1
|
Nistor G, Trandafirescu C, Prodea A, Milan A, Cristea A, Ghiulai R, Racoviceanu R, Mioc A, Mioc M, Ivan V, Șoica C. Semisynthetic Derivatives of Pentacyclic Triterpenes Bearing Heterocyclic Moieties with Therapeutic Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196552. [PMID: 36235089 PMCID: PMC9572482 DOI: 10.3390/molecules27196552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Medicinal plants have been used by humans since ancient times for the treatment of various diseases and currently represent the main source of a variety of phytocompounds, such as triterpenes. Pentacyclic triterpenes have been subjected to numerous studies that have revealed various biological activities, such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and hepatoprotective effects, which can be employed in therapy. However, due to their high lipophilicity, which is considered to exert a significant influence on their bioavailability, their current use is limited. A frequent approach employed to overcome this obstacle is the chemical derivatization of the core structure with different types of moieties including heterocycles, which are considered key elements in medicinal chemistry. The present review aims to summarize the literature published in the last 10 years regarding the derivatives of pentacyclic triterpenes bearing heterocyclic moieties and focuses on the biologically active derivatives as well as their structure-activity relationships. Predominantly, the targeted positions for the derivatization of the triterpene skeleton are C-3 (hydroxyl/oxo group), C-28 (hydroxyl/carboxyl group), and C-30 (allylic group) or the extension of the main scaffold by fusing various heterocycles with the A-ring of the phytocompound. In addition, numerous derivatives also contain linker moieties that connect the triterpenic scaffold with heterocycles; one such linker, the triazole moiety, stands out as a key pharmacophore for its biological effect. All these studies support the hypothesis that triterpenoid conjugates with heterocyclic moieties may represent promising candidates for future clinical trials.
Collapse
Affiliation(s)
- Gabriela Nistor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (A.P.); (A.M.); Tel.: +40-256-494-604 (A.P.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (A.P.); (A.M.); Tel.: +40-256-494-604 (A.P.)
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Viviana Ivan
- Department of Internal Medicine II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Dubinin MV, Semenova AA, Ilzorkina AI, Markelova NY, Penkov NV, Shakurova ER, Belosludtsev KN, Parfenova LV. New quaternized pyridinium derivatives of betulin: Synthesis and evaluation of membranotropic properties on liposomes, pro- and eukaryotic cells, and isolated mitochondria. Chem Biol Interact 2021; 349:109678. [PMID: 34600868 DOI: 10.1016/j.cbi.2021.109678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The present study describes the synthesis of pyridinium derivatives of betulin, including new 4-methyl- and 3,5-methyl-pyridinium analogs, their effect on artificial membrane systems (liposomes), cytotoxicity in models of prokaryotic (E. coli K-12 MG1655) and eukaryotic cells (rat thymocytes), as well as their effect on the functioning of membrane systems of rat liver mitochondria. We have shown that the presence of methyl groups in the pyridine ring of compounds determines the ability of the derivatives to effectively permeabilize the artificial membrane of lecithin liposomes for the fluorescent probe sulforhodamine B. The 4-methyl- and 3,5-methyl-pyridinium analogs inhibit the growth of E. coli K-12 MG1655 and, at the same time, did not have a cytotoxic effect on rat thymocytes. However, in the latter case, we noted a decrease in the mitochondrial potential of cells. The studied compounds reduced the functional activity of mitochondria, suppressing the activity of complexes of the respiratory chain and reducing the membrane potential. In addition, compounds containing methyl groups in the p- and m-positions of the pyridine ring were also able to permeabilize the inner membrane of mitochondria, causing them to swell. In this case, the most lipophilic compound containing two methyl substituents at the m-position of the pyridine fragment was most effective and had a protonophore effect on mitochondria. The paper discusses the dependence of the membranotropic and biological actions of the quaternized pyridine derivatives of betulin on their structure and lipophilicity.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| | - Alena A Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Natalia Y Markelova
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Elvira R Shakurova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila V Parfenova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa, Republic of Bashkortostan, 450075, Russia
| |
Collapse
|
3
|
Lugiņina J, Linden M, Bazulis M, Kumpiņš V, Mishnev A, Popov SA, Golubeva TS, Waldvogel SR, Shults EE, Turks M. Electrosynthesis of Stable Betulin‐Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupane‐Type Triterpenoid‐Isoxazole Conjugates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jevgeņija Lugiņina
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Martin Linden
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Māris Bazulis
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Viktors Kumpiņš
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis Aizkraukles Str. 21 Riga 1006 Latvia
| | - Sergey A. Popov
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Tatiana S. Golubeva
- The Federal Research Center Institute of Cytology and Genetics Acad. Lavrentyev Ave., 10 Novosibirsk 630090 Russia
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| |
Collapse
|
4
|
Shakurova ER, Pozdnyakova DA, Tretyakova EV, Parfenova LV. One-pot Synthesis of Betulin Triterpenoid Quaternized Pyridine Derivatives and their Antimicrobial Activity. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181217123629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
A wide range of biological activity, relatively low toxicity and multiple
pharmacological effects of triterpenoids are major advantages of these compounds in the prevention
and treatment of various diseases. They include the lupane- type triterpenoids that proved to be a
promising platform for the synthesis of analogs with a wide range of biological activities, including
anti-inflammatory, antitumor, antiparasitic and antiviral properties. The main disadvantage complicating
the use of all known derivatives of lupane acids in medical practice is low bioavailability associated
with poor solubility in biologic fluids, limiting their effective interaction with the biological
targets.
Objective:
The objective of this study is the synthesis of new amphiphilic betulin derivatives on the
base of pyridinium salts with antifungal and antibacterial activity.
Methods:
In this study we have developed an effective one-pot method for the preparation of new
quaternized pyridine derivatives 4-6 of the betulinic series based on the reaction of the initial triterpenes
1-3 with the Tempo+Br3
- reagent in the pyridine. The synthesized and initial compounds were
tested for their antimicrobial and antifungal activity.
Results:
The data presented in this document indicate that all synthesized compounds 4-6 exhibited
high activity against both gram-positive Staphylococcus aureus bacteria and gram-negative Pseudomonas
aeruginosa strains, as well as Candida albicans and Cryptococcus neoformans fungi with
the >90% coverage of the inhibition zone. The best result in a series of compounds 4-6 was found
for the derivative 6 at the minimum inhibitory concentration of 1 µg/ml against S. aureus bacteria,
C. albicans and C. neoformans fungi at the concentration of 8 µg/ml.
Conclusion:
Thus, we have demonstrated the first example of the pyridine quaternization using the
betulin triterpenoids as the lipophilic substrates and Tempo+Br3
- cation. The obtained quaternized
pyridine analogs of betulin triterpenes showed high antibacterial and antifungal activity in comparison
with the initial compounds.
Collapse
|
5
|
Synthesis of N-Heterocyclic Analogues of 28-O-Methyl Betulinate, and Their Antibacterial and Antifungal Properties. MOLBANK 2019. [DOI: 10.3390/m1100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The paper presents the results on the one-pot pyridine quaternization using betulinic 28-O-methyl ester (1) and Tempo+Br3− cation followed by reduction of the resulting salt (2) to 1,2,5,6-tetrahydropyridine derivative (3). The structures of new compounds are confirmed by means of 1D and 2D-NMR spectroscopy, as well as MALDI TOF/TOF spectrometry. The derivatives 2 and 3 are active against S. aureus at the minimum inhibitory concentration (MIC) of 4 μg/mL and 16 μg/mL, correspondingly.
Collapse
|
6
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
7
|
Zhou K, Diebel KW, Holy J, Skildum A, Odean E, Hicks DA, Schotl B, Abrahante JE, Spillman MA, Bemis LT. A tRNA fragment, tRF5-Glu, regulates BCAR3 expression and proliferation in ovarian cancer cells. Oncotarget 2017; 8:95377-95391. [PMID: 29221134 PMCID: PMC5707028 DOI: 10.18632/oncotarget.20709] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is a complex disease marked by tumor heterogeneity, which contributes to difficulties in diagnosis and treatment. New molecular targets and better molecular profiles defining subsets of patients are needed. tRNA fragments (tRFs) offer a recently identified group of noncoding RNAs that are often as abundant as microRNAs in cancer cells. Initially their presence in deep sequencing data sets was attributed to the breakdown of mature tRNAs, however, it is now clear that they are actively generated and function in multiple regulatory events. One such tRF, a 5’ fragment of tRNA-Glu-CTC (tRF5-Glu), is processed from the mature tRNA-Glu and is shown in this study to be expressed in ovarian cancer cells. We confirmed that tRF5-Glu binds directly to a site in the 3’UTR of the Breast Cancer Anti-Estrogen Resistance 3 (BCAR3) mRNA thereby down regulating its expression. BCAR3 has not previously been studied in ovarian cancer cells and our studies demonstrate that inhibiting BCAR3 expression suppresses ovarian cancer cell proliferation. Furthermore, mimics of tRF5-Glu were found to inhibit proliferation of ovarian cancer cells. In summary, BCAR3 and tRF5-Glu contribute to the complex tumor heterogeneity of ovarian cancer cells and may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Kevin W Diebel
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Andrew Skildum
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Evan Odean
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Douglas A Hicks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brent Schotl
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Monique A Spillman
- Texas A&M University Medical School, Baylor University Medical Center, Dallas, TX, 75206 USA
| | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| |
Collapse
|
8
|
Tsepaeva OV, Nemtarev AV, Abdullin TI, Grigor'eva LR, Kuznetsova EV, Akhmadishina RA, Ziganshina LE, Cong HH, Mironov VF. Design, Synthesis, and Cancer Cell Growth Inhibitory Activity of Triphenylphosphonium Derivatives of the Triterpenoid Betulin. JOURNAL OF NATURAL PRODUCTS 2017; 80:2232-2239. [PMID: 28782948 DOI: 10.1021/acs.jnatprod.7b00105] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A series of new triphenylphosphonium (TPP) derivatives of the triterpenoid betulin (1, 3-lup-20(29)-ene-3β,28-diol) have been synthesized and evaluated for cytotoxic effects against human breast cancer (MCF-7), prostate adenocarcinoma (PC-3), vinblastine-resistant human breast cancer (MCF-7/Vinb), and human skin fibroblast (HSF) cells. The TPP moiety was applied as a carrier group through the acyl linker at the 28- or 3- and 28-positions of betulin to promote cellular and mitochondrial accumulation of the resultant compounds. A structure-activity relationship study has revealed the essential role of the TPP group in the biological properties of the betulin derivatives produced. The present results showed that a conjugate of betulin with TPP (3) enhanced antiproliferative activity toward vinblastine-resistant MCF-7 cells, with an IC50 value as low as 0.045 μM.
Collapse
Affiliation(s)
- Olga V Tsepaeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , Arbuzov Street 8, 420088, Kazan, Russian Federation
| | - Andrey V Nemtarev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , Arbuzov Street 8, 420088, Kazan, Russian Federation
- Kazan (Volga Region) Federal University , Kremlevskaya Street 18, 420008, Kazan, Russian Federation
| | - Timur I Abdullin
- Kazan (Volga Region) Federal University , Kremlevskaya Street 18, 420008, Kazan, Russian Federation
| | - Leysan R Grigor'eva
- Kazan (Volga Region) Federal University , Kremlevskaya Street 18, 420008, Kazan, Russian Federation
| | - Elena V Kuznetsova
- Kazan (Volga Region) Federal University , Kremlevskaya Street 18, 420008, Kazan, Russian Federation
| | - Rezeda A Akhmadishina
- Kazan (Volga Region) Federal University , Kremlevskaya Street 18, 420008, Kazan, Russian Federation
| | - Liliya E Ziganshina
- Kazan (Volga Region) Federal University , Kremlevskaya Street 18, 420008, Kazan, Russian Federation
| | - Hanh H Cong
- Kazan (Volga Region) Federal University , Kremlevskaya Street 18, 420008, Kazan, Russian Federation
| | - Vladimir F Mironov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences , Arbuzov Street 8, 420088, Kazan, Russian Federation
- Kazan (Volga Region) Federal University , Kremlevskaya Street 18, 420008, Kazan, Russian Federation
| |
Collapse
|
9
|
Jonnalagadda S, Suman P, Morgan D, Seay J. Recent Developments on the Synthesis and Applications of Betulin and Betulinic Acid Derivatives as Therapeutic Agents. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00002-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Komissarova NG, Dubovitskii SN, Orlov AV, Shitikova OV, Abdullin MF, Spirikhin LV, Yunusov MS. Synthesis of Sulfobetaines Based on Betulinic Acid and its Esters. Chem Nat Compd 2015. [DOI: 10.1007/s10600-015-1399-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Zhang DM, Xu HG, Wang L, Li YJ, Sun PH, Wu XM, Wang GJ, Chen WM, Ye WC. Betulinic Acid and its Derivatives as Potential Antitumor Agents. Med Res Rev 2015; 35:1127-55. [PMID: 26032847 DOI: 10.1002/med.21353] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Betulinic acid (BA) is a lupane-type pentacyclic triterpene, distributed ubiquitously throughout the plant kingdom. BA and its derivatives demonstrate multiple bioactivities, particularly an antitumor effect. This review critically describes the recent research on isolation, synthesis, and derivatization of BA and its natural analogs betulin and 23-hydroxybetulinic acid. The subsequent part of the review focuses on the current knowledge of antitumor properties, combination treatments, and pharmacological mechanisms of these compounds. A 3D-QSAR analysis of 62 BA derivatives against human ovarian cancer A2780 is also included to provide information concerning the structure-cytotoxicity relationships of these compounds.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Hong-Gui Xu
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ying-Jie Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping-Hua Sun
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Ming Wu
- Institute of Pharmaceutical Research, College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Guang-Ji Wang
- Institute of Pharmaceutical Research, College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Wei-Min Chen
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
12
|
Dubovitsky SN, Komissarova NG, Shitikova OV, Spirikhin LV, Khasanova DV, Zainullina LF, Abdullin MF, Vakhitova YV, Yunusov MS. Synthesis and proliferative activity of a new derivative of the lupan pentacyclic triterpenoids, viz., the sulfobetaine based on betulin with a 4-(dimethylammonio)butane-1-sulfonate moiety. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-1014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Serafim TL, Carvalho FS, Bernardo TC, Pereira GC, Perkins E, Holy J, Krasutsky DA, Kolomitsyna ON, Krasutsky PA, Oliveira PJ. New derivatives of lupane triterpenoids disturb breast cancer mitochondria and induce cell death. Bioorg Med Chem 2014; 22:6270-87. [DOI: 10.1016/j.bmc.2014.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
|
14
|
|
15
|
|
16
|
Highlights of Pentacyclic Triterpenoids in the Cancer Settings. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63294-4.00002-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Bernardo TC, Cunha-Oliveira T, Serafim TL, Holy J, Krasutsky D, Kolomitsyna O, Krasutsky P, Moreno AM, Oliveira PJ. Dimethylaminopyridine derivatives of lupane triterpenoids cause mitochondrial disruption and induce the permeability transition. Bioorg Med Chem 2013; 21:7239-49. [DOI: 10.1016/j.bmc.2013.09.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/11/2023]
|
18
|
Sundararaman M, Rajesh Kumar R, Venkatesan P, Ilangovan A. 1-Alkyl-(N,N-dimethylamino)pyridinium bromides: inhibitory effect on virulence factors of Candida albicans and on the growth of bacterial pathogens. J Med Microbiol 2013; 62:241-248. [DOI: 10.1099/jmm.0.050070-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
19
|
|