1
|
Barco-Antoñanzas M, Font-Farre M, Eceiza MV, Gil-Monreal M, van der Hoorn RAL, Royuela M, Zabalza A. Cysteine proteases are activated in sensitive Amaranthus palmeri populations upon treatment with herbicides inhibiting amino acid biosynthesis. PHYSIOLOGIA PLANTARUM 2023; 175:e13993. [PMID: 37882288 DOI: 10.1111/ppl.13993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 10/27/2023]
Abstract
The herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.
Collapse
Affiliation(s)
- Maria Barco-Antoñanzas
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| | - Maria Font-Farre
- The Plant Chemetics Laboratory, Department of Biology Sciences, University of Oxford, Oxford, UK
| | - Mikel V Eceiza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology Sciences, University of Oxford, Oxford, UK
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, Pamplona, Spain
| |
Collapse
|
2
|
Abreha KB, Alexandersson E, Resjö S, Lankinen Å, Sueldo D, Kaschani F, Kaiser M, van der Hoorn RAL, Levander F, Andreasson E. Leaf Apoplast of Field-Grown Potato Analyzed by Quantitative Proteomics and Activity-Based Protein Profiling. Int J Mol Sci 2021; 22:12033. [PMID: 34769464 PMCID: PMC8584485 DOI: 10.3390/ijms222112033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple biotic and abiotic stresses challenge plants growing in agricultural fields. Most molecular studies have aimed to understand plant responses to challenges under controlled conditions. However, studies on field-grown plants are scarce, limiting application of the findings in agricultural conditions. In this study, we investigated the composition of apoplastic proteomes of potato cultivar Bintje grown under field conditions, i.e., two field sites in June-August across two years and fungicide treated and untreated, using quantitative proteomics, as well as its activity using activity-based protein profiling (ABPP). Samples were clustered and some proteins showed significant intensity and activity differences, based on their field site and sampling time (June-August), indicating differential regulation of certain proteins in response to environmental or developmental factors. Peroxidases, class II chitinases, pectinesterases, and osmotins were among the proteins more abundant later in the growing season (July-August) as compared to early in the season (June). We did not detect significant differences between fungicide Shirlan treated and untreated field samples in two growing seasons. Using ABPP, we showed differential activity of serine hydrolases and β-glycosidases under greenhouse and field conditions and across a growing season. Furthermore, the activity of serine hydrolases and β-glycosidases, including proteins related to biotic stress tolerance, decreased as the season progressed. The generated proteomics data would facilitate further studies aiming at understanding mechanisms of molecular plant physiology in agricultural fields and help applying effective strategies to mitigate biotic and abiotic stresses.
Collapse
Affiliation(s)
- Kibrom B. Abreha
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-234 22 Lomma, Sweden; (E.A.); (S.R.); (Å.L.); (E.A.)
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-234 22 Lomma, Sweden; (E.A.); (S.R.); (Å.L.); (E.A.)
| | - Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-234 22 Lomma, Sweden; (E.A.); (S.R.); (Å.L.); (E.A.)
| | - Åsa Lankinen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-234 22 Lomma, Sweden; (E.A.); (S.R.); (Å.L.); (E.A.)
| | - Daniela Sueldo
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (D.S.); (R.A.L.v.d.H.)
| | - Farnusch Kaschani
- Chemische Biologie, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Markus Kaiser
- Chemische Biologie, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Renier A. L. van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (D.S.); (R.A.L.v.d.H.)
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, SE-221 00 Lund, Sweden;
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-234 22 Lomma, Sweden; (E.A.); (S.R.); (Å.L.); (E.A.)
| |
Collapse
|
3
|
Szafran BN, Borazjani A, Seay CN, Carr RL, Lehner R, Kaplan BLF, Ross MK. Effects of Chlorpyrifos on Serine Hydrolase Activities, Lipid Mediators, and Immune Responses in Lungs of Neonatal and Adult Mice. Chem Res Toxicol 2021; 34:1556-1571. [PMID: 33900070 DOI: 10.1021/acs.chemrestox.0c00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphate (OP) pesticide that causes acute toxicity by inhibiting acetylcholinesterase (AChE) in the nervous system. However, endocannabinoid (eCB) metabolizing enzymes in brain of neonatal rats are more sensitive than AChE to inhibition by CPF, leading to increased levels of eCBs. Because eCBs are immunomodulatory molecules, we investigated the association between eCB metabolism, lipid mediators, and immune function in adult and neonatal mice exposed to CPF. We focused on lung effects because epidemiologic studies have linked pesticide exposures to respiratory diseases. CPF was hypothesized to disrupt lung eCB metabolism and alter lung immune responses to lipopolysaccharide (LPS), and these effects would be more pronounced in neonatal mice due to an immature immune system. We first assessed the biochemical effects of CPF in adult mice (≥8 weeks old) and neonatal mice after administering CPF (2.5 mg/kg, oral) or vehicle for 7 days. Tissues were harvested 4 h after the last CPF treatment and lung microsomes from both age groups demonstrated CPF-dependent inhibition of carboxylesterases (Ces), a family of xenobiotic and lipid metabolizing enzymes, whereas AChE activity was inhibited in adult lungs only. Activity-based protein profiling (ABPP)-mass spectrometry of lung microsomes identified 31 and 32 individual serine hydrolases in neonatal lung and adult lung, respectively. Of these, Ces1c/Ces1d/Ces1b isoforms were partially inactivated by CPF in neonatal lung, whereas Ces1c/Ces1b and Ces1c/BChE were partially inactivated in adult female and male lungs, respectively, suggesting age- and sex-related differences in their sensitivity to CPF. Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) activities in lung were unaffected by CPF. When LPS (1.25 mg/kg, i.p.) was administered following the 7-day CPF dosing period, little to no differences in lung immune responses (cytokines and immunophenotyping) were noted between the CPF and vehicle groups. However, a CPF-dependent increase in the amounts of dendritic cells and certain lipid mediators in female lung following LPS challenge was observed. Experiments in neonatal and adult Ces1d-/- mice yielded similar results as wild type mice (WT) following CPF treatment, except that CPF augmented LPS-induced Tnfa mRNA in adult Ces1d-/- mouse lungs. This effect was associated with decreased expression of Ces1c mRNA in Ces1d-/- mice versus WT mice in the setting of LPS exposure. We conclude that CPF exposure inactivates several Ces isoforms in mouse lung and, during an inflammatory response, increases certain lipid mediators in a female-dependent manner. However, it did not cause widespread altered lung immune effects in response to an LPS challenge.
Collapse
Affiliation(s)
- Brittany N Szafran
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Caitlin N Seay
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Russell L Carr
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Richard Lehner
- Departments of Cell Biology and Pediatrics, Group on Molecular & Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Barbara L F Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
4
|
Capstaff NM, Morrison F, Cheema J, Brett P, Hill L, Muñoz-García JC, Khimyak YZ, Domoney C, Miller AJ. Fulvic acid increases forage legume growth inducing preferential up-regulation of nodulation and signalling-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5689-5704. [PMID: 32599619 PMCID: PMC7501823 DOI: 10.1093/jxb/eraa283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
The use of potential biostimulants is of broad interest in plant science for improving yields. The application of a humic derivative called fulvic acid (FA) may improve forage crop production. FA is an uncharacterized mixture of chemicals and, although it has been reported to increase growth parameters in many species including legumes, its mode of action remains unclear. Previous studies of the action of FA have lacked appropriate controls, and few have included field trials. Here we report yield increases due to FA application in three European Medicago sativa cultivars, in studies which include the appropriate nutritional controls which hitherto have not been used. No significant growth stimulation was seen after FA treatment in grass species in this study at the treatment rate tested. Direct application to bacteria increased Rhizobium growth and, in M. sativa trials, root nodulation was stimulated. RNA transcriptional analysis of FA-treated plants revealed up-regulation of many important early nodulation signalling genes after only 3 d. Experiments in plate, glasshouse, and field environments showed yield increases, providing substantial evidence for the use of FA to benefit M. sativa forage production.
Collapse
Affiliation(s)
- Nicola M Capstaff
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Freddie Morrison
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jitender Cheema
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Juan C Muñoz-García
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Claire Domoney
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
5
|
Dolui AK, Vijayakumar AK, Rajasekharan R, Vijayaraj P. Activity-based protein profiling of rice (Oryza sativa L.) bran serine hydrolases. Sci Rep 2020; 10:15191. [PMID: 32938958 PMCID: PMC7494864 DOI: 10.1038/s41598-020-72002-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Rice bran is an underutilized agricultural by-product with economic importance. The unique phytochemicals and fatty acid compositions of bran have been targeted for nutraceutical development. The endogenous lipases and hydrolases are responsible for the rapid deterioration of rice bran. Hence, we attempted to provide the first comprehensive profiling of active serine hydrolases (SHs) present in rice bran proteome by activity-based protein profiling (ABPP) strategy. The active site-directed fluorophosphonate probe (rhodamine and biotin-conjugated) was used for the detection and identification of active SHs. ABPP revealed 55 uncharacterized active-SHs and are representing five different known enzyme families. Based on motif and domain analyses, one of the uncharacterized and miss annotated SHs (Os12Ssp, storage protein) was selected for biochemical characterization by overexpressing in yeast. The purified recombinant protein authenticated the serine protease activity in time and protein-dependent studies. Os12Ssp exhibited the maximum activity at a pH between 7.0 and 8.0. The protease activity was inhibited by the covalent serine protease inhibitor, which suggests that the ABPP approach is indeed reliable than the sequence-based annotations. Collectively, the comprehensive knowledge generated from this study would be useful in expanding the current understanding of rice bran SHs and paves the way for better utilization/stabilization of rice bran.
Collapse
Affiliation(s)
- Achintya Kumar Dolui
- Lipid and Nutrition Laboratory, Department of Lipid Science, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Arun Kumar Vijayakumar
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-Central Food Technological Research Institute, Resource Centre Lucknow, Lucknow, 226018, India
| | - Ram Rajasekharan
- Lipid and Nutrition Laboratory, Department of Lipid Science, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- School of Life Sciences, Central University of Tamil Nadu, Tamil Nadu, Neelakudi, Thiruvarur, 610 005, India
| | - Panneerselvam Vijayaraj
- Lipid and Nutrition Laboratory, Department of Lipid Science, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Betori RC, Liu Y, Mishra RK, Cohen SB, Kron SJ, Scheidt KA. Targeted Covalent Inhibition of Telomerase. ACS Chem Biol 2020; 15:706-717. [PMID: 32017522 DOI: 10.1021/acschembio.9b00945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Telomerase is a ribonuceloprotein complex responsible for maintaining telomeres and protecting chromosomal integrity. The human telomerase reverse transcriptase (hTERT) is expressed in ∼90% of cancer cells where it confers the capacity for limitless proliferation. Along with its established role in telomere lengthening, telomerase also serves noncanonical extra-telomeric roles in oncogenic signaling, resistance to apoptosis, and enhanced DNA damage response. We report a new class of natural-product-inspired covalent inhibitors of telomerase that target the catalytic active site.
Collapse
Affiliation(s)
- Rick C. Betori
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yue Liu
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rama K. Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States
| | - Scott B. Cohen
- Children’s Medical Research Institute, University of Sydney, Westmead, New South Wales 2145, Australia
| | - Stephen J. Kron
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Chen B, Long QS, Meng J, Zhou X, Wu ZB, Tuo XX, Ding Y, Zhang L, Wang PY, Li Z, Yang S. Target Discovery in Ralstonia solanacearum through an Activity-Based Protein Profiling Technique Based on Bioactive Oxadiazole Sulfones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2340-2346. [PMID: 32017553 DOI: 10.1021/acs.jafc.9b07192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ralstonia solanacearum is an extremely destructive and rebellious phytopathogen that can cause bacterial wilt diseases in more than 200 plant species. To explore and discover the potential targets in R. solanacearum for the purpose of developing new agrochemicals targeting this infection, here, we exploited a typical activity-based protein profiling technique for target discovery in R. solanacearum based on an activity-based probe 1 derived from bioactive oxadiazole sulfones. A total of 65 specific targets were identified with high confidence through a quantitative chemical proteomic approach. Three representative proteins (glycine cleavage system H protein, thiol peroxidase, and dihydrolipoamide S-succinyltransferase) were validated as the targets by using the immunoblotting analysis with their respective antibodies. Additionally, the in vitro interaction between the recombinant thiol peroxidase and probe 1 further confirmed that this protein was a target of oxadiazole sulfones. We anticipated that these discovered protein targets in R. solanacearum can stimulate the discovery and development of novel agrochemicals targeting bacterial infections caused by R. solanacearum.
Collapse
Affiliation(s)
- Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Jiao Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Xin-Xin Tuo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yue Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Ling Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
8
|
Wang C, Abegg D, Dwyer BG, Adibekian A. Discovery and Evaluation of New Activity‐Based Probes for Serine Hydrolases. Chembiochem 2019; 20:2212-2216. [DOI: 10.1002/cbic.201900126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Wang
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Daniel Abegg
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Brendan G. Dwyer
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Alexander Adibekian
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| |
Collapse
|
9
|
Zheng YG, Wu XQ, Su J, Jiang P, Xu L, Gao J, Cai B, Ji M. Design and synthesis of a novel photoaffinity probe for labelling EGF receptor tyrosine kinases. J Enzyme Inhib Med Chem 2017; 32:954-959. [PMID: 28718674 PMCID: PMC6009917 DOI: 10.1080/14756366.2017.1344979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and HER2 are two important tyrosine kinases that play crucial roles in signal transduction pathways that regulate numerous cellular functions including proliferation, differentiation, migration, and angiogenesis. In the past 20 years, many proteomic methods have emerged as powerful methods to evaluate proteins in biological processes and human disease states. Among them, activity-based protein profiling (ABPP) is one useful approach for the functional analysis of proteins. In this study, a novel photoaffinity probe 11 was designed and synthesised to assess the target profiling of the reactive group in the photoaffinity probe 11. Biological evaluation was performed, and the results showed that the novel photoaffinity probe binds to EGFR and HER2 proteins and it hits targets by the reactive group.
Collapse
Affiliation(s)
- You-Guang Zheng
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Xiao-Qing Wu
- b Departments of Molecular Biosciences and Radiation Oncology , University of Kansas , Lawrence , KS , USA
| | - Jun Su
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Ping Jiang
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Liang Xu
- b Departments of Molecular Biosciences and Radiation Oncology , University of Kansas , Lawrence , KS , USA
| | - Jian Gao
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Bin Cai
- a College of Pharmacy , Xuzhou Medical University , Xuzhou , PR China
| | - Min Ji
- c School of Chemistry and Chemical Engineering , Southeast University , Nanjing , PR China
| |
Collapse
|
10
|
Daneri-Castro SN, Chandrasekar B, Grosse-Holz FM, van der Hoorn RAL, Roberts TH. Activity-based protein profiling of hydrolytic enzymes induced by gibberellic acid in isolated aleurone layers of malting barley. FEBS Lett 2016; 590:2956-62. [DOI: 10.1002/1873-3468.12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Sergio N. Daneri-Castro
- Faculty of Agriculture and Environment; Plant Breeding Institute; University of Sydney; Eveleigh Australia
| | | | | | | | - Thomas H. Roberts
- Faculty of Agriculture and Environment; Plant Breeding Institute; University of Sydney; Eveleigh Australia
| |
Collapse
|
11
|
Twelve ways to confirm targets of activity-based probes in plants. Bioorg Med Chem 2016; 24:3304-11. [DOI: 10.1016/j.bmc.2016.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
|
12
|
Poret M, Chandrasekar B, van der Hoorn RAL, Avice JC. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:139-153. [PMID: 26993244 DOI: 10.1016/j.plantsci.2016.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation.
Collapse
Affiliation(s)
- Marine Poret
- Université de Caen Normandie, F-14032 Caen, France; UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France; INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France.
| | - Balakumaran Chandrasekar
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom.
| | - Jean-Christophe Avice
- Université de Caen Normandie, F-14032 Caen, France; UCBN, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France; INRA, UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., F-14032 Caen, France.
| |
Collapse
|
13
|
Morimoto K, van der Hoorn RAL. The Increasing Impact of Activity-Based Protein Profiling in Plant Science. PLANT & CELL PHYSIOLOGY 2016; 57:446-61. [PMID: 26872839 DOI: 10.1093/pcp/pcw003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/28/2015] [Indexed: 05/08/2023]
Abstract
The active proteome dictates plant physiology. Yet, active proteins are difficult to predict based on transcript or protein levels, because protein activities are regulated post-translationally in their microenvironments. Over the past 10 years, activity-based protein profiling (ABPP) is increasingly used in plant science. ABPP monitors the activities of hundreds of plant proteins using tagged chemical probes that react with the active site of proteins in a mechanism-dependent manner. Since labeling is covalent and irreversible, labeled proteins can be detected and identified on protein gels and by mass spectrometry using tagged fluorophores and/or biotin. Here, we discuss general concepts, approaches and practical considerations of ABPP, before we summarize the discoveries made using 40 validated probes representing 14 chemotypes that can monitor the active state of >4,500 plant proteins. These discoveries and new opportunities indicate that this emerging functional proteomic technology is a powerful discovery tool that will have an increasing impact on plant science.
Collapse
Affiliation(s)
- Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
14
|
Carland F, Defries A, Cutler S, Nelson T. Novel Vein Patterns in Arabidopsis Induced by Small Molecules. PLANT PHYSIOLOGY 2016; 170:338-53. [PMID: 26574596 PMCID: PMC4704596 DOI: 10.1104/pp.15.01540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 05/03/2023]
Abstract
The critical role of veins in transporting water, nutrients, and signals suggests that some key regulators of vein formation may be genetically redundant and, thus, undetectable by forward genetic screens. To identify such regulators, we screened more than 5000 structurally diverse small molecules for compounds that alter Arabidopsis (Arabidopsis thaliana) leaf vein patterns. Many compound-induced phenotypes were observed, including vein networks with an open reticulum; decreased or increased vein number and thickness; and misaligned, misshapen, or nonpolar vascular cells. Further characterization of several individual active compounds suggests that their targets include hormone cross talk, hormone-dependent transcription, and PIN-FORMED trafficking.
Collapse
Affiliation(s)
- Francine Carland
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520 (F.C., T.N.);Bloomfield Industries, Inc., Staten Island, New York 10314 (A.D.); andDepartment of Botany and Plant Sciences, University of California, Riverside, Riverside, California 92507 (S.C.)
| | - Andrew Defries
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520 (F.C., T.N.);Bloomfield Industries, Inc., Staten Island, New York 10314 (A.D.); andDepartment of Botany and Plant Sciences, University of California, Riverside, Riverside, California 92507 (S.C.)
| | - Sean Cutler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520 (F.C., T.N.);Bloomfield Industries, Inc., Staten Island, New York 10314 (A.D.); andDepartment of Botany and Plant Sciences, University of California, Riverside, Riverside, California 92507 (S.C.)
| | - Timothy Nelson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520 (F.C., T.N.);Bloomfield Industries, Inc., Staten Island, New York 10314 (A.D.); andDepartment of Botany and Plant Sciences, University of California, Riverside, Riverside, California 92507 (S.C.)
| |
Collapse
|
15
|
Hütten M, Geukes M, Misas-Villamil JC, van der Hoorn RAL, Grundler FMW, Siddique S. Activity profiling reveals changes in the diversity and activity of proteins in Arabidopsis roots in response to nematode infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:36-43. [PMID: 26408809 DOI: 10.1016/j.plaphy.2015.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Cyst nematodes are obligate, sedentary endoparasites with a highly specialised biology and a huge economic impact in agriculture. Successful parasitism involves morphological and physiological modifications of the host cells which lead to the formation of specialised syncytial feeding structures in roots. The development of the syncytium is aided by a cocktail of nematode effectors that manipulate the host plant activities in a complex network of interactions through post-translational modifications. Traditional transcriptomic and proteomic approaches cannot display this functional proteomic information. Activity-based protein profiling (ABPP) is a powerful technology that can be used to investigate the activity of the proteome through activity-based probes. To better understand the functional proteomics of syncytium, ABPP was conducted on syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Our results demonstrated that the activity of several enzymes is differentially regulated in the syncytium compared to the control roots. Among those specifically activated in the syncytium are a putative S-formyl-glutathione hydrolase (SFGH), a putative methylesterase (MES) and two unidentified enzymes. In contrast, the activities of vacuolar processing enzymes (VPEs) are specifically suppressed in the syncytium. Competition labelling, quantitative gene expression and T-DNA knock-out mutants were used to further characterise the roles of the differentially regulated enzymes during plant-nematode interaction. In conclusion, our study will open the door to generate a comprehensive and integrated view of the host-pathogen warfare that results in the formation of long-term feeding sites for pathogens.
Collapse
Affiliation(s)
- Marion Hütten
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| | - Melanie Geukes
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| | - Johana C Misas-Villamil
- Plant Chemetics Lab, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany.
| | - Renier A L van der Hoorn
- Plant Chemetics Lab, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Plant Chemetics Lab, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3UB Oxford, UK.
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| |
Collapse
|
16
|
Wang J, Huang X, Ni Z, Wang S, Pan Y, Wu J. Peroxide promoted metal-free thiolation of phosphites by thiophenols/disulfides. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Krátký M, Štěpánková Š, Vorčáková K, Vinšová J. Salicylanilide diethyl phosphates as cholinesterases inhibitors. Bioorg Chem 2015; 58:48-52. [DOI: 10.1016/j.bioorg.2014.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/26/2023]
|
18
|
Hong TN, van der Hoorn RAL. DIGE-ABPP by click chemistry: pairwise comparison of serine hydrolase activities from the apoplast of infected plants. Methods Mol Biol 2014; 1127:183-94. [PMID: 24643562 DOI: 10.1007/978-1-62703-986-4_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Activity-based protein profiling (ABPP) is a targeted functional proteomics method that displays the active proteome by using small molecule probes that react covalently with the active sites of protein classes. Comparison of activity profiles from two different samples is not always easy, especially when using probes that generate too many signals. For accurate comparison of protein activities between two proteomes, we developed difference gel electrophoresis ABPP (DIGE-ABPP), which compares two fluorescently labeled proteomes in the same gel lane. This protocol describes the labeling of two proteomes with alkyne-labeled probes, followed by the coupling with two different fluorophores using "click chemistry," the separation of mixed proteomes on protein gels, and the quantification and comparison of the activity profiles. We applied DIGE-ABPP to investigate differential serine hydrolases activities in the apoplast of Nicotiana benthamiana challenged with Pseudomonas syringae p.v. tomato DC3000.
Collapse
Affiliation(s)
- Tram Ngoc Hong
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | | |
Collapse
|
19
|
Dejonghe W, Russinova E. Target identification strategies in plant chemical biology. FRONTIERS IN PLANT SCIENCE 2014; 5:352. [PMID: 25104953 PMCID: PMC4109434 DOI: 10.3389/fpls.2014.00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 05/03/2023]
Abstract
The current needs to understand gene function in plant biology increasingly require more dynamic and conditional approaches opposed to classic genetic strategies. Gene redundancy and lethality can substantially complicate research, which might be solved by applying a chemical genetics approach. Now understood as the study of small molecules and their effect on biological systems with subsequent target identification, chemical genetics is a fast developing field with a strong history in pharmaceutical research and drug discovery. In plant biology however, chemical genetics is still largely in the starting blocks, with most studies relying on forward genetics and phenotypic analysis for target identification, whereas studies including direct target identification are limited. Here, we provide an overview of recent advances in chemical genetics in plant biology with a focus on target identification. Furthermore, we discuss different strategies for direct target identification and the possibilities and challenges for plant biology.
Collapse
Affiliation(s)
- Wim Dejonghe
- Department of Plant Systems Biology, VIBGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIBGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- *Correspondence: Eugenia Russinova, Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, VIB-Ghent University, Technologiepark 927, 9052 Ghent, Belgium e-mail:
| |
Collapse
|
20
|
Vinšová J, Kozic J, Krátký M, Stolaříková J, Mandíková J, Trejtnar F, Buchta V. Salicylanilide diethyl phosphates: Synthesis, antimicrobial activity and cytotoxicity. Bioorg Med Chem 2014; 22:728-37. [DOI: 10.1016/j.bmc.2013.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 11/16/2022]
|
21
|
Zulet A, Gil-Monreal M, Villamor JG, Zabalza A, van der Hoorn RAL, Royuela M. Proteolytic pathways induced by herbicides that inhibit amino acid biosynthesis. PLoS One 2013; 8:e73847. [PMID: 24040092 PMCID: PMC3765261 DOI: 10.1371/journal.pone.0073847] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. RESULTS Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. CONCLUSION These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined.
Collapse
Affiliation(s)
- Amaia Zulet
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Spain
| | - Miriam Gil-Monreal
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Spain
| | - Joji Grace Villamor
- Plant Chemetics Laboratory, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ana Zabalza
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Spain
| | | | - Mercedes Royuela
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
22
|
Misas-Villamil JC, Toenges G, Kolodziejek I, Sadaghiani AM, Kaschani F, Colby T, Bogyo M, van der Hoorn RAL. Activity profiling of vacuolar processing enzymes reveals a role for VPE during oomycete infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:689-700. [PMID: 23134548 DOI: 10.1111/tpj.12062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/24/2012] [Indexed: 05/23/2023]
Abstract
Vacuolar processing enzymes (VPEs) are important cysteine proteases that are implicated in the maturation of seed storage proteins, and programmed cell death during plant-microbe interactions and development. Here, we introduce a specific, cell-permeable, activity-based probe for VPEs. This probe is highly specific for all four Arabidopsis VPEs, and labeling is activity-dependent, as illustrated by sensitivity for inhibitors, pH and reducing agents. We show that the probe can be used for in vivo imaging and displays multiple active isoforms of VPEs in various tissues and in both monocot and dicot plant species. Thus, VPE activity profiling is a robust, simple and powerful tool for plant research for a wide range of applications. Using VPE activity profiling, we discovered that VPE activity is increased during infection with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa). The enhanced VPE activity is host-derived and EDS1-independent. Sporulation of Hpa is reduced on vpe mutant plants, demonstrating a role for VPE during compatible interactions that is presumably independent of programmed cell death. Our data indicate that, as an obligate biotroph, Hpa takes advantage of increased VPE activity in the host, e.g. to mediate protein turnover and nutrient release.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
van der Hoorn RAL, Colby T, Nickel S, Richau KH, Schmidt J, Kaiser M. Mining the Active Proteome of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2011; 2:89. [PMID: 22639616 PMCID: PMC3355598 DOI: 10.3389/fpls.2011.00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/08/2011] [Indexed: 05/20/2023]
Abstract
Assigning functions to the >30,000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied activity-based protein profiling (ABPP). ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed activities of 76 Arabidopsis proteins. These proteins represent over 10 different protein classes that contain over 250 Arabidopsis proteins, including cysteine, serine, and metalloproteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed additional protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities, e.g., of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry, and proteomics.
Collapse
Affiliation(s)
- Renier A. L. van der Hoorn
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Renier A. L. van der Hoorn, Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany. e-mail:
| | - Tom Colby
- Proteomics Service Unit, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Sabrina Nickel
- Fakultät für Biologie, Chemische Biologie, Zentrum für Medizinische Biotechnologie, University of Duisburg-EssenEssen, Germany
| | - Kerstin H. Richau
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Jürgen Schmidt
- Proteomics Service Unit, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Markus Kaiser
- Fakultät für Biologie, Chemische Biologie, Zentrum für Medizinische Biotechnologie, University of Duisburg-EssenEssen, Germany
| |
Collapse
|