1
|
Pereira R, Ribeiro D, Silva VLM, Fernandes E. Synthetic flavonoid dimers: Synthesis strategies and biological activities. Eur J Med Chem 2025; 291:117669. [PMID: 40286629 DOI: 10.1016/j.ejmech.2025.117669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
The continuous search for novel and safer drug candidates remains imperative to address ever-evolving health challenges. Nature has long served as a source of inspiration for drug discovery, particularly through bioactive compounds such as flavonoids. Among them, flavonoid dimers, first identified nearly a century ago, have shown promising biological activities that often surpass those of their monomeric counterparts while showing minimal side effects. Nonetheless, these compounds suffer from limitations such as low bioavailability and moderate potency. To mitigate these challenges, researchers have developed synthetic strategies to obtain them, expand their structural diversity, and optimize their properties. The design of completely unnatural flavonoid dimers offers new opportunities for drug discovery. In contrast to previous review articles, this review explores the potential of synthetic flavonoid dimers. It provides an overview of the main synthetic methodologies to obtain them, illustrating how the evolution of the synthetic protocols has also driven the development of novel unnatural compounds. It then focuses on highlighting the bioactivities reported for synthetic flavonoid dimers, in particular anti-inflammatory, anticancer, and antimicrobial. Finally, this review highlights a specific subclass of synthetic flavonoid dimers that emerged in the last decade but remains underexplored, proposing its classification as fused bis-flavonoids. The aim is to drawattention to their potential importance by giving them a unique nomenclature from other subclasses and highlighting their biological activities.
Collapse
Affiliation(s)
- Rui Pereira
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Daniela Ribeiro
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042, Angra do Heroísmo, Açores, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Bhuktar H, Shukla S, Kakularam KR, Battu S, Srikanth M, Srivastava S, Medishetti R, Ram P, Jagadish PC, Rasool M, Chakraborty S, Khan N, Reddanna P, Oruganti S, Pal M. Design, synthesis and evaluation of 2-aryl quinoline derivatives against 12R-lipoxygenase (12R-LOX): Discovery of first inhibitor of 12R-LOX. Bioorg Chem 2023; 138:106606. [PMID: 37210826 DOI: 10.1016/j.bioorg.2023.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
The 12R-lipoxygenase (12R-LOX), a (non-heme) iron-containing metalloenzyme belonging to the lipoxygenase (LOX) family catalyzes the conversion of arachidonic acid (AA) to its key metabolites. Studies suggested that 12R-LOX plays a critical role in immune modulation for the maintenance of skin homeostasis and therefore can be considered as a potential drug target for psoriasis and other skin related inflammatory diseases. However, unlike 12-LOX (or 12S-LOX) the enzyme 12R-LOX did not receive much attention till date. In our effort, the 2-aryl quinoline derivatives were designed, synthesized and evaluated for the identification of potential inhibitors of 12R-hLOX. The merit of selection of 2-aryl quinolines was assessed by in silico docking studies of a representative compound (4a) using the homology model of 12R-LOX. Indeed, in addition to participating in H-bonding with THR628 and LEU635 the molecule formed a hydrophobic interaction with VAL631. The desired 2-aryl quinolines were synthesized either via the Claisen-Schmidt condensation followed by one-pot reduction-cyclization or via the AlCl3 induced heteroarylation or via the O-alkylation approach in good to high (82-95%) yield. When screened against human 12R-LOX (12R-hLOX) in vitro four compounds (e.g. 4a, 4d, 4e and 7b) showed encouraging (>45%) inhibition at 100 μM among which 7b and 4a emerged as the initial hits. Both the compounds showed selectivity towards 12R-hLOX over 12S-hLOX, 15-hLOX and 15-hLOXB and concentration dependent inhibition of 12R-hLOX with IC50 = 12.48 ± 2.06 and 28.25 ± 1.63 μM, respectively. The selectivity of 4a and 7b towards 12R-LOX over 12S-LOX was rationalized with the help of molecular dynamics simulations. The SAR (Structure-Activity Relationship) within the present series of compounds suggested the need of a o-hydroxyl group on the C-2 phenyl ring for the activity. The compound 4a and 7b (at 10 and 20 µM) reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes in a concentration dependent manner. Further, both compounds decreased the protein levels of Ki67 and the mRNA expression of IL-17A in the IMQ-induced psoriatic-like keratinocytes. Notably, 4a but not 7b inhibited the production of IL-6 and TNF-α in the keratinocyte cells. In the preliminary toxicity studies (i.e. teratogenicity, hepatotoxicity and heart rate assays) in zebrafish both the compounds showed low safety (<30 µM) margin. Overall, being the first identified inhibitors of 12R-LOX both 4a and 7b deserve further investigations.
Collapse
Affiliation(s)
- Harshavardhan Bhuktar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Sharda Shukla
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Kumar Reddy Kakularam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Srikanth Battu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manupati Srikanth
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Susmita Srivastava
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Pooja Ram
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - P C Jagadish
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sandipan Chakraborty
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Srinivas Oruganti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India.
| |
Collapse
|
3
|
Silva NO, da Silva LS, Sanches MP, Dos Santos TR, Konzgen M, Parize AL, Sanches EA, Darelli GJS, de Lima VR. Structure and interaction roles in the release profile of chalcone-loaded liposomes. Biophys Chem 2023; 292:106930. [PMID: 36395546 DOI: 10.1016/j.bpc.2022.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
The structures and molecular interactions of established synthetic chalcones were correlated with their release profiles from asolectin liposomes. The effects of chalcones on the properties of liposomes were evaluated by dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-VIS), horizontal attenuated total reflection Fourier transform infrared (HATR-FTIR), 31P nuclear magnetic resonance (31P NMR), zeta (ζ) potential and differential scanning calorimetry (DSC). The profiles and mechanisms of release were accessed according to the Korsmeyer-Peppas model. Results obtained allowed the establishment of a relationship between the chalcone release profile and 1) the ordering effects of chalcones in different membrane regions, 2) their polar or interfacial location in the lipid layer, 3) the influence of hydroxy and methoxy substituents, 4) their effect on reorientation of lipid choline-phosphate regions. The obtained data may improve the development of chalcone-based systems to be used in the therapy of chronic and acute diseases.
Collapse
Affiliation(s)
- Nichole Osti Silva
- Programa de Pós Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos- PPGQTA, Universidade Federal do Rio Grande- FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Laiane Souza da Silva
- Programa de Pós Graduação em Ciência e Engenharia de Materiais- PPGCEM, Universidade Federal do Amazonas- UFAM, Campus Universitário Sen. Artur Virgílio Filho (Setor Norte), Av. Gal. Rodrigo Otávio Jordão Ramos, 6200, Coroado, Manaus, AM 69077-000, Brazil
| | - Mariele Paludetto Sanches
- Programa de Pós-Graduação em Química- PPGQ, Universidade Federal de Santa Catarina- UFSC, Departamento de Química- Centro de Ciências Físicas e Matemáticas- CFM, Campus Universitário Trindade, Caixa Postal 476, Florianópolis, SC 88040-900, Brazil
| | - Thyelle Rodrigues Dos Santos
- Programa de Pós Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos- PPGQTA, Universidade Federal do Rio Grande- FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Monike Konzgen
- Programa de Pós Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos- PPGQTA, Universidade Federal do Rio Grande- FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil
| | - Alexandre Luís Parize
- Programa de Pós-Graduação em Química- PPGQ, Universidade Federal de Santa Catarina- UFSC, Departamento de Química- Centro de Ciências Físicas e Matemáticas- CFM, Campus Universitário Trindade, Caixa Postal 476, Florianópolis, SC 88040-900, Brazil
| | - Edgar Aparecido Sanches
- Programa de Pós Graduação em Ciência e Engenharia de Materiais- PPGCEM, Universidade Federal do Amazonas- UFAM, Campus Universitário Sen. Artur Virgílio Filho (Setor Norte), Av. Gal. Rodrigo Otávio Jordão Ramos, 6200, Coroado, Manaus, AM 69077-000, Brazil
| | - Gabriel Jorge Sagrera Darelli
- Facultad de Química, Av. Gral Flores 2124, CP 11800, Facultad de Ciencias, Igua 4225, Universidad de la Republica, Montevideo, Uruguay
| | - Vânia Rodrigues de Lima
- Programa de Pós Graduação em Química Tecnológica e Ambiental, Escola de Química e Alimentos- PPGQTA, Universidade Federal do Rio Grande- FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
4
|
Fregoso-López D, Miranda LD. Visible-Light Mediated Radical Alkylation of Flavones: A Modular Access to Nonsymmetrical 3,3″-Biflavones. Org Lett 2022; 24:8615-8620. [DOI: 10.1021/acs.orglett.2c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Daniela Fregoso-López
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Luis D. Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
5
|
Lin D, Jiang S, Zhang A, Wu T, Qian Y, Shao Q. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:8. [PMID: 35254538 PMCID: PMC8901917 DOI: 10.1007/s13659-022-00331-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Structural derivatization of natural products has been a continuing and irreplaceable source of novel drug leads. Natural phenols are a broad category of natural products with wide pharmacological activity and have offered plenty of clinical drugs. However, the structural complexity and wide variety of natural phenols leads to the difficulty of structural derivatization. Skeleton analysis indicated most types of natural phenols can be structured by the combination and extension of three common fragments containing phenol, phenylpropanoid and benzoyl. Based on these fragments, the derivatization strategies of natural phenols were unified and comprehensively analyzed in this review. In addition to classical methods, advanced strategies with high selectivity, efficiency and practicality were emphasized. Total synthesis strategies of typical fragments such as stilbenes, chalcones and flavonoids were also covered and analyzed as the supplementary for supporting the diversity-oriented derivatization of natural phenols.
Collapse
Affiliation(s)
- Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Senze Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yongchang Qian
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Babii C, Savu M, Motrescu I, Birsa LM, Sarbu LG, Stefan M. The Antibacterial Synthetic Flavonoid BrCl-Flav Exhibits Important Anti- Candida Activity by Damaging Cell Membrane Integrity. Pharmaceuticals (Basel) 2021; 14:ph14111130. [PMID: 34832912 PMCID: PMC8622092 DOI: 10.3390/ph14111130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023] Open
Abstract
Infections caused by Candida are very difficult to treat due to increasing antifungal resistance. Recent studies showed that patients with Candida infections resistant to fluconazole have very few treatment options. Therefore, finding new efficient antifungal agents is a matter of medical high priority. The aim of this study was to explore the antifungal potential of BrCl-flav-a representative of a new class of synthetic flavonoids with bromine as halogen substituent at the benzopyran core against four Candida clinical strains. Determination of minimum inhibitory concentration and minimum fungicidal concentration along with the time kill assay indicated a strong antifungal effect of BrCl-flav against C. albicans, C. parapsilosis, C. krusei and C. glabrata. The investigation of anti-Candida mechanism of action using fluorescence microscopy and scanning electron microscopy revealed that Br-Cl flav could inhibit fungal growth by impairing the membrane integrity, the resulting structural damages leading to cell lysis. BrCl-flav also showed important anti-virulence properties against Candida spp., inhibiting biofilm formation and yeast to hyphal transition. A strong synergistic antifungal effect against C. albicans strain was observed when BrCl-flav was used in combination with fluconazole. BrCl-flav has a good potential to develop new effective antifungal agents in the context of Candida spp. multidrug resistance phenomenon.
Collapse
Affiliation(s)
- Cornelia Babii
- Biology Department, Faculty of Biology, The Alexandru Ioan Cuza University of Iasi, Bld. Carol I, Nr. 11, 700506 Iasi, Romania; (C.B.); (M.S.)
| | - Mihaela Savu
- Biology Department, Faculty of Biology, The Alexandru Ioan Cuza University of Iasi, Bld. Carol I, Nr. 11, 700506 Iasi, Romania; (C.B.); (M.S.)
| | - Iuliana Motrescu
- Sciences Department, Research Institute for Agriculture and Environment, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania;
| | - Lucian Mihail Birsa
- Faculty of Chemistry, The Alexandru Ioan Cuza University of Iasi, Bld. Carol I, Nr. 11, 700506 Iasi, Romania;
| | - Laura Gabriela Sarbu
- Faculty of Chemistry, The Alexandru Ioan Cuza University of Iasi, Bld. Carol I, Nr. 11, 700506 Iasi, Romania;
- Correspondence: (L.G.S.); (M.S.)
| | - Marius Stefan
- Biology Department, Faculty of Biology, The Alexandru Ioan Cuza University of Iasi, Bld. Carol I, Nr. 11, 700506 Iasi, Romania; (C.B.); (M.S.)
- Correspondence: (L.G.S.); (M.S.)
| |
Collapse
|
7
|
Shcherbakov KV, Panova MA, Burgart YV, Zarubaev VV, Gerasimova NA, Evstigneeva NP, Saloutin VI. The synthesis and biological evaluation of A- and B-ring fluorinated flavones and their key intermediates. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Goossens JF, Goossens L, Bailly C. Hinokiflavone and Related C-O-C-Type Biflavonoids as Anti-cancer Compounds: Properties and Mechanism of Action. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:365-377. [PMID: 33534099 PMCID: PMC7856339 DOI: 10.1007/s13659-021-00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Biflavonoids are divided in two classes: C-C type compounds represented by the dimeric compound amentoflavone and C-O-C-type compounds typified by hinokiflavone (HNK) with an ether linkage between the two connected apigenin units. This later sub-group of bisflavonyl ethers includes HNK, ochnaflavone, delicaflavone and a few other dimeric compounds, found in a variety of plants, notably Selaginella species. A comprehensive review of the anticancer properties and mechanism of action of HNK is provided, to highlight the anti-proliferative and anti-metastatic activities of HNK and derivatives, and HNK-containing plant extracts. The anticancer effects rely on the capacity of HNK to interfere with the ERK1-2/p38/NFκB signaling pathway and the regulation of the expression of the matrix metalloproteinases MMP-2 and MMP-9 (with a potential direct binding to MMP-9). In addition, HNK was found to function as a potent modulator of pre-mRNA splicing, inhibiting the SUMO-specific protease SENP1. As such, HNK represents a rare SENP1 inhibitor of natural origin and a scaffold to design synthetic compounds. Oral formulations of HNK have been elaborated to enhance its solubility, to facilitate the compound delivery and to enhance its anticancer efficacy. The review shed light on the anticancer potential of C-O-C-type biflavonoids and specifically on the pharmacological profile of HNK. This compound deserves further attention as a regulator of pre-mRNA splicing, useful to treat cancers (in particular hepatocellular carcinoma) and other human pathologies.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | - Laurence Goossens
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les Formes Injectables et les Technologies Associées, 59000, Lille, France
| | | |
Collapse
|
9
|
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145168. [PMID: 33493916 DOI: 10.1016/j.scitotenv.2021.145168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Microbes broadly constitute several organisms like viruses, protozoa, bacteria, and fungi present in our biosphere. Fast-paced environmental changes have influenced contact of human populations with newly identified microbes resulting in diseases that can spread quickly. These microbes can cause infections like HIV, SARS-CoV2, malaria, nosocomial Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), or Candida infection for which there are no available vaccines/drugs or are less efficient to prevent or treat these infections. In the pursuit to find potential safe agents for therapy of microbial infections, natural biflavonoids like amentoflavone, tetrahydroamentoflavone, ginkgetin, bilobetin, morelloflavone, agathisflavone, hinokiflavone, Garcinia biflavones 1 (GB1), Garcinia biflavones 2 (GB2), robustaflavone, strychnobiflavone, ochnaflavone, dulcisbiflavonoid C, tetramethoxy-6,6″-bigenkwanin and other derivatives isolated from several species of plants can provide effective starting points and become a source of future drugs. These biflavonoids show activity against influenza, severe acute respiratory syndrome (SARS), dengue, HIV-AIDS, coxsackieviral, hepatitis, HSV, Epstein-Barr virus (EBV), protozoal (Leishmaniasis, Malaria) infections, bacterial and fungal infections. Some of the biflavonoids can provide antiviral and protozoal activity by inhibition of neuraminidase, chymotrypsin-like protease, DV-NS5 RNA dependant RNA polymerase, reverse transcriptase (RT), fatty acid synthase, DNA polymerase, UL54 gene expression, Epstein-Barr virus early antigen activation, recombinant cysteine protease type 2.8 (r-CPB2.8), Plasmodium falciparum enoyl-acyl carrier protein (ACP) reductase or cause depolarization of parasitic mitochondrial membranes. They may also provide anti-inflammatory therapeutic activity against the infection-induced cytokine storm. Considering the varied bioactivity of these biflavonoids against these organisms, their structure-activity relationships are derived and wherever possible compared with monoflavones. Overall, this review aims to highlight these natural biflavonoids and briefly discuss their sources, reported mechanism of action, pharmacological uses, and comment on resistance mechanism, flavopiridol repurposing and the bioavailability aspects to provide a starting point for anti-microbial research in this area.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Section of Functional Morphology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Vinícius R Campos
- Department of Organic Chemistry, Institute of Chemistry, Fluminense Federal University, Campus do Valonguinho, 24020-141 Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167:105525. [PMID: 33667686 DOI: 10.1016/j.phrs.2021.105525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022]
Abstract
Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.
Collapse
Affiliation(s)
- José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Marc F Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
11
|
Chromone derivatives bearing pyridinium moiety as multi-target-directed ligands against Alzheimer's disease. Bioorg Chem 2021; 110:104750. [PMID: 33691251 DOI: 10.1016/j.bioorg.2021.104750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/16/2021] [Accepted: 02/13/2021] [Indexed: 01/04/2023]
Abstract
A new serise of 7-hydroxy-chromone derivatives bearing pyridine moiety were synthesized, and evaluated as multifunctional agents against Alzheimer's disease (AD). Most of the compounds were good AChE inhibitors (IC50 = 9.8-0.71 µM) and showed remarkable BuChE inhibition activity (IC50 = 1.9-0.006 µM) compared with donepezil as the standard drug (IC50 = 0.023 and 3.4 µM). Compounds 14 and 10 showed the best inhibitory activity toward AChE (IC50 = 0.71 µM) and BuChE (IC50 = 0.006 µM), respectively. The ligand-protein docking simulations and kinetic studies revealed that compound 14 and 10 could bind effectively to the peripheral anionic binding site (PAS) of the AChE and BuChE through mixed-type inhibition. In addition, the most potent compounds showed acceptable neuroprotective activity on H2O2- and Aβ-induced .neurotoxicity in PC12 cells, more than standard drugs. The compounds could block effectively self- and AChE-induced Aβ aggregation. All the results suggest that compounds 14 and 10 could be considered as promising multi-target-directed ligands against AD.
Collapse
|
12
|
Jalili-Baleh L, Nadri H, Forootanfar H, Küçükkılınç TT, Ayazgök B, Sharifzadeh M, Rahimifard M, Baeeri M, Abdollahi M, Foroumadi A, Khoobi M. Chromone-lipoic acid conjugate: Neuroprotective agent having acceptable butyrylcholinesterase inhibition, antioxidant and copper-chelation activities. ACTA ACUST UNITED AC 2021; 29:23-38. [PMID: 33420969 DOI: 10.1007/s40199-020-00378-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Alzheimer's disease (AD) is a multifaceted neurodegenerative disease. To target simultaneously multiple pathological processes involved in AD, natural-origin compounds with unique characteristics are promising scaffolds to develop novel multi-target compounds in the treatment of different neurodegenerative disease, especially AD. In this study, novel chromone-lipoic acid hybrids were prepared to find a new multifunctional lead structure for the treatment of AD. METHODS Chromone-lipoic acid hybrids were prepared through click reaction and their neuroprotection and anticholinesterase activity were fully evaluated. The anti-amyloid aggregation, antioxidant and metal-chelation activities of the best compound were also investigated by standard methods to find a new multi-functional agent against AD. RESULTS The primary biological screening demonstrated that all compounds had significant neuroprotection activity against H2O2-induced cell damage in PC12 cells. Compound 19 as the most potent butyrylcholinesterase (BuChE) inhibitor (IC50 = 7.55 μM) having significant neuroprotection activity as level as reference drug was selected for further biological evaluations. Docking and kinetic studies revealed non-competitive mixed-type inhibition of BuChE by compound 19. It could significantly reduce formation of the intracellular reactive oxygen species (ROS) and showed excellent reducing power (85.57 mM Fe+2), comparable with quercetin and lipoic acid. It could also moderately inhibit Aβ aggregation and selectively chelate with copper ions in 2:1 M ratio. CONCLUSION Compound 19 could be considered as a hopeful multifunctional agent for the further development gainst AD owing to the acceptable neuroprotective and anti-BuChE activity, moderate anti-Aβ aggregation activity, outstanding antioxidant activity as well as selective copper chelation ability. A new chromone-lipoic acid hybrid was synthesized as anti-Alzheimer agent with BuChE inhibitory activity, anti-Aβ aggregation, metal-chelation and antioxidant properties.
Collapse
Affiliation(s)
- Leili Jalili-Baleh
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Nadri
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Beyza Ayazgök
- Faculty of Pharmacy, Department of Biochemistry, Hacettepe University, Ankara, Turkey
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Toxicology and poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Foroumadi
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mehdi Khoobi
- Biomaterials Group, Pharmaceutical Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
13
|
Liu C, Qi Y, Liu Y. Recent Development of Samarium Diiodide and Other Samarium Reagents in Organic Transformation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202011034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Shcherbakov KV, Artemyeva MA, Burgart YV, Saloutin VI, Volobueva AS, Misiurina MA, Esaulkova YL, Sinegubova EO, Zarubaev VV. 7-Imidazolyl-substituted 4'-methoxy and 3',4'-dimethoxy-containing polyfluoroflavones as promising antiviral agents. J Fluor Chem 2020; 240:109657. [PMID: 33071313 PMCID: PMC7547832 DOI: 10.1016/j.jfluchem.2020.109657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/28/2023]
Abstract
Synthesis of the new 2-aryl-4-oxo-4H-polyfluorochromen-3-carboxylates as analogs of natural methoxy-containing flavones. The alternative flavone-5-hydroxyflavone and flavone-coumarin rearrangements of polyfluoroflavones in basic aqueous acetonitrile medium. New 7-(1H-imidazol-1-yl)-substituted polyfluorinated flavones and coumarins. Imidazolyl-functionalized flavones as high prospective antiviral agents.
A simple and convenient method for the synthesis of new methyl 2-(4-methoxyphenyl)- and 2-(3,4-dimethoxyphenyl)-4-oxo-4H-polyfluorochromen-3-carboxylates as analogs of natural methoxy-containing flavones is proposed. As a result of their directed modification under basic conditions, 7-imidazolyl-substituted derivatives were obtained. In aqueous-organic medium under basic conditions, 5,6,7,8-tetrafluoro-3-(methoxycarbonyl)flavones were transformed into 6,8-difluoro-5-hydroxy-7-(1H-imidazol-1-yl)-3-(methoxycarbonyl)flavones as a result of flavone-5-hydroxyflavone rearrangement, while 6,7,8-trifluorinated analogs underwent a flavone-coumarin rearrangement to give 6,8-difluoro-3-(hydroxyarylidene)-7-(1H-imidazol-1-yl)coumarins under the same conditions. Acid hydrolysis of methyl polyfluoroflavone-3-carboxylates allowed to obtain 2-aryl-4H-polyfluorochromen-4-ones. Evaluation of the antiviral activity of the synthesized compounds against influenza A (H1N1) and Coxsackie B3 viruses showed that 2-(3,4-dimethoxyphenyl)-5,6,8-trifluoro-7-(1H-imidazol-1-yl)-4H-chromene-4-one has the most promising properties.
Collapse
Affiliation(s)
- Konstantin V Shcherbakov
- Postovsky Institute of Organic Synthesis UD RAS, 22 Kovalevskoy str., Yekaterinburg, 620137, Russian Federation
| | - Mariya A Artemyeva
- Postovsky Institute of Organic Synthesis UD RAS, 22 Kovalevskoy str., Yekaterinburg, 620137, Russian Federation
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis UD RAS, 22 Kovalevskoy str., Yekaterinburg, 620137, Russian Federation
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis UD RAS, 22 Kovalevskoy str., Yekaterinburg, 620137, Russian Federation
| | - Alexandrina S Volobueva
- Institut Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 14 Mira str., Saint-Petersburg, 197101, Russian Federation
| | - Maria A Misiurina
- Institut Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 14 Mira str., Saint-Petersburg, 197101, Russian Federation
| | - Yana L Esaulkova
- Institut Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 14 Mira str., Saint-Petersburg, 197101, Russian Federation
| | - Ekaterina O Sinegubova
- Institut Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 14 Mira str., Saint-Petersburg, 197101, Russian Federation
| | - Vladimir V Zarubaev
- Institut Pasteur in Saint-Petersburg for Research in Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 14 Mira str., Saint-Petersburg, 197101, Russian Federation
| |
Collapse
|
15
|
Santos R, Pinto D, Magalhães C, Silva A. Halogenated Flavones and Isoflavones: A State-of-Art on their Synthesis. Curr Org Synth 2020; 17:415-425. [PMID: 32473000 DOI: 10.2174/1570179417666200530213737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoid is a family of compounds present in the everyday consumption plants and fruits, contributing to a balanced diet and beneficial health effects. Being a scaffold for new drugs and presenting a wide range of applicability in the treatment of illnesses give them also an impact in medicine. Among the several types of flavonoids, flavone and isoflavone derivatives can be highlighted due to their prevalence in nature and biological activities already established. The standard synthetic route to obtain both halogenated flavones and isoflavones is through the use of already halogenated starting materials. Halogenation of the flavone and isoflavone core is less common because it is more complicated and involves some selectivity issues. OBJECTIVE Considering the importance of these flavonoids, we aim to present the main and more recent synthetic approaches towards their halogenation. METHODS The most prominent methodologies for the synthesis of halogenated flavones and isoflavones were reviewed. A careful survey of the reported data, using mainly the Scopus database and halogenation, flavones and isoflavones as keywords, was conducted. RESULTS Herein, a review is provided on the latest and more efficient halogenation protocols of flavones and isoflavones. Selective halogenation and the greener methodologies, including enzymatic and microbial halogenations, were reported. Nevertheless, some interesting protocols that allowed the synthesis of halogenated flavone and isoflavone derivatives in specific positions using halogenated reagents are also summarized. CONCLUSION Halogenated flavones and isoflavones have risen as noticeable structures; however, most of the time, the synthetic procedures involve toxic reagents and harsh reaction conditions. Therefore, the development of new synthetic routes with low environmental impact is desirable.
Collapse
Affiliation(s)
- Ricardo Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Diana Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Clara Magalhães
- Department of Chemistry and CICECO, Universidade de Aveiro, Aveiro, Portugal
| | - Artur Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
16
|
One-pot synthesis of 3-haloflavones from flavones using Oxone® and potassium halide as a halogenation reagent. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Sang Y, Han S, Pannecouque C, De Clercq E, Zhuang C, Chen F. Conformational restriction design of thiophene-biphenyl-DAPY HIV-1 non-nucleoside reverse transcriptase inhibitors. Eur J Med Chem 2019; 182:111603. [DOI: 10.1016/j.ejmech.2019.111603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
18
|
Soto M, Soengas RG, Silva AMS, Gotor-Fernández V, Rodríguez-Solla H. Temperature-Controlled Stereodivergent Synthesis of 2,2'-Biflavanones Promoted by Samarium Diiodide. Chemistry 2019; 25:13104-13108. [PMID: 31361369 DOI: 10.1002/chem.201902927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Indexed: 12/11/2022]
Abstract
In this work, the first example of a radical stereodivergent reaction directed towards the stereoselective synthesis of both (R*,R*)- and (R*,S*)-2,2'-biflavanones promoted by samarium diiodide is reported. Control experiments showed that the selectivity of this reaction was exclusively controlled by the temperature. It was possible to generate a variety of 2,2'-biflavanones bearing different substitution patterns at the aromatic ring in good-to-quantitative yields, being both stereoisomers of the desired compounds obtained with total or high control of selectivity. A mechanism that explains both the generation of the corresponding 2,2'-biflavanones and the selectivity is also discussed. The structure and stereochemistry determination of each isomer was unequivocally elucidated by single-crystal X-ray diffraction experiments.
Collapse
Affiliation(s)
- Martín Soto
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Raquel G Soengas
- Research Centre CIAIMBITAL, University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vicente Gotor-Fernández
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Humberto Rodríguez-Solla
- Department of Organic and Inorganic Chemistry, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
19
|
Shcherbakov KV, Artemyeva MA, Burgart YV, Evstigneeva NP, Gerasimova NA, Zilberberg NV, Kungurov NV, Saloutin VI, Chupakhin ON. Transformations of 3-acyl-4H-polyfluorochromen-4-ones under the action of amino acids and biogenic amines. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Cheng K, Chen J, Jin L, Zhou J, Jiang X, Yu C. Rhodium(III)-catalyzed one-pot synthesis of flavonoids from salicylaldehydes and sulfoxonium ylides. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819867230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rh(III)-catalyzed C–H activation of salicylaldehyde followed by an insertion reaction with sulfoxonium ylides and cyclization is applied to the synthesis of flavonoids. This one-pot strategy exhibits good functional group tolerance and gives flavones in moderate-to-good yields.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
21
|
A structure–activity relationship study of phenyl sesquiterpenoids on efflux inhibition against Staphylococcus aureus. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Faraji L, Nadri H, Moradi A, Bukhari SNA, Pakseresht B, Moghadam FH, Moghimi S, Abdollahi M, Khoobi M, Foroumadi A. Aminoalkyl-substituted flavonoids: synthesis, cholinesterase inhibition, β-amyloid aggregation, and neuroprotective study. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02350-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Yan HW, Zhu H, Yuan X, Yang YN, Feng ZM, Jiang JS, Zhang PC. Eight new biflavonoids with lavandulyl units from the roots of Sophora flavescens and their inhibitory effect on PTP1B. Bioorg Chem 2019; 86:679-685. [DOI: 10.1016/j.bioorg.2019.01.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 01/27/2023]
|
24
|
Benouda H, Bouchal B, Challioui A, Oulmidi A, Harit T, Malek F, Riahi A, Bellaoui M, Bouammali B. Synthesis of a Series of Chalcones and Related Flavones and Evaluation of their Antibacterial and Antifungal Activities. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180404130430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:
A series of chalcones and flavones were synthesized from
2’-hydroxyacetophenone and substituted aromatic aldehydes via Simmons-Schmidt condensation
followed by oxidative cyclization.
Methods:
Characterization of the obtained structures was established on the basis of their spectroscopic
data. The synthesized compounds were screened for their antimicrobial activities against five
bacterial strains (Citrobacter freundii, Staphylococcus aureus, Listeria monocytogenes, Salmonella
braenderup, Escherichia coli.) and two fungal strains (Candida albicans, Candida krusei).
Results:
The in vitro bioassay results indicated that some target compounds displayed moderate
(4d, 4e) to high (4a) antifungal activity against the pathogenic fungi C. albicans and C. krusei.
Conclusion:
For the antibacterial activity, only products 3d and 4d showed a weak antibacterial
activity. These compounds can lead to the design of new drugs with specific antifungal activity.
Collapse
Affiliation(s)
- Hind Benouda
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Science, Mohammed First University, Oujda, Morocco
| | - Btissam Bouchal
- Genetics Unit, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
| | - Allal Challioui
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Science, Mohammed First University, Oujda, Morocco
| | - Abdelkader Oulmidi
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Science, Mohammed First University, Oujda, Morocco
| | - Tarik Harit
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Science, Mohammed First University, Oujda, Morocco
| | - Fouad Malek
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Science, Mohammed First University, Oujda, Morocco
| | - Abdelkhalek Riahi
- Universite de Reims Champagne-Ardenne, Institut de Chimie Moleculaire de Reims (ICMR)-Groupe Methodologie en Synthese Organique, CNRS UMR 6229, Bât. Europol'Agro-Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Mohammed Bellaoui
- Genetics Unit, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
| | - Boufelja Bouammali
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Science, Mohammed First University, Oujda, Morocco
| |
Collapse
|
25
|
Sum TJ, Sum TH, Galloway WR, Twigg DG, Ciardiello JJ, Spring DR. Synthesis of structurally diverse biflavonoids. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Yang YS, Ma SS, Zhang YP, Ru JX, Liu XY, Guo HC. A novel biphenyl-derived salicylhydrazone Schiff base fluorescent probes for identification of Cu 2+ and application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:202-208. [PMID: 29605784 DOI: 10.1016/j.saa.2018.03.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
A novel biphenyl-derived salicylhydrazone Schiff base (BSS) fluorescent probes for highly sensitive and selective identification of Cu2+ has been synthesized. In addition, the recognition has been proved experimentally. The results indicated that the complex forms a 1:1 complex with Cu2+ shows fluorescent quenching. Furthermore, the detection limit of 1.54×10-8M. More interesting, the probe BSS not only have a good biocompatibility in living cells, but also the sense behavior of Cu2+ in the cell nucleus.
Collapse
Affiliation(s)
- Yun-Shang Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Suo-Suo Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ying-Peng Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jia-Xi Ru
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiao-Yu Liu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
27
|
Absorption and Photo-Stability of Substituted Dibenzoylmethanes and Chalcones as UVA Filters. COSMETICS 2018. [DOI: 10.3390/cosmetics5020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Asadipour A, Noushini S, Moghimi S, Mahdavi M, Nadri H, Moradi A, Shabani S, Firoozpour L, Foroumadi A. Synthesis and biological evaluation of chalcone-triazole hybrid derivatives as 15-LOX inhibitors. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2017-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
An efficient aldol condensation/click reaction sequence is employed for the synthesis of chalcone-triazole-based derivatives in moderate to good yields. The ability of target compounds to inhibit 15-lipoxygenase enzyme was investigated and moderate to low inhibitory activities were observed for the synthesized compounds.
Collapse
Affiliation(s)
- Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , I.R. Iran
| | - Saeedeh Noushini
- Drug Design and Development Research Center , Tehran University of Medical Sciences , Tehran , I.R. Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center , Tehran University of Medical Sciences , Tehran , I.R. Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute , Tehran University of Medical Sciences , Tehran , I.R. Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy , Shahid Sadoughi University of Medical Sciences , Yazd , I.R. Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy , Shahid Sadoughi University of Medical Sciences , Yazd , I.R. Iran
| | - Shabnam Shabani
- Drug Design and Development Research Center , Tehran University of Medical Sciences , Tehran , I.R. Iran
| | - Loghman Firoozpour
- Drug Design and Development Research Center , Tehran University of Medical Sciences , Tehran , I.R. Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , I.R. Iran
- Department of Medicinal Chemistry , Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , I.R. Iran
| |
Collapse
|
29
|
He X, Chen X, Lin S, Mo X, Zhou P, Zhang Z, Lu Y, Yang Y, Gu H, Shang Z, Lou Y, Wu J. Diversity-Oriented Synthesis of Natural-Product-like Libraries Containing a 3-Methylbenzofuran Moiety for the Discovery of New Chemical Elicitors. ChemistryOpen 2017; 6:102-111. [PMID: 28168155 PMCID: PMC5288756 DOI: 10.1002/open.201600118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
Natural products are a major source of biological molecules. The 3-methylfuran scaffold is found in a variety of plant secondary metabolite chemical elicitors that confer host-plant resistance against insect pests. Herein, the diversity-oriented synthesis of a natural-product-like library is reported, in which the 3-methylfuran core is fused in an angular attachment to six common natural product scaffolds-coumarin, chalcone, flavone, flavonol, isoflavone and isoquinolinone. The structural diversity of this library is assessed computationally using cheminformatic analysis. Phenotypic high-throughput screening of β-glucuronidase activity uncovers several hits. Further in vivo screening confirms that these hits can induce resistance in rice to nymphs of the brown planthopper Nilaparvata lugens. This work validates the combination of diversity-oriented synthesis and high-throughput screening of β-glucuronidase activity as a strategy for discovering new chemical elicitors.
Collapse
Affiliation(s)
- Xingrui He
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Xia Chen
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Songbo Lin
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Xiaochang Mo
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Pengyong Zhou
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Zhihao Zhang
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Yaoyao Lu
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhou310023P. R. China
| | - Yu Yang
- School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhou310023P. R. China
| | - Haining Gu
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Zhicai Shang
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| | - Yonggen Lou
- State Key Laboratory of Rice BiologyInstitute of Insect ScienceZhejiang UniversityHangzhou310058P. R. China
| | - Jun Wu
- Department of ChemistryZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
30
|
Sum TH, Sum TJ, Collins S, Galloway WRJD, Twigg DG, Hollfelder F, Spring DR. Divergent synthesis of biflavonoids yields novel inhibitors of the aggregation of amyloid β (1–42). Org Biomol Chem 2017; 15:4554-4570. [DOI: 10.1039/c7ob00804j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biflavonoids inhibit the aggregation of Aβ42, the pathological hallmark of Alzheimer's disease, with an IC50 of 16 μM.
Collapse
Affiliation(s)
- Tze Han Sum
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Tze Jing Sum
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Súil Collins
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
- Department of Biochemistry
| | | | - David G. Twigg
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | | | | |
Collapse
|
31
|
Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers. Molecules 2016; 21:molecules21091230. [PMID: 27649131 PMCID: PMC6273872 DOI: 10.3390/molecules21091230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/16/2022] Open
Abstract
Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.
Collapse
|
32
|
Pani G, Dessì A, Dallocchio R, Scherm B, Azara E, Delogu G, Migheli Q. Natural Phenolic Inhibitors of Trichothecene Biosynthesis by the Wheat Fungal Pathogen Fusarium culmorum: A Computational Insight into the Structure-Activity Relationship. PLoS One 2016; 11:e0157316. [PMID: 27294666 PMCID: PMC4905666 DOI: 10.1371/journal.pone.0157316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/29/2016] [Indexed: 02/02/2023] Open
Abstract
A model of the trichodiene synthase (TRI5) of the wheat fungal pathogen and type-B trichothecene producer Fusarium culmorum was developed based on homology modelling with the crystallized protein of F. sporotrichioides. Eight phenolic molecules, namely ferulic acid 1, apocynin 2, propyl gallate 3, eugenol 4, Me-dehydrozingerone 5, eugenol dimer 6, magnolol 7, and ellagic acid 8, were selected for their ability to inhibit trichothecene production and/or fungal vegetative growth in F. culmorum. The chemical structures of phenols were constructed and partially optimised based on Molecular Mechanics (MM) studies and energy minimisation by Density Functional Theory (DFT). Docking analysis of the phenolic molecules was run on the 3D model of F. culmorum TRI5. Experimental biological activity, molecular descriptors and interacting-structures obtained from computational analysis were compared. Besides the catalytic domain, three privileged sites in the interaction with the inhibitory molecules were identified on the protein surface. The TRI5-ligand interactions highlighted in this study represent a powerful tool to the identification of new Fusarium-targeted molecules with potential as trichothecene inhibitors.
Collapse
Affiliation(s)
- Giovanna Pani
- Dipartimento di Agraria and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100, Sassari, Italy
| | - Alessandro Dessì
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, I-07100, Sassari, Italy
| | - Roberto Dallocchio
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, I-07100, Sassari, Italy
| | - Barbara Scherm
- Dipartimento di Agraria and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100, Sassari, Italy
| | - Emanuela Azara
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, I-07100, Sassari, Italy
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, I-07100, Sassari, Italy
| | - Quirico Migheli
- Dipartimento di Agraria and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100, Sassari, Italy
| |
Collapse
|
33
|
Miliutina M, Ejaz SA, Iaroshenko VO, Villinger A, Iqbal J, Langer P. Synthesis of 3,3′-carbonyl-bis(chromones) and their activity as mammalian alkaline phosphatase inhibitors. Org Biomol Chem 2016; 14:495-502. [DOI: 10.1039/c5ob01350j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hitherto unknown 3,3′-carbonyl-bis(chromones) 8, dimeric chromones bridged by a carbonyl group, were prepared by reaction of chromone-3-carboxylic acid chloride with 3-(dimethylamino)-1-(2-hydroxyphenyl)-2-propen-1-ones 9.
Collapse
Affiliation(s)
| | - Syeda Abida Ejaz
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad
- Pakistan
| | - Viktor O. Iaroshenko
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
- National Taras Shevchenko University
| | | | - Jamshed Iqbal
- Centre for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad
- Pakistan
| | - Peter Langer
- Institut für Chemie
- Universität Rostock
- 18059 Rostock
- Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V
| |
Collapse
|
34
|
Bornadiego A, Díaz J, Marcos CF. Regioselective Tandem [4 + 1]–[4 + 2] Synthesis of Amino-Substituted Dihydroxanthones and Xanthones. J Org Chem 2015; 80:6165-72. [DOI: 10.1021/acs.joc.5b00658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Bornadiego
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), School of Veterinary Sciences, University of Extremadura, 10071 Cáceres, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), School of Veterinary Sciences, University of Extremadura, 10071 Cáceres, Spain
| | - Carlos F. Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), School of Veterinary Sciences, University of Extremadura, 10071 Cáceres, Spain
| |
Collapse
|
35
|
Oroian M, Escriche I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res Int 2015; 74:10-36. [PMID: 28411973 DOI: 10.1016/j.foodres.2015.04.018] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 04/03/2015] [Accepted: 04/12/2015] [Indexed: 12/18/2022]
Abstract
Recently many review papers regarding antioxidants from different sources and different extraction and quantification procedures have been published. However none of them has all the information regarding antioxidants (chemistry, sources, extraction and quantification). This article tries to take a different perspective on antioxidants for the new researcher involved in this field. Antioxidants from fruit, vegetables and beverages play an important role in human health, for example preventing cancer and cardiovascular diseases, and lowering the incidence of different diseases. In this paper the main classes of antioxidants are presented: vitamins, carotenoids and polyphenols. Recently, many analytical methodologies involving diverse instrumental techniques have been developed for the extraction, separation, identification and quantification of these compounds. Antioxidants have been quantified by different researchers using one or more of these methods: in vivo, in vitro, electrochemical, chemiluminescent, electron spin resonance, chromatography, capillary electrophoresis, nuclear magnetic resonance, near infrared spectroscopy and mass spectrometry methods.
Collapse
Affiliation(s)
- Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania.
| | - Isabel Escriche
- Institute of Food Engineering for Development (IUIAD), Food Technology Department (DTA), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
36
|
Jirásek P, Amslinger S, Heilmann J. Synthesis of natural and non-natural curcuminoids and their neuroprotective activity against glutamate-induced oxidative stress in HT-22 cells. JOURNAL OF NATURAL PRODUCTS 2014; 77:2206-2217. [PMID: 25313922 DOI: 10.1021/np500396y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A strategy for the synthesis of natural and non-natural 5-deoxy-6,7-dihydrocurcuminoids (diarylheptanoids) was developed for the preparation of 14 compounds with varying aromatic substituent patterns and a different functionality in the aliphatic seven-carbon chain. The in vitro protective activity against glutamate-induced neuronal cell death was examined in the murine hippocampal cell line HT-22 to find structural motifs responsible for neuroprotective effects in vitro. Among the tested compounds the ferulic acid-like unit, present in the structures of (E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-1-en-3-one (5) and (E)-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hept-1-en-3-one (7), appeared to be an important feature for protection against glutamate-induced neurotoxicity. Both compounds demonstrated significant neuroprotective activity in a concentration range between 1 and 25 μM without showing toxic effects in a cytotoxicity assay with HT-22 cells. Furthermore, (E)-1,7-bis(3,4-dihydroxyphenyl)hept-1-en-3-one (9), exhibiting a caffeic acid-like structural motif, displayed a neuroprotective activity at a nontoxic concentration of 25 μM. In contrast, (1E,6E)-1,7-bis(3,4-dihydroxyphenyl)hepta-1,6-diene-3,5-dione (4, di-O-demethylcurcumin) showed mainly cytotoxic effects. A corresponding single-ring analogue that contains the ferulic acid-like unit as an enone was not active.
Collapse
Affiliation(s)
- Petr Jirásek
- Institut für Pharmazie and ‡Institut für Organische Chemie, Universität Regensburg , Universitätsstraße 31, 93053 Regensburg, Germany
| | | | | |
Collapse
|
37
|
Molecular docking and quantum mechanical studies on biflavonoid structures as BACE-1 inhibitors. Struct Chem 2014. [DOI: 10.1007/s11224-014-0523-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
|
39
|
Escobar CA, Fernández WA, Trujillo A, Santos JC, Roisnel T, Fuentealba M. Synthesis, characterization, and crystal structure of 2′,2″-dihydroxy-3,3‴-bichalcone and its related chalcone–flavanone and biflavanone analogs. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Singh M, Kaur M, Silakari O. Flavones: an important scaffold for medicinal chemistry. Eur J Med Chem 2014; 84:206-39. [PMID: 25019478 DOI: 10.1016/j.ejmech.2014.07.013] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 01/31/2023]
Abstract
Flavones have antioxidant, anti-proliferative, anti-tumor, anti-microbial, estrogenic, acetyl cholinesterase, anti-inflammatory activities and are also used in cancer, cardiovascular disease, neurodegenerative disorders, etc. Also, flavonoids are found to have an effect on several mammalian enzymes like protein kinases that regulate multiple cell signaling pathways and alterations in multiple cellular signaling pathways are frequently found in many diseases. Flavones have been an indispensable anchor for the development of new therapeutic agents. The majority of metabolic diseases are speculated to originate from oxidative stress, and it is therefore significant that recent studies have shown the positive effect of flavones on diseases related to oxidative stress. Due to the wide range of biological activities of flavones, their structure-activity relationships have generated interest among medicinal chemists. The outstanding development of flavones derivatives in diverse diseases in very short span of time proves its magnitude for medicinal chemistry research. The present review gives detail about the structural requirement of flavone derivatives for various pharmacological activities. This information may provide an opportunity to scientists of medicinal chemistry discipline to design selective, optimize as well as poly-functional flavone derivatives for the treatment of multi-factorial diseases.
Collapse
Affiliation(s)
- Manjinder Singh
- Molecular Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Maninder Kaur
- Molecular Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Om Silakari
- Molecular Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India.
| |
Collapse
|
41
|
Yuan H, Chen H, Jin H, Li B, Yue R, Ye J, Shen Y, Shan L, Sun Q, Zhang W. Deoxygenation of α,β-unsaturated acylphenols through ethyl o-acylphenylcarbonates with Luche reduction. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|