1
|
Franchin M, Saliba ASMC, Giovanini de Oliveira Sartori A, Orestes Pereira Neto S, Benso B, Ikegaki M, Wang K, Matias de Alencar S, Granato D. Food-grade delivery systems of Brazilian propolis from Apis mellifera: From chemical composition to bioactivities in vivo. Food Chem 2024; 432:137175. [PMID: 37633143 DOI: 10.1016/j.foodchem.2023.137175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Brazilian propolis from Apis mellifera is widely studied worldwide due to its unique chemical composition and biological properties, such as antioxidant, antimicrobial, and anti-inflammatory. However, although many countries produce honey, another bee product, the consumption of propolis as a functional ingredient is linked to hydroethanolic extract. Hence, other food uses of propolis still have to be incorporated into food systems. Assuming that propolis is a rich source of flavonoids and is regarded as a food-grade ingredient for food and pharmaceutical applications, this review provides a theoretical and practical basis for optimising the bioactive properties of Brazilian propolis, encompassing the extraction processes and incorporating its bioactive compounds in the delivery systems for food applications. Overall, pharmacotechnical resources can optimise the extraction and enhance the chemical stability of phenolic compounds to ensure the bioactivity of food formulations.
Collapse
Affiliation(s)
- Marcelo Franchin
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | | | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Masaharu Ikegaki
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas - UNIFAL-MG, Alfenas, MG, Brazil
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
2
|
Li Y, Wang M, Su J, Wang Y, Zhao Z, Sun Z. Polycyclic polyprenylated acylphloroglucinols from Hypericum sampsonii Hance and their anti-inflammatory activity. Fitoterapia 2023; 169:105610. [PMID: 37451349 DOI: 10.1016/j.fitote.2023.105610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Phytochemical investigation of Hypericum sampsonii Hance resulted in the isolation of thirty-five polycyclic polyprenylated acylphloroglucinols including six new ones (1, 3, 5, and 15-17). Their structures were elucidated by UV, IR, NMR, HRESIMS, and calculated ECD analysis. Some compounds were evaluated for their anti-inflammatory effects in LPS-induced RAW264.7 cells. Compounds 1 and 26 showed significant inhibitory effects on LPS-induced NO production, and markedly suppressed the protein expression of iNOS and COX-2 in LPS-activated RAW264.7 cells.
Collapse
Affiliation(s)
- Yanzhen Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Mingqiang Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianhui Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanyuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhanghua Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
3
|
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, Yeskaliyeva B, Jain D, Smeriglio A, Trombetta D, Kiani R, Kobarfard F, Mojgani N, Saffarian P, Ayatollahi SA, Sarkar C, Islam MT, Keriman D, Uçar A, Martorell M, Sureda A, Pintus G, Butnariu M, Sharifi-Rad J, Cho WC. Propolis: An update on its chemistry and pharmacological applications. Chin Med 2022; 17:100. [PMID: 36028892 PMCID: PMC9412804 DOI: 10.1186/s13020-022-00651-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Propolis, a resinous substance produced by honeybees from various plant sources, has been used for thousands of years in traditional medicine for several purposes all over the world. The precise composition of propolis varies according to plant source, seasons harvesting, geography, type of bee flora, climate changes, and honeybee species at the site of collection. This apiary product has broad clinical applications such as antioxidant, anti-inflammatory, antimicrobial, anticancer, analgesic, antidepressant, and anxiolytic as well asimmunomodulatory effects. It is also well known from traditional uses in treating purulent disorders, improving the wound healing, and alleviating many of the related discomforts. Even if its use was already widespread since ancient times, after the First and Second World War, it has grown even more as well as the studies to identify its chemical and pharmacological features, allowing to discriminate the qualities of propolis in terms of the chemical profile and relative biological activity based on the geographic place of origin. Recently, several in vitro and in vivo studies have been carried out and new insights into the pharmaceutical prospects of this bee product in the management of different disorders, have been highlighted. Specifically, the available literature confirms the efficacy of propolis and its bioactive compounds in the reduction of cancer progression, inhibition of bacterial and viral infections as well as mitigation of parasitic-related symptoms, paving the way to the use of propolis as an alternative approach to improve the human health. However, a more conscious use of propolis in terms of standardized extracts as well as new clinical studies are needed to substantiate these health claims.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9280 Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Pranta Ray
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Damira Ongalbek
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022 India
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roghayeh Kiani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naheed Mojgani
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100 Bangladesh
| | - Dılhun Keriman
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Arserim Uçar
- Food Processing Department, Vocational School of Technical Sciences, Bingöl University, Bingöl, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386 Concepción, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN - Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, Palma, Spain
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences King Mihai I from Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
4
|
Barbosa EV, Assumpção YM, Teixeira IM, Pereira RFA, Ribeiro VP, Bastos JK, Cardoso CV, Liberal MHT, Penna BA, Rocha LM. In vitro comparison between antimicrobial and antibiofilm effects of Green Propolis and Baccharis dracunculifolia against Staphylococcus pseudintermedius isolate. AN ACAD BRAS CIENC 2022; 94:e20211103. [PMID: 35766601 DOI: 10.1590/0001-3765202220211103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus pseudintermedius is the leading cause of canine pyoderma. Honeybee products are common to treat this and other types of infections. High average annual population loss of bees has been observed. This study evaluated antibacterial and antibiofilm profile of Green Propolis and Baccharis dracunculifolia against S. pseudintermedius and the chemical similarities among both. Ethanolic extracts were produced and chemically characterized. The isolates were subjected to treatment with the extracts in both planktonic and sessile forms. Green propolis minimum inhibitory concentration (MIC) was 0.156 mg / mL, and minimum bactericidal concentration (MBC) was 0.312mg / mL. Baccharis dracunculifolia extract MIC and MBC was 0.312mg / mL and 2.5 mg / mL, respectivelly. Both extracts reduced SD55 formation of biofilm at minimum inhibitory concentration and at 1/8 minimum inhibitory concentration. The results observed in relation to ED99, were similar for both extracts. Besides that, similar chemical indicators between both extracts, including the presence of Artepellin C, suggest that the Baccharis dracunculifolia extract could be an alternative to the Green Propolis extract in the treatment of staph infections.
Collapse
Affiliation(s)
- Eunice V Barbosa
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Tecnologia em Produtos Naturais, Rua Dr. Mario Viana, 523, 24241-000 Niterói, RJ, Brazil
| | - Yasmim M Assumpção
- Universidade Federal Fluminense, Instituto Biomédico, Laboratório de Cocos Gram Positivos, Bloco E, Sala 611, Rua Outeiro de São João Batista, s/n, Valonguinho, 24020-140 Niterói, RJ, Brazil
| | - Izabel M Teixeira
- Universidade Federal Fluminense, Instituto Biomédico, Laboratório de Cocos Gram Positivos, Bloco E, Sala 611, Rua Outeiro de São João Batista, s/n, Valonguinho, 24020-140 Niterói, RJ, Brazil
| | - Renata F A Pereira
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Epidemiologia Molecular e Biotecnologia, Rua Dr. Mario Vianna, 523, Santa Rosa, 24241-000 Niterói, RJ, Brazil.,Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Universidade Federal Fluminense, Instituto Biomédico, Rua Prof. Hernani Pires de Mello, 101, São Domingos, 24210-130 Niterói, RJ, Brazil
| | - Victor P Ribeiro
- Universidade de São Paulo, Escola de Ciências Farmacêuticas de Ribeirão Preto, Laboratório de Farmacognosia, Av. do Café, s/n, 14040-900 Ribeirão Preto, SP, Brazil
| | - Jairo K Bastos
- Universidade de São Paulo, Escola de Ciências Farmacêuticas de Ribeirão Preto, Laboratório de Farmacognosia, Av. do Café, s/n, 14040-900 Ribeirão Preto, SP, Brazil
| | - Clarissa V Cardoso
- Universidade Federal Fluminense, Instituto de Biologia, Laboratório de Estudos em Pragas e Parasitos, Rua Prof. Marcos Waldemar de Freitas Reis, s/n, Bloco M, São Domingos, 24210-201 Niterói, RJ, Brazil
| | - Maíra H T Liberal
- Centro Estadual de Pesquisa em Sanidade Animal (CEPGM), Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro, Avenida São Boaventura, 770, 24120-191 Niterói, RJ, Brazil
| | - Bruno A Penna
- Universidade Federal Fluminense, Instituto Biomédico, Laboratório de Cocos Gram Positivos, Bloco E, Sala 611, Rua Outeiro de São João Batista, s/n, Valonguinho, 24020-140 Niterói, RJ, Brazil
| | - Leandro M Rocha
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Tecnologia em Produtos Naturais, Rua Dr. Mario Viana, 523, 24241-000 Niterói, RJ, Brazil
| |
Collapse
|
5
|
Magnavacca A, Sangiovanni E, Racagni G, Dell'Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med Res Rev 2022; 42:897-945. [PMID: 34725836 PMCID: PMC9298305 DOI: 10.1002/med.21866] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.
Collapse
Affiliation(s)
- Andrea Magnavacca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| |
Collapse
|
6
|
Kasote D, Bankova V, Viljoen AM. Propolis: chemical diversity and challenges in quality control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1887-1911. [PMID: 35645656 PMCID: PMC9128321 DOI: 10.1007/s11101-022-09816-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/08/2022] [Indexed: 05/09/2023]
Abstract
UNLABELLED Propolis is a resinous natural product produced by honeybees using beeswax and plant exudates. The chemical composition of propolis is highly complex, and varies with region and season. This inherent chemical variability presents several challenges to its standardisation and quality control. The present review was aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and to discuss strategies for quality control. Over 800 compounds have been reported in the different propolises such as temperate, tropical, birch, Mediterranean, and Pacific propolis; these mainly include alcohols, acids and their esters, benzofuranes, benzopyranes, chalcones, flavonoids and their esters, glycosides (flavonoid and diterpene), glycerol and its esters, lignans, phenylpropanoids, steroids, terpenes and terpenoids. Among these, flavonoids (> 140), terpenes and terpenoids (> 160) were major components. A broad range of biological activities, such as anti-oxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities, have been ascribed to propolis constituents, as well as the potential of these compounds to be biomarkers. Several analytical techniques, including non-separation and separation methods have been described in the literature for the quality control assessment of propolis. Mass spectrometry coupled with separation methods, followed by chemometric analysis of the data, was found to be a valuable tool for the profiling and classification of propolis samples, including (bio)marker identification. Due to the rampant chemotypic variability, a multiple-marker assessment strategy considering geographical and biological activity marker(s) with chemometric analysis may be a promising approach for propolis quality assessment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09816-1.
Collapse
Affiliation(s)
- Deepak Kasote
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
- SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
7
|
Navarro-Pérez ML, Vadillo-Rodríguez V, Fernández-Babiano I, Pérez-Giraldo C, Fernández-Calderón MC. Antimicrobial activity of a novel Spanish propolis against planktonic and sessile oral Streptococcus spp. Sci Rep 2021; 11:23860. [PMID: 34903790 PMCID: PMC8668902 DOI: 10.1038/s41598-021-03202-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Increased bacterial resistance to traditional antimicrobial agents has prompted the use of natural products with antimicrobial properties such as propolis, extensively employed since ancient times. However, the chemical composition of propolis extracts is extremely complex and has been shown to vary depending on the region and season of collection, due to variations in the flora from which the pharmacological substances are obtained, being therefore essential for their antimicrobial activity to be checked before use. For this purpose, we evaluate the in vitro antimicrobial and anti-biofilm activity of a new and promising Spanish ethanolic extract of propolis (SEEP) on Streptococcus mutans and Streptococcus sanguinis, responsible, as dominant 'pioneer' species, for dental plaque. Results reveal that S. sanguinis is more sensitive to SEEP, slowing and retarding its growth considerably with lower concentrations than those needed to produce the same effect in S. mutans. SEEP presents concentration- and time-dependent killing activity and, furthermore, some of the subinhibitory concentrations employed increased biofilm formation even when bacterial growth decreased. Mono and dual-species biofilms were also inhibited by SEEP. Findings obtained clearly show the relevance of using biofilm and subinhibitory concentration models to determine optimal treatment concentrations.
Collapse
Affiliation(s)
- M Luisa Navarro-Pérez
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, Badajoz, Spain. .,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain.
| | - Virginia Vadillo-Rodríguez
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain.,Department of Applied Physics, Area of Applied Physics, University of Extremadura, Badajoz, Spain.,Biomedical Research Network Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - Irene Fernández-Babiano
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | - Ciro Pérez-Giraldo
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain.,Biomedical Research Network Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - M Coronada Fernández-Calderón
- Department of Biomedical Science, Area of Microbiology, University of Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain.,Biomedical Research Network Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| |
Collapse
|
8
|
Ferraz CG, Silva MDC, Pereira DA, Caldas BV, Mattos R, Oliveira VV, Andrade EM, Soares AC, da Silva F, Cruz FG, Ribeiro PR. Polyprenylated benzophenone derivatives from Clusia burle-marxii and their chemotaxonomic significance. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. Int J Mol Sci 2020; 21:ijms21144988. [PMID: 32679731 PMCID: PMC7404124 DOI: 10.3390/ijms21144988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Propolis is a natural resinous material produced by bees and has been used in folk medicines since ancient times. Due to it possessing a broad spectrum of biological activities, it has gained significant scientific and commercial interest over the last two decades. As a result of searching 122 publications reported up to the end of 2019, we assembled a unique compound database consisting of 578 components isolated from both honey bee propolis and stingless bee propolis, and analyzed the chemical space and chemical diversity of these compounds. The results demonstrated that both honey bee propolis and stingless bee propolis are valuable sources for pharmaceutical and nutraceutical development.
Collapse
|
10
|
Photoprotective activity and increase of SPF in sunscreen formulation using lyophilized red propolis extracts from Alagoas. REVISTA BRASILEIRA DE FARMACOGNOSIA 2019. [DOI: 10.1016/j.bjp.2019.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Franchin M, Freires IA, Lazarini JG, Nani BD, da Cunha MG, Colón DF, de Alencar SM, Rosalen PL. The use of Brazilian propolis for discovery and development of novel anti-inflammatory drugs. Eur J Med Chem 2018; 153:49-55. [DOI: 10.1016/j.ejmech.2017.06.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 01/13/2023]
|
12
|
Yang XW, Yang J, Xu G. Skeleton Reassignment of Type C Polycyclic Polyprenylated Acylphloroglucinols. JOURNAL OF NATURAL PRODUCTS 2017; 80:108-113. [PMID: 28033006 DOI: 10.1021/acs.jnatprod.6b00754] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The previous assignment of the type C skeleton of polycyclic polyprenylated acylphloroglucinols (PPAPs) was controversial and proved to be incorrect in this study. The structures of the type C PPAPs (3-6) were revised to corresponding type A structures (3a-6a) via 13C NMR spectroscopic analysis and a quantum computational chemistry method. Therefore, only types A and B PPAPs are likely present in plants of the family Clusiaceae.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| |
Collapse
|
13
|
DE LUCA MP, FREIRES IA, GALA-GARCÍA A, SANTOS VR, VALE MP, ALENCAR SMD, ROSALEN PL. The anti-caries activity and toxicity of an experimental propolis-containing varnish. Braz Oral Res 2017; 31:e45. [DOI: 10.1590/1807-3107bor-2017.vol31.0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 04/20/2017] [Indexed: 11/21/2022] Open
|
14
|
da Cunha MG, Franchin M, de Paula-Eduardo LF, Freires IA, Beutler JA, de Alencar SM, Ikegaki M, Tabchoury CPM, Cunha TM, Rosalen PL. Anti-inflammatory and anti-biofilm properties of ent -nemorosone from Brazilian geopropolis. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
15
|
Influence of a Brazilian wild green propolis on the enamel mineral loss and Streptococcus mutans’ count in dental biofilm. Arch Oral Biol 2016; 65:77-81. [DOI: 10.1016/j.archoralbio.2016.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 12/19/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022]
|
16
|
Huang S, Zhang CP, Wang K, Li GQ, Hu FL. Recent advances in the chemical composition of propolis. Molecules 2014; 19:19610-32. [PMID: 25432012 PMCID: PMC6271758 DOI: 10.3390/molecules191219610] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 12/02/2022] Open
Abstract
Propolis is a honeybee product with broad clinical applications. Current literature describes that propolis is collected from plant resins. From a systematic database search, 241 compounds were identified in propolis for the first time between 2000 and 2012; and they belong to such diverse chemical classes as flavonoids, phenylpropanoids, terpenenes, stilbenes, lignans, coumarins, and their prenylated derivatives, showing a pattern consistent with around 300 previously reported compounds. The chemical characteristics of propolis are linked to the diversity of geographical location, plant sources and bee species.
Collapse
Affiliation(s)
- Shuai Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Cui-Ping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - George Q Li
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
The in Vitro Antimicrobial Efficacy of Propolis against Four Oral Pathogens: A Review. Dent J (Basel) 2014. [DOI: 10.3390/dj2030085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Hongal S, Torwane NA, Goel P, Chandrashekar B. The effect of 30% ethanolic extract of Indian propolis on replica of human dentin compared against commercially available desensitizing agent: A methodological SEM study in vitro. Pharmacognosy Res 2014; 6:113-9. [PMID: 24761114 PMCID: PMC3996746 DOI: 10.4103/0974-8490.129026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/21/2013] [Accepted: 03/18/2014] [Indexed: 11/17/2022] Open
Abstract
Objective: This study evaluated the ability of 30% ethanolic extract of Indian propolis on dentinal tubule occlusion comparatively against CPP-ACP containing desensitizing agent GC tooth mousse. Methodology: The specimens were prepared from 30 freshly extracted sound human third molars stored in 10% formalin (pH 7.0) at a room temperature. From each specimen, a sectioned sample (5 mm length × 5 mm width × 3.5 mm depth) was obtained including the cervical area. Samples were smoothened and wet-polished with 1000- and 1200-grit aluminum oxide abrasive paper and diamond pastes, in order to stimulate the clinical aspect of hypersensitive dentin cervical surfaces. All the specimens were randomly assigned to three groups (n = 10), according to dentin surface treatments. Negative control: Untreated specimens (n = 4) and pretreated with 6% citric acid (n = 6); Test Group: 30% ethanolic extract of Indian propolis (n = 10); Positive Group: GC Tooth Mousse (n =10). All the specimens were prepared for SEM analysis. Results: GC tooth mousse promoted tubule occlusion by crystal-like deposits in the lumen of the tubules. While propolis created a thin, smooth layer over dentin surface. Conclusion: According to the SEM analysis, both desensitizing agent were able to occlude the dentinal tubules.
Collapse
Affiliation(s)
- Sudhir Hongal
- Department of Public Health Dentistry, People's Dental Academy, People's University, Bhopal, Madhya Pradesh, India
| | - Nilesh Arjun Torwane
- Department of Public Health Dentistry, People's Dental Academy, People's University, Bhopal, Madhya Pradesh, India
| | - Pankaj Goel
- Department of Public Health Dentistry, People's Dental Academy, People's University, Bhopal, Madhya Pradesh, India
| | - Byarakele Chandrashekar
- Department of Public Health Dentistry, People's Dental Academy, People's University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
19
|
Barrientos L, Herrera CL, Montenegro G, Ortega X, Veloz J, Alvear M, Cuevas A, Saavedra N, Salazar LA. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Braz J Microbiol 2013; 44:577-85. [PMID: 24294257 PMCID: PMC3833163 DOI: 10.1590/s1517-83822013000200038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 09/10/2012] [Indexed: 01/18/2023] Open
Abstract
Propolis is a non-toxic natural substance with multiple pharmacological properties including anti-cancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC) was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 μg mL(-1)). Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them.
Collapse
Affiliation(s)
- Leticia Barrientos
- Centro de Biología Molecular & Farmacogenética, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Estudios Genéticos e Inmunológicos, Universidad de La Frontera, Temuco, Chile
| | - Christian L. Herrera
- Centro de Biología Molecular & Farmacogenética, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Gloria Montenegro
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ximena Ortega
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Veloz
- Centro de Biología Molecular & Farmacogenética, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Marysol Alvear
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Alejandro Cuevas
- Centro de Biología Molecular & Farmacogenética, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nicolás Saavedra
- Centro de Biología Molecular & Farmacogenética, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Luis A. Salazar
- Centro de Biología Molecular & Farmacogenética, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Estudios Genéticos e Inmunológicos, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
20
|
Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:256287. [PMID: 23843868 PMCID: PMC3697201 DOI: 10.1155/2013/256287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250 μ g/mL and 400 μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.
Collapse
|
21
|
Toreti VC, Sato HH, Pastore GM, Park YK. Recent progress of propolis for its biological and chemical compositions and its botanical origin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:697390. [PMID: 23737843 PMCID: PMC3657397 DOI: 10.1155/2013/697390] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/12/2013] [Indexed: 01/07/2023]
Abstract
Propolis is the generic name given to the product obtained from resinous substances, which is gummy and balsamic and which is collected by bees from flowers, buds, and exudates of plants. It is a popular folk medicine possessing a broad spectrum of biological activities. These biological properties are related to its chemical composition and more specifically to the phenolic compounds that vary in their structure and concentration depending on the region of production, availability of sources to collect plant resins, genetic variability of the queen bee, the technique used for production, and the season in which propolis is produced. Many scientific articles are published every year in different international journal, and several groups of researchers have focused their attention on the chemical compounds and biological activity of propolis. This paper presents a review on the publications on propolis and patents of applications and biological constituents of propolis.
Collapse
Affiliation(s)
- Viviane Cristina Toreti
- Department of Food Science, College of Food Engineering, State University of Campinas, Monteiro Lobato Street n.80, P.O. Box 6177, 13083-862 Campinas, SP, Brazil
| | - Helia Harumi Sato
- Department of Food Science, College of Food Engineering, State University of Campinas, Monteiro Lobato Street n.80, P.O. Box 6177, 13083-862 Campinas, SP, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science, College of Food Engineering, State University of Campinas, Monteiro Lobato Street n.80, P.O. Box 6177, 13083-862 Campinas, SP, Brazil
| | - Yong Kun Park
- Department of Food Science, College of Food Engineering, State University of Campinas, Monteiro Lobato Street n.80, P.O. Box 6177, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
22
|
Emerging roles of propolis: antioxidant, cardioprotective, and antiangiogenic actions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:175135. [PMID: 23662115 PMCID: PMC3638596 DOI: 10.1155/2013/175135] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/29/2022]
Abstract
Propolis has attracted attention in recent years due to its beneficial effects, which make it a potential preventive and therapeutic agent as well as a useful additive in food and cosmetics. The aim of this review is to discuss the growing evidence that propolis may, via a diverse array of biological actions, assist in the prevention of some inflammation-mediated pathologies including cardiovascular disease. The active components of propolis that have been identified so far include polyphenols and flavonoids. These compounds have cardioprotective, vasoprotective, antioxidant, antiatherosclerotic, anti-inflammatory and antiangiogenic actions. Many studies have been undertaken to elucidate the mechanism(s) by which propolis acts, which involve cellular signaling targets and interactions at the genomic level. This review will highlight the effects of propolis that may assist in the prevention of chronic degenerative diseases, such as cardiovascular disease.
Collapse
|
23
|
da Cunha MG, Franchin M, Galvão L, de Ruiz A, de Carvalho JE, Ikegaki M, de Alencar SM, Koo H, Rosalen PL. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. Altern Ther Health Med 2013; 13:23. [PMID: 23356696 PMCID: PMC3568042 DOI: 10.1186/1472-6882-13-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/21/2013] [Indexed: 11/16/2022]
Abstract
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.
Collapse
|
24
|
Franchin M, da Cunha MG, Denny C, Napimoga MH, Cunha TM, Koo H, de Alencar SM, Ikegaki M, Rosalen PL. Geopropolis from Melipona scutellaris decreases the mechanical inflammatory hypernociception by inhibiting the production of IL-1β and TNF-α. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:709-715. [PMID: 22885134 DOI: 10.1016/j.jep.2012.07.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/07/2012] [Accepted: 07/20/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The pharmacological activity of geopropolis collected by stingless bees (important and threatened pollinators), a product widely used in folk medicine by several communities in Brazil, especially in the Northeast Region, needs to be studied. OBJECTIVE The aim of this study was to evaluate the antinociceptive activity of Melipona scutellaris geopropolis (stingless bee) using different models of nociception. MATERIAL AND METHODS The antinociceptive activity of the ethanolic extract of geopropolis (EEGP) and fractions was evaluated using writhing induced by acetic acid, formalin test, carrageenan-induced hypernociception, and quantification of IL-1β and TNF-α. The chemical composition was assessed by quantification of total flavonoids and phenolic compounds. RESULTS EEGP and its hexane and aqueous fractions showed antinociceptive activity. Both EEGP and its aqueous fraction presented activity in the mechanical inflammatory hypernociception induced by the carrageenan model, an effect mediated by the inhibition of IL-1β and TNF-α. The chemical composition of EEGP and its hexane and aqueous fractions showed a significant presence of phenolic compounds and absence of flavonoids. CONCLUSION Our data indicate that geopropolis is a natural source of bioactive substances with promising antinociceptive activity.
Collapse
Affiliation(s)
- Marcelo Franchin
- Department of Physiological Sciences, School of Dentistry of Piracicaba, University of Campinas Brazil, Av. Limeira 901, Piracicaba CEP 13414 903, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cabral ISR, Oldoni TLC, Alencar SMD, Rosalen PL, Ikegaki M. The correlation between the phenolic composition and biological activities of two varieties of Brazilian propolis (G6 and G12). BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000300023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biological assays that have been performed on different types of Brazilian propolis have shown that type 6 propolis (G6) has a strong antimicrobial activity and a low flavonoid content. This study aimed to evaluate the correlation between the phenolic composition and the biological activities displayed by propolis G6 from the state of Bahia and green propolis, also known as type 12 (G12). The values of the flavonoids and the total phenolics in propolis G6 were different than those in propolis G12. Although the G12 variety presented greater antioxidant activity, propolis G6 proved to have greater antimicrobial and cytotoxic activities. The results showed that the phenolic compounds may not be the only compounds responsible for the biological activity. More detailed studies of the chemical composition and an assessment of the biological activity are required to establish the quality of propolis.
Collapse
|
26
|
Teerasripreecha D, Phuwapraisirisan P, Puthong S, Kimura K, Okuyama M, Mori H, Kimura A, Chanchao C. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:27. [PMID: 22458642 PMCID: PMC3350427 DOI: 10.1186/1472-6882-12-27] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 12/24/2022]
Abstract
Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G2), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC50 values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. Conclusion This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.
Collapse
|
27
|
Gardana C, Simonetti P. Evaluation of allergens in propolis by ultra-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1675-1682. [PMID: 21594943 DOI: 10.1002/rcm.5025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purified extract of propolis is used as a traditional remedy for the treatment of several diseases. Its beneficial activities are mainly attributed to the polyphenolic fraction. Nevertheless, propolis can cause allergic dermatitis and the sensitization rate in humans is increasing significantly mainly in younger subjects. The aim of this study was to develop and validate a selective and sensitive ultra-performance liquid chromatography tandem mass spectrometry analysis (UPLC/MS/MS) for the evaluation of the amount of caffeic acid and its esters with allergenic action in raw propolis samples and commercial formulations. The separation was carried out on a 1.7 μm C(18) BEH Shield column and the detection performed by means of electrospray ionization in negative ion mode with multiple reaction monitoring. The confirmation of formulae of the precursor and product ions was accomplished by injection into a high-resolution system (FTICR-MS) using accurate mass measurements. The error was below 1.4 ppm.The range of the standard curves was 0.5-10 μg/mL and dihydrocaffeic acid was used as internal standard (IS). The lower limit of detection (LLOD) for 3-methyl-2-butenyl-(3M2B), 3-methyl-3-butenyl-(3M3B), 2-methyl-2-butenyl-(2M2B), benzyl-(CABE), phenylethylcaffeic acid (CAPE) and for caffeic acid (CA) and the IS was 0.1 and 0.3 μg/mL, respectively. The recoveries were in the range 96-104% and the intra- and inter-day precisions were within 6.2%. In the European (n=8) and Asiatic (n=3) propolis the most abundant allergens were CABE>3M2B>CAPE>3M3B>CA>2M2B. These compounds were not found in the red (n=1) and green (n=1) Brazilian propolis. Hydroalcoholic extracts (n=6) and tablets (n=6) were analyzed by the proposed UPLC/MS/MS method. The results showed that in the commercial products CABE, 3M2B, CAPE and 3M3B were also the most abundant.
Collapse
Affiliation(s)
- Claudio Gardana
- Università degli Studi di Milano, DiSTAM - Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Via Celoria 2, 20133 Milan, Italy.
| | | |
Collapse
|
28
|
Antonio A, Iorio N, Pierro V, Candreva M, Farah A, dos Santos K, Maia L. Inhibitory properties of Coffea canephora extract against oral bacteria and its effect on demineralisation of deciduous teeth. Arch Oral Biol 2011; 56:556-64. [DOI: 10.1016/j.archoralbio.2010.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/23/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
29
|
Sales-Peres SHDC, Carvalho FND, Marsicano JA, Mattos MC, Pereira JC, Forim MR, Silva MFDGFD. Effect of propolis gel on the in vitro reduction of dentin permeability. J Appl Oral Sci 2011; 19:318-23. [PMID: 21956588 PMCID: PMC4223781 DOI: 10.1590/s1678-77572011005000004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 05/25/2010] [Indexed: 12/03/2022] Open
Abstract
Objective The aim of this study was to evaluate the capacity of potassium oxalate,
fluoride gel and two kinds of propolis gel to reduce the hydraulic
conductance of dentin, in vitro. Material and Methods The methodology used for the measurement of hydraulic conductance of dentin
in the present study was based on a model proposed in literature. Thirty-six
1-mm-thick dentin discs, obtained from extracted human third molars were
divided into 4 groups (n=9). The groups corresponded to the following
experimental materials: GI-10% propolis gel, pH 4.1; GII-30% propolis gel;
GIII-3% potassium oxalate gel, pH 4,1; and GIV-1.23% fluoride gel, pH 4.1,
applied to the dentin under the following surface conditions: after 37%
phosphoric acid and before 6% citric acid application. The occluding
capacity of the dentin tubules was evaluated using scanning electron
microscopy (SEM) at ×500, ×1,000 and ×2,000 magnifications. Data were
analyzed statistically by two-way ANOVA and Tukey's test at 5% significance
level. Results Groups I, II, III, IV did not differ significantly from the others in any
conditions by reducing in hydraulic conductance. The active agents reduced
dentin permeability; however they produced the smallest reduction in
hydraulic conductance when compared to the presence of smear layer
(P<0.05). The effectiveness in reducing dentin permeability did not
differ significantly from 10% or 30% propolis gels. SEM micrographs revealed
that dentin tubules were partially occluded after treatment with propolis.
Conclusions Under the conditions of this study, the application of 10% and 30% propolis
gels did not seem to reduce the hydraulic conductance of dentin in
vitro, but it showed capacity of partially obliterating the
dentin tubules. Propolis is used in the treatment of different oral problems
without causing significant great collateral effects, and can be a good
option in the treatment of patients with dentin sensitivity.
Collapse
|
30
|
Jeon JG, Rosalen PL, Falsetta ML, Koo H. Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 2011; 45:243-63. [PMID: 21576957 PMCID: PMC3104868 DOI: 10.1159/000327250] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 03/08/2011] [Indexed: 02/04/2023] Open
Abstract
Dental caries is the most prevalent and costly oral infectious disease worldwide. Virulent biofilms firmly attached to tooth surfaces are prime biological factors associated with this disease. The formation of an exopolysaccharide-rich biofilm matrix, acidification of the milieu and persistent low pH at the tooth-biofilm interface are major controlling virulence factors that modulate dental caries pathogenesis. Each one offers a selective therapeutic target for prevention. Although fluoride, delivered in various modalities, remains the mainstay for the prevention of caries, additional approaches are required to enhance its effectiveness. Available antiplaque approaches are based on the use of broad-spectrum microbicidal agents, e.g. chlorhexidine. Natural products offer a rich source of structurally diverse substances with a wide range of biological activities, which could be useful for the development of alternative or adjunctive anticaries therapies. However, it is a challenging approach owing to complex chemistry and isolation procedures to derive active compounds from natural products. Furthermore, most of the studies have been focused on the general inhibitory effects on glucan synthesis as well as on bacterial metabolism and growth, often employing methods that do not address the pathophysiological aspects of the disease (e.g. bacteria in biofilms) and the length of exposure/retention in the mouth. Thus, the true value of natural products in caries prevention and/or their exact mechanisms of action remain largely unknown. Nevertheless, natural substances potentially active against virulent properties of cariogenic organisms have been identified. This review focuses on gaps in the current knowledge and presents a model for investigating the use of natural products in anticaries chemotherapy.
Collapse
Affiliation(s)
- J-G Jeon
- Department of Preventive Dentistry, BK 21 Program, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | | | | | | |
Collapse
|
31
|
|
32
|
Salatino A, Fernandes-Silva CC, Righi AA, Salatino MLF. Propolis research and the chemistry of plant products. Nat Prod Rep 2011; 28:925-36. [DOI: 10.1039/c0np00072h] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Yim N, Ha DT, Trung TN, Kim JP, Lee S, Na M, Jung H, Kim HS, Kim YH, Bae K. The antimicrobial activity of compounds from the leaf and stem of Vitis amurensis against two oral pathogens. Bioorg Med Chem Lett 2009; 20:1165-8. [PMID: 20022753 DOI: 10.1016/j.bmcl.2009.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/10/2009] [Accepted: 12/03/2009] [Indexed: 11/16/2022]
Abstract
Nine compounds isolated from the leaf and stem of Vitis amurensis Rupr. (Vitaceae) were evaluated for their antimicrobial activity against two oral pathogens, Streptococcus mutans and Streptococcus sanguis, which are associated with caries and periodontal disease, respectively. The results of several antimicrobial tests, including MIC, MBC, and TBAI, showed that three compounds inhibited the growth of the test bacteria at concentrations ranging from 12.5 to 50 microg/mL. Among these compounds, compound 5, trans-epsilon-viniferin, displayed the strongest activity against S. mutans and S. sanguis with MIC values of 25 and 12.5 microg/mL, respectively. This is the first report on the antimicrobial activity of stilbenes and oligostilbenes isolated from the leaf and stem of V. amurensis. Thus, this result suggests that natural antimicrobial compounds derived from V. amurensis may benefit oral health as plaque-control agents for the prevention of dental caries and periodontal disease.
Collapse
Affiliation(s)
- NamHui Yim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|