1
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
2
|
Long W, Li S, He Y, Lin J, Li M, Wen Z. Unraveling Structural Alerts in Marketed Drugs for Improving Adverse Outcome Pathway Framework of Drug-Induced QT Prolongation. Int J Mol Sci 2023; 24:ijms24076771. [PMID: 37047744 PMCID: PMC10095420 DOI: 10.3390/ijms24076771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
In pharmaceutical treatment, many non-cardiac drugs carry the risk of prolonging the QT interval, which can lead to fatal cardiac complications such as torsades de points (TdP). Although the unexpected blockade of ion channels has been widely considered to be one of the main reasons for affecting the repolarization phase of the cardiac action potential and leading to QT interval prolongation, the lack of knowledge regarding chemical structures in drugs that may induce the prolongation of the QT interval remains a barrier to further understanding the underlying mechanism and developing an effective prediction strategy. In this study, we thoroughly investigated the differences in chemical structures between QT-prolonging drugs and drugs with no drug-induced QT prolongation (DIQT) concerns, based on the Drug-Induced QT Prolongation Atlas (DIQTA) dataset. Three categories of structural alerts (SAs), namely amines, ethers, and aromatic compounds, appeared in large quantities in QT-prolonging drugs, but rarely in drugs with no DIQT concerns, indicating a close association between SAs and the risk of DIQT. Moreover, using the molecular descriptors associated with these three categories of SAs as features, the structure–activity relationship (SAR) model for predicting the high risk of inducing QT interval prolongation of marketed drugs achieved recall rates of 72.5% and 80.0% for the DIQTA dataset and the FDA Adverse Event Reporting System (FAERS) dataset, respectively. Our findings may promote a better understanding of the mechanism of DIQT and facilitate research on cardiac adverse drug reactions in drug development.
Collapse
Affiliation(s)
- Wulin Long
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shihai Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yujie He
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jinzhu Lin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu 610064, China
- Medical Big Data Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Das NR, Sharma T, Toropov AA, Toropova AP, Tripathi MK, Achary PGR. Machine-learning technique, QSAR and molecular dynamics for hERG-drug interactions. J Biomol Struct Dyn 2023; 41:13766-13791. [PMID: 37021352 DOI: 10.1080/07391102.2023.2193641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/06/2023] [Indexed: 04/07/2023]
Abstract
One of the most well-known anti-targets defining medication cardiotoxicity is the voltage-dependent hERG K + channel, which is well-known for its crucial involvement in cardiac action potential repolarization. Torsades de Pointes, QT prolongation, and sudden death are all caused by hERG (the human Ether-à-go-go-Related Gene) inhibition. There is great interest in creating predictive computational (in silico) tools to identify and weed out potential hERG blockers early in the drug discovery process because testing for hERG liability and the traditional experimental screening are complicated, expensive and time-consuming. This study used 2D descriptors of a large curated dataset of 6766 compounds and machine learning approaches to build robust descriptor-based QSAR and predictive classification models for KCNH2 liability. Decision Tree, Random Forest, Logistic Regression, Ada Boosting, kNN, SVM, Naïve Bayes, neural network and stochastic gradient classification classifier algorithms were used to build classification models. If a compound's IC50 value was between 10 μM and less, it was classified as a blocker (hERG-positive), and if it was more, it was classified as a non-blocker (hERG-negative). Matthew's correlation coefficient formula and F1score were applied to compare and track the developed models' performance. Molecular docking and dynamics studies were performed to understand the cardiotoxicity relating to the hERG-gene. The hERG residues interacting after 100 ns are LEU:697, THR:708, PHE:656, HIS:674, HIS:703, TRP:705 and ASN:709 and the hERG-ligand-16 complex trajectory showed stable behaviour with lesser fluctuations in the entire simulation of 200 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nilima Rani Das
- Department of CA, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Tripti Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - P Ganga Raju Achary
- Department of Chemistry, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Hsiao Y, Su BH, Tseng YJ. Current development of integrated web servers for preclinical safety and pharmacokinetics assessments in drug development. Brief Bioinform 2020; 22:5881374. [PMID: 32770190 DOI: 10.1093/bib/bbaa160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022] Open
Abstract
In drug development, preclinical safety and pharmacokinetics assessments of candidate drugs to ensure the safety profile are a must. While in vivo and in vitro tests are traditionally used, experimental determinations have disadvantages, as they are usually time-consuming and costly. In silico predictions of these preclinical endpoints have each been developed in the past decades. However, only a few web-based tools have integrated different models to provide a simple one-step platform to help researchers thoroughly evaluate potential drug candidates. To efficiently achieve this approach, a platform for preclinical evaluation must not only predict key ADMET (absorption, distribution, metabolism, excretion and toxicity) properties but also provide some guidance on structural modifications to improve the undesired properties. In this review, we organized and compared several existing integrated web servers that can be adopted in preclinical drug development projects to evaluate the subject of interest. We also introduced our new web server, Virtual Rat, as an alternative choice to profile the properties of drug candidates. In Virtual Rat, we provide not only predictions of important ADMET properties but also possible reasons as to why the model made those structural predictions. Multiple models were implemented into Virtual Rat, including models for predicting human ether-a-go-go-related gene (hERG) inhibition, cytochrome P450 (CYP) inhibition, mutagenicity (Ames test), blood-brain barrier penetration, cytotoxicity and Caco-2 permeability. Virtual Rat is free and has been made publicly available at https://virtualrat.cmdm.tw/.
Collapse
|
5
|
Choi KE, Balupuri A, Kang NS. The Study on the hERG Blocker Prediction Using Chemical Fingerprint Analysis. Molecules 2020; 25:E2615. [PMID: 32512802 PMCID: PMC7321128 DOI: 10.3390/molecules25112615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/31/2023] Open
Abstract
Human ether-a-go-go-related gene (hERG) potassium channel blockage by small molecules may cause severe cardiac side effects. Thus, it is crucial to screen compounds for activity on the hERG channels early in the drug discovery process. In this study, we collected 5299 hERG inhibitors with diverse chemical structures from a number of sources. Based on this dataset, we evaluated different machine learning (ML) and deep learning (DL) algorithms using various integer and binary type fingerprints. A training set of 3991 compounds was used to develop quantitative structure-activity relationship (QSAR) models. The performance of the developed models was evaluated using a test set of 998 compounds. Models were further validated using external set 1 (263 compounds) and external set 2 (47 compounds). Overall, models with integer type fingerprints showed better performance than models with no fingerprints, converted binary type fingerprints or original binary type fingerprints. Comparison of ML and DL algorithms revealed that integer type fingerprints are suitable for ML, whereas binary type fingerprints are suitable for DL. The outcomes of this study indicate that the rational selection of fingerprints is important for hERG blocker prediction.
Collapse
Affiliation(s)
| | | | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (K.-E.C.); (A.B.)
| |
Collapse
|
6
|
Abstract
Background Drug candidates often cause an unwanted blockage of the potassium ion channel of the human ether-a-go-go-related gene (hERG). The blockage leads to long QT syndrome (LQTS), which is a severe life-threatening cardiac side effect. Therefore, a virtual screening method to predict drug-induced hERG-related cardiotoxicity could facilitate drug discovery by filtering out toxic drug candidates. Result In this study, we generated a reliable hERG-related cardiotoxicity dataset composed of 2130 compounds, which were carried out under constant conditions. Based on our dataset, we developed a computational hERG-related cardiotoxicity prediction model. The neural network model achieved an area under the receiver operating characteristic curve (AUC) of 0.764, with an accuracy of 90.1%, a Matthews correlation coefficient (MCC) of 0.368, a sensitivity of 0.321, and a specificity of 0.967, when ten-fold cross-validation was performed. The model was further evaluated using ten drug compounds tested on guinea pigs and showed an accuracy of 80.0%, an MCC of 0.655, a sensitivity of 0.600, and a specificity of 1.000, which were better than the performances of existing hERG-toxicity prediction models. Conclusion The neural network model can predict hERG-related cardiotoxicity of chemical compounds with a high accuracy. Therefore, the model can be applied to virtual high-throughput screening for drug candidates that do not cause cardiotoxicity. The prediction tool is available as a web-tool at http://ssbio.cau.ac.kr/CardPred.
Collapse
|
7
|
Sato T, Yuki H, Ogura K, Honma T. Construction of an integrated database for hERG blocking small molecules. PLoS One 2018; 13:e0199348. [PMID: 29979714 PMCID: PMC6034787 DOI: 10.1371/journal.pone.0199348] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/06/2018] [Indexed: 11/19/2022] Open
Abstract
The inhibition of the hERG potassium channel is closely related to the prolonged QT interval, and thus assessing this risk could greatly facilitate the development of therapeutic compounds and the withdrawal of hazardous marketed drugs. The recent increase in SAR information about hERG inhibitors in public databases has led to many successful applications of machine learning techniques to predict hERG inhibition. However, most of these reports constructed their prediction models based on only one SAR database because the differences in the data format and ontology hindered the integration of the databases. In this study, we curated the hERG-related data in ChEMBL, PubChem, GOSTAR, and hERGCentral, and integrated them into the largest database about hERG inhibition by small molecules. Assessment of structural diversity using Murcko frameworks revealed that the integrated database contains more than twice as many chemical scaffolds for hERG inhibitors than any of the individual databases, and covers 18.2% of the Murcko framework-based chemical space occupied by the compounds in ChEMBL. The database provides the most comprehensive information about hERG inhibitors and will be useful to design safer compounds for drug discovery. The database is freely available at http://drugdesign.riken.jp/hERGdb/.
Collapse
Affiliation(s)
- Tomohiro Sato
- Center for Life Science Technologies, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan
| | - Hitomi Yuki
- Center for Life Science Technologies, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan
| | - Keiji Ogura
- Center for Life Science Technologies, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan
| | - Teruki Honma
- Center for Life Science Technologies, RIKEN, Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan
| |
Collapse
|
8
|
Siramshetty VB, Chen Q, Devarakonda P, Preissner R. The Catch-22 of Predicting hERG Blockade Using Publicly Accessible Bioactivity Data. J Chem Inf Model 2018; 58:1224-1233. [PMID: 29772901 DOI: 10.1021/acs.jcim.8b00150] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug-induced inhibition of the human ether-à-go-go-related gene (hERG)-encoded potassium ion channels can lead to fatal cardiotoxicity. Several marketed drugs and promising drug candidates were recalled because of this concern. Diverse modeling methods ranging from molecular similarity assessment to quantitative structure-activity relationship analysis employing machine learning techniques have been applied to data sets of varying size and composition (number of blockers and nonblockers). In this study, we highlight the challenges involved in the development of a robust classifier for predicting the hERG end point using bioactivity data extracted from the public domain. To this end, three different modeling methods, nearest neighbors, random forests, and support vector machines, were employed to develop predictive models using different molecular descriptors, activity thresholds, and training set compositions. Our models demonstrated superior performance in external validations in comparison with those reported in the previous studies from which the data sets were extracted. The choice of descriptors had little influence on the model performance, with minor exceptions. The criteria used to filter bioactivity data, the activity threshold settings used to separate blockers from nonblockers, and the structural diversity of blockers in training data set were found to be the crucial indicators of model performance. Training sets based on a binary threshold of 1 μM/10 μM to separate blockers (IC50/ Ki ≤ 1 μM) from nonblockers (IC50/ Ki > 10 μM) provided superior performance in comparison with those defined using a single threshold (1 μM or 10 μM). A major limitation in using the public domain hERG activity data is the abundance of blockers in comparison with nonblockers at usual activity thresholds, since not many studies report the latter.
Collapse
Affiliation(s)
- Vishal B Siramshetty
- Structural Bioinformatics Group , Charité - University Medicine Berlin , 10115 Berlin , Germany.,BB3R - Berlin Brandenburg 3R Graduate School , Freie Universität Berlin , 14195 Berlin , Germany
| | - Qiaofeng Chen
- Structural Bioinformatics Group , Charité - University Medicine Berlin , 10115 Berlin , Germany.,China Scholarship Council (CSC) , Beijing 100044 , China
| | - Prashanth Devarakonda
- Structural Bioinformatics Group , Charité - University Medicine Berlin , 10115 Berlin , Germany
| | - Robert Preissner
- Structural Bioinformatics Group , Charité - University Medicine Berlin , 10115 Berlin , Germany.,BB3R - Berlin Brandenburg 3R Graduate School , Freie Universität Berlin , 14195 Berlin , Germany
| |
Collapse
|
9
|
Wacker S, Noskov SY. Performance of Machine Learning Algorithms for Qualitative and Quantitative Prediction Drug Blockade of hERG1 channel. ACTA ACUST UNITED AC 2017; 6:55-63. [PMID: 29806042 DOI: 10.1016/j.comtox.2017.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like ivabradine with HCN channel as a primary target, block the hERG potassium current in overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead to perturbation of the action potential duration (APD) and TdP, especially when with combined with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for better screening methods. There is an urgent need to develop new approaches for rapid and accurate assessment of how drugs with complex interactions and multiple subcellular targets can predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory hERG screening implemented in USA and European Union resulted in large datasets of IC50 values for various molecules entering the market. The abundant data allows now to construct predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better accuracy in determining IC50 values of hERG blockade that is comparable or surpassing that of the earlier QSAR or molecular modeling technique. To test the performance of modern ML techniques, we have developed a computational platform integrating various workflows for quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. To establish predictive powers of ML-based algorithms we computed IC50 values for large dataset of molecules and compared it to automated patch clamp system for a large dataset of hERG blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient boosting (XGBoost) algorithm. The ML-platform with XGBoost displays excellent performance with a coefficient of determination of up to R2 ~0.8 for pIC50 values in evaluation datasets, surpassing other metrics and approaches available in literature. Ultimately, the ML-based platform developed in our work is a scalable framework with automation potential to interact with other developing technologies in cardiotoxicity field, including high-throughput electrophysiology measurements delivering large datasets of profiled drugs, rapid synthesis and drug development via progress in synthetic biology.
Collapse
Affiliation(s)
- Soren Wacker
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, AB, Canada, T2N 1N4.,Achlys Inc. and Li Ka Shing Institute of Applied Virology, 6-020 Katz Group Centre for Health Research, University of Alberta, Edmonton, AB T6G 2E1
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
10
|
Sun H, Huang R, Xia M, Shahane S, Southall N, Wang Y. Prediction of hERG Liability - Using SVM Classification, Bootstrapping and Jackknifing. Mol Inform 2017; 36:10.1002/minf.201600126. [PMID: 28000393 PMCID: PMC5382096 DOI: 10.1002/minf.201600126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022]
Abstract
Drug-induced QT prolongation leads to life-threatening cardiotoxicity, mostly through blockage of the human ether-à-go-go-related gene (hERG) encoded potassium ion (K+ ) channels. The hERG channel is one of the most important antitargets to be addressed in the early stage of drug discovery process, in order to avoid more costly failures in the development phase. Using a thallium flux assay, 4,323 molecules were screened for hERG channel inhibition in a quantitative high throughput screening (qHTS) format. Here, we present support vector classification (SVC) models of hERG channel inhibition with the averaged area under the receiver operator characteristics curve (AUC-ROC) of 0.93 for the tested compounds. Both Jackknifing and bootstrapping have been employed to rebalance the heavily biased training datasets, and the impact of these two under-sampling rebalance methods on the performance of the predictive models is discussed. Our results indicated that the rebalancing techniques did not enhance the predictive power of the resulting models; instead, adoption of optimal cutoffs could restore the desirable balance of sensitivity and specificity of the binary classifiers. In an external validation set of 66 drug molecules, the SVC model exhibited an AUC-ROC of 0.86, further demonstrating the utility of this modeling approach to predict hERG liabilities.
Collapse
Affiliation(s)
- Hongmao Sun
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Sampada Shahane
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuhong Wang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Schyman P, Liu R, Wallqvist A. General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers. J Chem Inf Model 2016; 56:213-22. [DOI: 10.1021/acs.jcim.5b00616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Patric Schyman
- DoD Biotechnology
High Performance
Computing Software Applications Institute, Telemedicine and Advanced
Technology Research Center, U.S. Army Medical Research and Materiel Command, 2405 Whittier Drive, Frederick, Maryland 21702, United States
| | - Ruifeng Liu
- DoD Biotechnology
High Performance
Computing Software Applications Institute, Telemedicine and Advanced
Technology Research Center, U.S. Army Medical Research and Materiel Command, 2405 Whittier Drive, Frederick, Maryland 21702, United States
| | - Anders Wallqvist
- DoD Biotechnology
High Performance
Computing Software Applications Institute, Telemedicine and Advanced
Technology Research Center, U.S. Army Medical Research and Materiel Command, 2405 Whittier Drive, Frederick, Maryland 21702, United States
| |
Collapse
|
12
|
Computational investigations of hERG channel blockers: New insights and current predictive models. Adv Drug Deliv Rev 2015; 86:72-82. [PMID: 25770776 DOI: 10.1016/j.addr.2015.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
Identification of potential human Ether-a-go-go Related-Gene (hERG) potassium channel blockers is an essential part of the drug development and drug safety process in pharmaceutical industries or academic drug discovery centers, as they may lead to drug-induced QT prolongation, arrhythmia and Torsade de Pointes. Recent reports also suggest starting to address such issues at the hit selection stage. In order to prioritize molecules during the early drug discovery phase and to reduce the risk of drug attrition due to cardiotoxicity during pre-clinical and clinical stages, computational approaches have been developed to predict the potential hERG blockage of new drug candidates. In this review, we will describe the current in silico methods developed and applied to predict and to understand the mechanism of actions of hERG blockers, including ligand-based and structure-based approaches. We then discuss ongoing research on other ion channels and hERG polymorphism susceptible to be involved in LQTS and how systemic approaches can help in the drug safety decision.
Collapse
|
13
|
Abstract
The voltage-gated potassium channel encoded by hERG carries a delayed rectifying potassium current (IKr) underlying repolarization of the cardiac action potential. Pharmacological blockade of the hERG channel results in slowed repolarization and therefore prolongation of action potential duration and an increase in the QT interval as measured on an electrocardiogram. Those are possible to cause sudden death, leading to the withdrawals of many drugs, which is the reason for hERG screening. Computational in silico prediction models provide a rapid, economic way to screen compounds during early drug discovery. In this review, hERG prediction models are classified as 2D and 3D quantitative structure–activity relationship models, pharmacophore models, classification models, and structure based models (using homology models of hERG).
Collapse
|
14
|
Affiliation(s)
- Paul Czodrowski
- Merck KGaA, Small Molecule
Platform, Global Computational Chemistry, Frankfurter Strasse 250,
64293 Darmstadt, Germany
| |
Collapse
|
15
|
Broccatelli F, Mannhold R, Moriconi A, Giuli S, Carosati E. QSAR modeling and data mining link Torsades de Pointes risk to the interplay of extent of metabolism, active transport, and HERG liability. Mol Pharm 2012; 9:2290-301. [PMID: 22742658 DOI: 10.1021/mp300156r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We collected 1173 hERG patch clamp (PC) data (IC50) from the literature to derive twelve classification models for hERG inhibition, covering a large variety of chemical descriptors and classification algorithms. Models were generated using 545 molecules and validated through 258 external molecules tested in PC experiments. We also evaluated the suitability of the best models to predict the activity of 26 proprietary compounds tested in radioligand binding displacement (RBD). Results proved the necessity to use multiple validation sets for a true estimation of model accuracy and demonstrated that using various descriptors and algorithms improves the performance of ligand-based models. Intriguingly, one of the most accurate models uncovered an unexpected link between extent of metabolism and hERG liability. This hypothesis was fairly reinforced by using the Biopharmaceutics Drug Disposition Classification System (BDDCS) that recognized 94% of the hERG inhibitors as extensively metabolized in vivo. Data mining suggested that high Torsades de Pointes (TdP) risk results from an interplay of hERG inhibition, extent of metabolism, active transport, and possibly solubility. Overall, these new findings might improve both the decision making skills of pharmaceutical scientists to mitigate hERG liability during the drug discovery process and the TdP risk assessment during drug development.
Collapse
Affiliation(s)
- Fabio Broccatelli
- Laboratory for Chemometrics and Cheminformatics, Chemistry Department, University of Perugia, Via Elce di Sotto 10, I-06123 Perugia, Italy
| | | | | | | | | |
Collapse
|
16
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
17
|
Su BH, Tu YS, Esposito EX, Tseng YJ. Predictive Toxicology Modeling: Protocols for Exploring hERG Classification and Tetrahymena pyriformis End Point Predictions. J Chem Inf Model 2012; 52:1660-73. [DOI: 10.1021/ci300060b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bo-Han Su
- Department
of Computer Science and Information Engineering, National Taiwan University, No.1 Sec.4, Roosevelt Road,
Taipei, Taiwan 106
| | - Yi-shu Tu
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No.1 Sec.4,
Roosevelt Road, Taipei, Taiwan 106
| | | | - Yufeng J. Tseng
- Department
of Computer Science and Information Engineering, National Taiwan University, No.1 Sec.4, Roosevelt Road,
Taipei, Taiwan 106
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No.1 Sec.4,
Roosevelt Road, Taipei, Taiwan 106
| |
Collapse
|
18
|
Shen MY, Su BH, Esposito EX, Hopfinger AJ, Tseng YJ. A Comprehensive Support Vector Machine Binary hERG Classification Model Based on Extensive but Biased End Point hERG Data Sets. Chem Res Toxicol 2011; 24:934-49. [DOI: 10.1021/tx200099j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Kim JH, Chae CH, Kang SM, Lee JY, Lee GN, Hwang SH, Kang NS. The Predictive QSAR Model for hERG Inhibitors Using Bayesian and Random Forest Classification Method. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.4.1237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Polak S, Wiśniowska B, Ahamadi M, Mendyk A. Prediction of the hERG potassium channel inhibition potential with use of artificial neural networks. Appl Soft Comput 2011. [DOI: 10.1016/j.asoc.2010.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Klon AE. Machine learning algorithms for the prediction of hERG and CYP450 binding in drug development. Expert Opin Drug Metab Toxicol 2011; 6:821-33. [PMID: 20465523 DOI: 10.1517/17425255.2010.489550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IMPORTANCE OF THE FIELD The cost of developing new drugs is estimated at approximately $1 billion; the withdrawal of a marketed compound due to toxicity can result in serious financial loss for a pharmaceutical company. There has been a greater interest in the development of in silico tools that can identify compounds with metabolic liabilities before they are brought to market. AREAS COVERED IN THIS REVIEW The two largest classes of machine learning (ML) models, which will be discussed in this review, have been developed to predict binding to the human ether-a-go-go related gene (hERG) ion channel protein and the various CYP isoforms. Being able to identify potentially toxic compounds before they are made would greatly reduce the number of compound failures and the costs associated with drug development. WHAT THE READER WILL GAIN This review summarizes the state of modeling hERG and CYP binding towards this goal since 2003 using ML algorithms. TAKE HOME MESSAGE A wide variety of ML algorithms that are comparable in their overall performance are available. These ML methods may be applied regularly in discovery projects to flag compounds with potential metabolic liabilities.
Collapse
Affiliation(s)
- Anthony E Klon
- Ansaris, Computational Chemistry, Four Valley Square, 512 East Township Line Road, Blue Bell, PA 19422, USA.
| |
Collapse
|
22
|
Hecht D. Applications of machine learning and computational intelligence to drug discovery and development. Drug Dev Res 2010. [DOI: 10.1002/ddr.20402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- David Hecht
- Southwestern College, Chula Vista, California
| |
Collapse
|
23
|
Luo X, Krumrine JR, Shenvi AB, Pierson ME, Bernstein PR. Calculation and application of activity discriminants in lead optimization. J Mol Graph Model 2010; 29:372-81. [PMID: 20800520 DOI: 10.1016/j.jmgm.2010.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/10/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022]
Abstract
We present a technique for computing activity discriminants of in vitro (pharmacological, DMPK, and safety) assays and the application to the prediction of in vitro activities of proposed synthetic targets during the lead optimization phase of drug discovery projects. This technique emulates how medicinal chemists perform SAR analysis and activity prediction. The activity discriminants that are functions of 6 commonly used medicinal chemistry descriptors can be interpreted easily by medicinal chemists. Further, visualization with Spotfire allows medicinal chemists to analyze how the query molecule is related to compounds tested previously, and to evaluate easily the relevance of the activity discriminants to the activities of the query molecule. Validation with all compounds synthesized and tested in AstraZeneca Wilmington since 2006 demonstrates that this approach is useful for prioritizing new synthetic targets for synthesis.
Collapse
Affiliation(s)
- Xincai Luo
- Department of Chemistry, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA.
| | | | | | | | | |
Collapse
|
24
|
Mikhailov D, Traebert M, Lu Q, Whitebread S, Egan W. Should Cardiosafety be Ruled by hERG Inhibition? Early Testing Scenarios and Integrated Risk Assessment. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627448.ch16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Raschi E, Ceccarini L, De Ponti F, Recanatini M. hERG-related drug toxicity and models for predicting hERG liability and QT prolongation. Expert Opin Drug Metab Toxicol 2009; 5:1005-1021. [PMID: 19572824 DOI: 10.1517/17425250903055070] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND hERG K(+) channels have been recognized as a primary antitarget in safety pharmacology. Their blockade, caused by several drugs with different therapeutic indications, may lead to QT prolongation and, eventually, to potentially fatal arrhythmia, namely torsade de pointes. Therefore, a number of preclinical models have been developed to predict hERG liability early in the drug development process. OBJECTIVE The aim of this review is to outline the present state of the art on drug-induced hERG blockade, providing insights on the predictive value of in vitro and in silico models for hERG liability. METHODS On the basis of latest reports, high-throughput preclinical models have been discussed outlining advantages and limitations. CONCLUSION Although no single model has an absolute value, an integrated risk assessment is recommended to predict the pro-arrhythmic risk of a given drug. This prediction requires expertise from different areas and should encompass emerging issues such as interference with hERG trafficking and QT shortening.
Collapse
Affiliation(s)
- Emanuel Raschi
- University of Bologna, Department of Pharmacology, Italy
| | | | | | | |
Collapse
|
26
|
Pierson PD, Fettes A, Freichel C, Gatti-McArthur S, Hertel C, Huwyler J, Mohr P, Nakagawa T, Nettekoven M, Plancher JM, Raab S, Richter H, Roche O, Rodríguez Sarmiento RM, Schmitt M, Schuler F, Takahashi T, Taylor S, Ullmer C, Wiegand R. 5-Hydroxyindole-2-carboxylic Acid Amides: Novel Histamine-3 Receptor Inverse Agonists for the Treatment of Obesity. J Med Chem 2009; 52:3855-68. [DOI: 10.1021/jm900409x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Alec Fettes
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Christian Freichel
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | | | - Cornelia Hertel
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Jörg Huwyler
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Peter Mohr
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Toshito Nakagawa
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Matthias Nettekoven
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Jean-Marc Plancher
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Susanne Raab
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Hans Richter
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Olivier Roche
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | | | - Monique Schmitt
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Franz Schuler
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Tadakatsu Takahashi
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Sven Taylor
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Christoph Ullmer
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| | - Ruby Wiegand
- F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, CH-4070 Basel, Switzerland
| |
Collapse
|
27
|
Similarity-based SIBAR descriptors for classification of chemically diverse hERG blockers. Mol Divers 2009; 13:321-36. [DOI: 10.1007/s11030-009-9117-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/17/2009] [Indexed: 11/25/2022]
|