7) cells, human cervical cancer (HeLa) and human lung cancer (A549) cells. The most active compounds, 2b, 2c, 3c, 4a, 4c and 5a, were found to be more selective against the MCF-7 and HeLa cell lines than the human lung carcinoma (A549) cells. We selected compounds 2c, 3c and 7a as representatives for further evaluation for potential to induce apoptosis and/or necrotic properties in the three cancer cell lines. Compound 2c induced apoptosis of MCF-7 cells through cell membrane alteration. Treatment of Hela and A549 cell lines with compounds 3c and 7a, respectively, led to caspase-3 activation in both cell lines. Compound 3c, on the other hand, caused more necrosis than apoptosis induction in the membrane alteration assay.
Collapse
|
28
|
Khan I, Zaib S, Batool S, Abbas N, Ashraf Z, Iqbal J, Saeed A. Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification. Bioorg Med Chem 2016; 24:2361-2381. [PMID: 27112448 DOI: 10.1016/j.bmc.2016.03.031] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022]
Abstract
Nitrogen-rich heterocycles, particularly quinazolines and quinazolinones, represent a unique class of diversified frameworks displaying a broad spectrum of biological functions. Over the past several years, intensive medicinal chemistry efforts have generated numerous structurally functionalized quinazoline and quinazolinone derivatives. Interest in expanding the biological effects, demonstrated by these motifs, is growing exponentially, as indicated by the large number of publications reporting the easy accessibility of these skeletons in addition to the diverse nature of synthetic as well as biological applications. Therefore, the main focus of the present review is to provide an ample but condensed overview on various synthetic approaches providing access to quinazoline and quinazolinone compounds with multifaceted biological activities. Furthermore, mechanistic insights, synthetic utilization, structure-activity relationships and molecular modeling inputs for the potent derivatives have also been discussed.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sumera Zaib
- Department of Biochemistry, Hazara University, Garden Campus, Mansehra, Pakistan; Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Sadaf Batool
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad 44000, Pakistan
| | - Naeem Abbas
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
29
|
Lin Y, Li W, Yu Q, Zhou X, Zhang W, Du L, Li M. Visualization of α1-adrenergic receptors with phenylpiperazine-based fluorescent probes. Sci China Chem 2016. [DOI: 10.1007/s11426-015-5503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
A concise approach to substituted Quinazolin-4(3H)-one natural products catalyzed by Iron(III) Chloride. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Ma Z, Lin Y, Cheng Y, Wu W, Cai R, Chen S, Shi B, Han B, Shi X, Zhou Y, Du L, Li M. Discovery of the First Environment-Sensitive Near-Infrared (NIR) Fluorogenic Ligand for α1-Adrenergic Receptors Imaging in Vivo. J Med Chem 2016; 59:2151-62. [PMID: 26821136 DOI: 10.1021/acs.jmedchem.5b01843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yuxing Lin
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yanna Cheng
- Department of Pharmacology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Wenxiao Wu
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Rong Cai
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Shouzhen Chen
- Department
of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Benkang Shi
- Department
of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bo Han
- Department
of Pathology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaodong Shi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, Texas 77030, United States
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of
Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
32
|
|
33
|
Anwar M, Kamel M, Zaghary W, Al-Wabli R. Synthetic approaches and potential bioactivity of different functionalized quinazoline and quinazolinone scaffolds. EGYPTIAN PHARMACEUTICAL JOURNAL 2016. [DOI: 10.4103/1687-4315.197580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Mohammadhosseini N, Moradi S, Khoobi M, Shafiee A. Synthesis of Novel 6-Mercapto-12-phenethyl-quinazolino[3,4-a]quinazolinones. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shahram Moradi
- Faculty of Chemistry, Tehran-North Branch; Islamic Azad University; Tehran Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Abbas Shafiee
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
35
|
Ardakani LS, Mosslemin MH, Sadeghi B. Three-Component Reaction of Alkyl Isocyanide, Acetylenic Diesters and 5-Hydroxy-5- Arylpyrimidine-2,4,6(1H,3H,5H)-Trione. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14381554915509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A three-component reaction of an alkyl isocyanide, an acetylenic diester and 5-hydroxy-5-arylpyrimidine-2,4,6(1H,3H,5H)-trione provides an efficient route for the synthesis of dialkyl 2-(alkylamino)-5-(4-nitrophenyl)-7,9,11-trioxo-1-oxa-5,8,10-triazaspiro[5.5]undec-2-ene-3,4-dicarboxylate derivatives.
Collapse
Affiliation(s)
- Leili Shaker Ardakani
- Department of Chemistry, Yazd Branch, Islamic Azad University, PO Box 89195-155, Yazd, Iran
| | | | - Bahareh Sadeghi
- Department of Chemistry, Yazd Branch, Islamic Azad University, PO Box 89195-155, Yazd, Iran
| |
Collapse
|
36
|
Zhang W, Ma Z, Li W, Li G, Chen L, Liu Z, Du L, Li M. Discovery of Quinazoline-Based Fluorescent Probes to α1-Adrenergic Receptors. ACS Med Chem Lett 2015; 6:502-6. [PMID: 26005522 DOI: 10.1021/ml5004298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/30/2015] [Indexed: 11/28/2022] Open
Abstract
α1-Adrenergic receptors (α1-ARs), as the essential members of G protein-coupled receptors (GPCRs), can mediate numerous physiological responses in the sympathetic nervous system. In the current research, a series of quinazoline-based small-molecule fluorescent probes to α1-ARs (1a-1e), including two parts, a pharmacophore for α1-AR recognition and a fluorophore for visualization, were well designed and synthesized. The biological evaluation results displayed that these probes held reasonable fluorescent properties, high affinity, accepted cell toxicity, and excellent subcellular localization imaging potential for α1-ARs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Wenhua Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Geng Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Laizhong Chen
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Liu
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry,
Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
37
|
Distinct novel quinazolinone exhibits selective inhibition in MGC-803 cancer cells by dictating mutant p53 function. Eur J Med Chem 2015; 95:377-87. [DOI: 10.1016/j.ejmech.2015.03.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 01/15/2023]
|
38
|
Wang XM, Xin MH, Xu J, Kang BR, Li Y, Lu SM, Zhang SQ. Synthesis and antitumor activities evaluation of m-(4-morpholinoquinazolin-2-yl)benzamides in vitro and in vivo. Eur J Med Chem 2015; 96:382-95. [PMID: 25911625 DOI: 10.1016/j.ejmech.2015.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/24/2015] [Accepted: 04/04/2015] [Indexed: 01/16/2023]
Abstract
In the present study, a series of m-(4-morpholinoquinazolin-2-yl)benzamides were designed, synthesized and characterized. The antiproliferative activities of the synthesized compounds were evaluated against two human cell lines (HCT-116 and MCF-7). Compounds with IC50 values below 4 μM were further evaluated against U-87 MG and A549 cell lines. Among these evaluated compounds, compound T10 displayed a remarkable antiproliferative effect in vitro. The hoechst staining assay showed that compound T10 caused morphological changes. The cell cycle and apoptosis assay further indicated that compound T10 can arrest HCT-116 cells in G2/M and G0/G1 phase and induce apoptosis. PI3K enzyme assays indicated that compounds T7 and T10 selectively inhibit PI3Kα. A Western bolt assay further suggested that compound T10 can block the PI3K/Akt/mTOR pathway. Moreover, compound T10 inhibited tumor growth on a mice S180 homograft model. These findings directly identify m-(4-morpholinoquinazolin-2-yl)benzamide derivatives as novel anticancer agents.
Collapse
Affiliation(s)
- Xiao-Meng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Min-Hang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jing Xu
- Department of Genetics and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an Shaanxi 710061, PR China
| | - Bo-Rui Kang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - She-Min Lu
- Department of Genetics and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an Shaanxi 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
39
|
Zaręba P, Dudek M, Lustyk K, Siwek A, Starowicz G, Bednarski M, Nowiński L, Raźny K, Sapa J, Malawska B, Kulig K. α-Adrenoceptor antagonistic and hypotensive properties of novel arylpiperazine derivatives of pyrrolidin-2-one. Bioorg Med Chem 2015; 23:2104-11. [PMID: 25813897 DOI: 10.1016/j.bmc.2015.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
This study focused on a series of pyrrolidin-2-one derivatives connected via two or four methylene units to arylpiperazine fragment. The compounds obtained for α₁- and α₂-adrenoceptors were assessed. The compound with highest affinity for the α₁-adrenoceptors was 1-{4-[4-(2-chloro-phenyl)-piperazin-1-yl]-butyl}-pyrrolidin-2-one (10 h) with pKi=7.30. Compound with pKi (α₁) ⩾6.44 were evaluated in functional bioassays for intrinsic activity at α₁A- and α₁B-adrenoceptors. All compounds tested were antagonists of the α₁B-adrenoceptors. Additionally, compounds 10e and 10h were α₁A-adrenoceptors antagonist. The dual α₁A-/α₁B-adrenoceptors antagonists, compounds 10e and 10h were also tested in vivo for their hypotensive activity in rats. These compounds, when dosed of 1.0 mg/kg iv in normotensive, anesthetized rats, significantly decreased systolic and diastolic pressure and their hypotensive effects lasted for longer than one hour.
Collapse
Affiliation(s)
- Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Dudek
- Department of Pharmacodynamics, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Klaudia Lustyk
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Leszek Nowiński
- Department of Pharmacodynamics, Jagiellonian University, Collegium Medicum, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Katarzyna Raźny
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University, Medical College, 9, Medyczna Street, PL 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kulig
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
40
|
Mahmoud MR, El-Azm FSMA, Ali AT, Ali YM. Design, Synthesis, and Antimicrobial Evaluation of Novel Thienopyrimidines and Triazolothienopyrimidines. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2014.999340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mahmoud R. Mahmoud
- Synthetic Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Fatma S. M. Abu El-Azm
- Synthetic Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Amira T. Ali
- Synthetic Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Yasmeen M. Ali
- Synthetic Laboratory, Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
41
|
Balti M, Hachicha M, Lotfi El Efrit M. An Efficient Synthetic Route towards Novel 3N-Substituted Thieno[2,3-d]pyrimidin-4(3H)-ones. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Khan I, Ibrar A, Ahmed W, Saeed A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: the advances continue. Eur J Med Chem 2014; 90:124-69. [PMID: 25461317 DOI: 10.1016/j.ejmech.2014.10.084] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/10/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022]
Abstract
The presence of N-heterocycles as an essential structural motif in a variety of biologically active substances has stimulated the development of new strategies and technologies for their synthesis. Among the various N-heterocyclic scaffolds, quinazolines and quinazolinones form a privileged class of compounds with their diverse spectrum of therapeutic potential. The easy generation of complex molecular diversity through broadly applicable, cost-effective, practical and sustainable synthetic methods in a straightforward fashion along with the importance of these motifs in medicinal chemistry, received significant attention from researchers engaged in drug design and heterocyclic methodology development. In this perspective, the current review article is an effort to recapitulate recent developments in the eco-friendly and green procedures for the construction of highly challenging and potentially bioactive quinazoline and quinazolinone compounds in order to help medicinal chemists in designing and synthesizing novel and potent compounds for the treatment of different disorders. The key mechanistic insights for the synthesis of these heterocycles along with potential applications and manipulations of the products have also been conferred. This article also aims to highlight the promising future directions for the easy access to these frameworks in addition to the identification of more potent and specific products for numerous biological targets.
Collapse
Affiliation(s)
- Imtiaz Khan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Aliya Ibrar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Waqas Ahmed
- Office of Research, Innovation and Commercialization, University of Gujrat, Gujrat 50700, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
43
|
Khan I, Ibrar A, Abbas N, Saeed A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur J Med Chem 2014; 76:193-244. [DOI: 10.1016/j.ejmech.2014.02.005] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 01/14/2023]
|
44
|
Santhoshi A, Kumar SN, Sujitha P, Poornachandra Y, Sadhu PS, Kumar CG, Rao VJ. Synthesis of 1-benzhydryl piperazine derivatives and evaluation of their ACE inhibition and antimicrobial activities. Med Chem Res 2014. [DOI: 10.1007/s00044-013-0895-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Zhang W, Chen L, Ma Z, Du L, Li M. Design, synthesis and biological evaluation of naphthalimidebased fluorescent probes for α1-adrenergic receptors. Drug Discov Ther 2014; 8:11-7. [DOI: 10.5582/ddt.8.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chem Rev 2013; 114:2432-506. [DOI: 10.1021/cr4002879] [Citation(s) in RCA: 3202] [Impact Index Per Article: 266.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jiang Wang
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - María Sánchez-Roselló
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - José Luis Aceña
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
| | - Carlos del Pozo
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
| | - Alexander E. Sorochinsky
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
- Institute
of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine
| | - Santos Fustero
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés, 46100 Burjassot, Valencia, Spain
- Laboratorio
de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Hong Liu
- Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
47
|
Barradas JS, Errea MI, Sepúlveda C, Damonte EB, D'Accorso NB. Microwave-Assisted Synthesis of Pyrrolo[2,1-b]thiazoles Linked to a Carbohydrate Moiety. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- José Sebastián Barradas
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - María Inés Errea
- Departamento de Ingeniería Química; Instituto Tecnológico de Buenos Aires; Av. Eduardo Madero 399 1106 Buenos Aires Argentina
| | - Claudia Sepúlveda
- IQUIBICEN-CONICET-Laboratorio de Virología- Departamento de Química biológica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Elsa Beatriz Damonte
- IQUIBICEN-CONICET-Laboratorio de Virología- Departamento de Química biológica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Norma Beatriz D'Accorso
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| |
Collapse
|
48
|
Design and synthesis of 6,7-dimethoxyquinazoline analogs as multi-targeted ligands for α1- and AII-receptors antagonism. Bioorg Med Chem Lett 2013; 23:3959-66. [PMID: 23683590 DOI: 10.1016/j.bmcl.2013.04.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/01/2013] [Accepted: 04/19/2013] [Indexed: 11/22/2022]
Abstract
Multiple-targeted ligands can have certain advantages for the management of hypertension which has multiple controls. Molecules with dual bioactivities are available in literature for treating metabolic disorders like diabetes, hypertension and hypercholesterolemia. After scrutinizing the SAR of prazosin-type α1-blockers and AII-antagonists it was planned to develop dual α1- and AII-antagonists. Five series of quinazoline derivatives were synthesized and evaluated as dual α1- and AII-antagonists on rat aortic strips for the blockade of known α1- and AII-agonist mediated contractions. Many compounds showed balanced activity on both the receptors but compound (22) was found to be the most active derivative having higher antagonistic activity on both the receptors. In the in vivo experiments the chosen compound (22) was slightly less active than prazosin but was found to be equipotent to losartan. These findings shed a new light on the structural requirements for both α1- as well as AII-receptor antagonists.
Collapse
|
49
|
Khan MA, El-Gamal MI, Oh CH. Optimization of the Reaction Conditions for Synthesis of 3-(Aryloxy)quinoline Derivatives via Friedländer's Cyclization Reaction. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.6.1848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
5-HT1A receptor pharmacophores to screen for off-target activity of α1-adrenoceptor antagonists. J Comput Aided Mol Des 2013; 27:305-19. [PMID: 23625023 DOI: 10.1007/s10822-013-9647-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/13/2013] [Indexed: 01/08/2023]
Abstract
The α1-adrenoceptors (α1-ARs), in particular the α1A-AR subtype, are current therapeutic targets of choice for the treatment of urogenital conditions, such as benign prostatic hyperplasia (BPH). Due to the similarity between the transmembrane domains of the α1-AR subtypes, and the serotonin receptor subtype 1A (5-HT1A-R), currently used α1-AR subtype-selective drugs to treat BPH display considerable off-target affinity for the 5-HT1A-R, leading to side effects. We describe the construction and validation of pharmacophores for 5-HT1A-R agonists and antagonists. Through the structural diversity of the training sets used in their development, these pharmacophores define the properties of a compound needed to bind to 5-HT1A receptors. Using these and previously published pharmacophores in virtual screening and profiling, we have identified unique chemical compounds (hits) that fit the requirements to bind to our target, the α1A-AR, selectively over the off-target, the 5-HT1A-R. Selected hits have been obtained and their affinities for α1A-AR, α1B-AR and 5-HT1A-R determined in radioligand binding assays, using membrane preparations which contain human receptors expressed individually. Three of the tested hits demonstrate statistically significant selectivity for α1A-AR over 5-HT1A-R. All seven tested hits bind to α1A-AR, with two compounds displaying K i values below 1 μM, and a further two K i values of around 10 μM. The insights and knowledge gained through the development of the new 5-HT1A-R pharmacophores will greatly aid in the design and synthesis of derivatives of our lead compound, and allow the generation of more efficacious and selective ligands.
Collapse
|