1
|
Alhadrami HA, Sayed AM, Hassan HM, Rateb ME, Taha MN. Optimized peptide inhibitor Aqs1C targets LasR to disrupt quorum sensing and biofilm formation in Pseudomonas aeruginosa: Insights from MD simulations and in vitro studies. Int J Biol Macromol 2025; 300:140119. [PMID: 39855517 DOI: 10.1016/j.ijbiomac.2025.140119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Pseudomonas aeruginosa (PA) is a critical pathogen, and its antibiotic resistance is largely driven by the quorum-sensing regulator LasR. Herein, we report the design, synthesis, and characterization of Aqs1C, a mutated peptide derivative of Aqs1, optimized to inhibit LasR and its quorum-sensing pathway. By introducing a targeted mutation, Aqs1C exhibited enhanced stability and binding affinity for LasR protein compared to its predecessor, Aqs1B. Using molecular dynamics simulations (MDS), the Aqs1C-LasR complex demonstrated a marked increase in structural stability, reflected in reduced root mean square deviation (RMSD) values and lower binding free energy. Electrostatic complementarity analysis showed stronger and more favorable interactions between Aqs1C and LasR. Further, GaMD experiments were able to reproduce the binding state between Aqs1C and LasR, indicating the binding mechanism between them. These molecular insights correlated with functional in vitro assays. Aqs1C effectively inhibited quorum-sensing-associated virulence factors in PA, involving biofilm formation (77.6 % inhibition), pyocyanin production (75.7 % inhibition), protease secretion (61.1 % inhibition), and rhamnolipid production (74.1 % inhibition), at a 100 μg/mL concentration, in a comparable or superior pattern to azithromycin (AZM). Molecular modelling, MDS, and GaMD insights and in vitro assays established Aqs1C as a promising candidate for therapeutic development to mitigate PA infections through targeted quorum-sensing disruption.
Collapse
Affiliation(s)
- Hani A Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia; King Fahd Medical Research Centre, King Abdulaziz University, P.O. Box 80402, Jeddah 21589, Saudi Arabia
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mostafa N Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt
| |
Collapse
|
2
|
Wang J, Yang J, Durairaj P, Wang W, Wei D, Tang S, Liu H, Wang D, Jia AQ. Discovery of β-nitrostyrene derivatives as potential quorum sensing inhibitors for biofilm inhibition and antivirulence factor therapeutics against Serratia marcescens. MLIFE 2024; 3:445-458. [PMID: 39359676 PMCID: PMC11442132 DOI: 10.1002/mlf2.12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 10/04/2024]
Abstract
Quorum sensing (QS) inhibition has emerged as a promising target for directed drug design, providing an appealing strategy for developing antimicrobials, particularly against infections caused by drug-resistant pathogens. In this study, we designed and synthesized a total of 33 β-nitrostyrene derivatives using 1-nitro-2-phenylethane (NPe) as the lead compound, to target the facultative anaerobic bacterial pathogen Serratia marcescens. The QS-inhibitory effects of these compounds were evaluated using S. marcescens NJ01 and the reporter strain Chromobacterium violaceum CV026. Among the 33 new β-nitrostyrene derivatives, (E)-1-methyl-4-(2-nitrovinyl)benzene (m-NPe, compound 28) was proven to be a potent inhibitor that reduced biofilm formation of S. marcescens NJ01 by 79%. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results revealed that treatment with m-NPe (50 μg/ml) not only enhanced the susceptibility of the formed biofilms but also disrupted the architecture of biofilms by 84%. m-NPe (50 μg/ml) decreased virulence factors in S. marcescens NJ01, reducing the activity of protease, prodigiosin, and extracellular polysaccharide (EPS) by 36%, 72%, and 52%, respectively. In S. marcescens 4547, the activities of hemolysin and EPS were reduced by 28% and 40%, respectively, outperforming the positive control, vanillic acid (VAN). The study also found that the expression levels of QS- and biofilm-related genes (flhD, fimA, fimC, sodB, bsmB, pigA, pigC, and shlA) were downregulated by 1.21- to 2.32-fold. Molecular dynamics analysis showed that m-NPe could bind stably to SmaR, RhlI, RhlR, LasR, and CviR proteins in a 0.1 M sodium chloride solution. Importantly, a microscale thermophoresis (MST) test revealed that SmaR could be a target protein for the screening of a quorum sensing inhibitor (QSI) against S. marcescens. Overall, this study highlights the efficacy of m-NPe in suppressing the virulence factors of S. marcescens, identifying it as a new potential QSI and antibiofilm agent capable of restoring or improving antimicrobial drug sensitivity.
Collapse
Affiliation(s)
- Jiang Wang
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- Center for Translational Research Shenzhen Bay Laboratory Shenzhen China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Jingyi Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
- Hainan Branch, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Sanya China
| | - Pradeepraj Durairaj
- Center for Translational Research Shenzhen Bay Laboratory Shenzhen China
- Present address: National High Magnetic Field Laboratory, FAMU-FSU College of Engineering Florida State University Tallahassee Florida USA
| | - Wei Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Dongyan Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Haiqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Dayong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Ai-Qun Jia
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| |
Collapse
|
3
|
Manson DE, Ananiev GE, Guo S, Ericksen SS, Santa EE, Blackwell HE. Abiotic Small Molecule Inhibitors and Activators of the LasR Quorum Sensing Receptor in Pseudomonas aeruginosa with Potencies Comparable or Surpassing N-Acyl Homoserine Lactones. ACS Infect Dis 2024; 10:1212-1221. [PMID: 38506163 PMCID: PMC11014758 DOI: 10.1021/acsinfecdis.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa controls almost 10% of its genome, including myriad virulence genes, via a cell-to-cell chemical communication system called quorum sensing (QS). Small molecules that either inhibit or activate QS in P. aeruginosa represent useful research tools to study the role of this signaling pathway in infection and interrogate its viability as an antivirulence target. However, despite active research in this area over the past 20+ years, there are relatively few synthetic compounds known to strongly inhibit or activate QS in P. aeruginosa. Most reported QS modulators in this pathogen are of low potency or have structural liabilities that limit their application in biologically relevant environments such as mimics of the native N-acyl l-homoserine lactone (AHL) signals. Here, we report the results of a high-throughput screen for abiotic small molecules that target LasR, a key QS regulator in P. aeruginosa. We screened a 25,000-compound library and discovered four new structural classes of abiotic LasR modulators. These compounds include antagonists that surpass the potency of all known AHL-type compounds and mimetics thereof, along with an agonist with potency approaching that of LasR's native ligand. The novel structures of this compound set, along with their anticipated robust physicochemical profiles, underscore their potential value as probe molecules to interrogate the roles of QS in this formidable pathogen.
Collapse
Affiliation(s)
- Daniel E Manson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Gene E Ananiev
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, Wisconsin 53792, United States
| | - Song Guo
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, Wisconsin 53792, United States
| | - Spencer S Ericksen
- Small Molecule Screening Facility, University of Wisconsin Carbone Cancer Center, 600 Highland Ave., Madison, Wisconsin 53792, United States
| | - Emma E Santa
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Alasiri A, Soltane R, Taha MN, Abd El-Aleam RH, Alshehri F, Sayed AM. Bakuchiol inhibits Pseudomonas aeruginosa's quorum sensing-dependent biofilm formation by selectively inhibiting its transcriptional activator protein LasR. Int J Biol Macromol 2024; 255:128025. [PMID: 37979739 DOI: 10.1016/j.ijbiomac.2023.128025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
In the present study, we characterized Bakuchiol (Bak) as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm formation. Upon extensive in vitro investigations, Bak was found to suppress the P. aeruginosa biofilm formation (75.5 % inhibition) and its associated virulence factor e.g., pyocyanin and rhamnolipids (% of inhibition = 71.5 % and 66.9 %, respectively). Upon LuxR-type receptors assay, Bak was found to selectively inhibit P. aeruginosa's LasR in a dose-dependent manner. Further in-depth molecular investigations (e.g., sedimentation velocity and thermal shift assays) revealed that Bak destabilized LasR upon binding and disrupted its functioning quaternary structure (i.e., the functioning dimeric form). The subsequent modeling and molecular dynamics (MD) simulations explained in more molecular detail how Bak interacts with LasR and how it can induce its dimeric form disruption. In conclusion, our study identified Bak as a potent and specific LasR antagonist that should be widely used as a chemical probe of QS in P. aeruginosa, offering new insights into LasR antagonism processes. The new findings shed light on the cryptic world of LuxR-type QS in this important opportunistic pathogen.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Mostafa N Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo 11571, Egypt.
| | - Fatma Alshehri
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ahmed M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt; Department of Pharmacognosy, College of Pharmacy, Almaaqal University, 61014 Basra, Iraq.
| |
Collapse
|
5
|
Soltane R, Alasiri A, Taha MN, Abd El-Aleam RH, Alghamdi KS, Ghareeb MA, Keshek DEG, Cardoso SM, Sayed AM. Norlobaridone Inhibits Quorum Sensing-Dependent Biofilm Formation and Some Virulence Factors in Pseudomonas aeruginosa by Disrupting Its Transcriptional Activator Protein LasR Dimerization. Biomolecules 2023; 13:1573. [PMID: 38002255 PMCID: PMC10669572 DOI: 10.3390/biom13111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023] Open
Abstract
In the present study, norlobaridone (NBD) was isolated from Parmotrema and then evaluated as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm development. This phenolic natural product was found to reduce P. aeruginosa biofilm formation (64.6% inhibition) and its related virulence factors, such as pyocyanin and rhamnolipids (% inhibition = 61.1% and 55%, respectively). In vitro assays inhibitory effects against a number of known LuxR-type receptors revealed that NBD was able to specifically block P. aeruginosa's LasR in a dose-dependent manner. Further molecular studies (e.g., sedimentation velocity and thermal shift assays) demonstrated that NBD destabilized LasR upon binding and damaged its functional quaternary structure (i.e., the functional dimeric form). The use of modelling and molecular dynamics (MD) simulations also allowed us to further understand its interaction with LasR, and how this can disrupt its dimeric form. Finally, our findings show that NBD is a powerful and specific LasR antagonist that should be widely employed as a chemical probe in QS of P. aeruginosa, providing new insights into LasR antagonism processes. The new discoveries shed light on the mysterious world of LuxR-type QS in this key opportunistic pathogen.
Collapse
Affiliation(s)
- Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mostafa N. Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt;
| | - Rehab H. Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Kawthar Saad Alghamdi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin 39511, Saudi Arabia;
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt;
| | - Doaa El-Ghareeb Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Giza 11571, Egypt
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ahmed M. Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| |
Collapse
|
6
|
Vashistha A, Sharma N, Nanaji Y, Kumar D, Singh G, Barnwal RP, Yadav AK. Quorum sensing inhibitors as Therapeutics: Bacterial biofilm inhibition. Bioorg Chem 2023; 136:106551. [PMID: 37094480 DOI: 10.1016/j.bioorg.2023.106551] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
The overuse and inappropriate use of antibiotics to treat bacterial infections has led to the development of multiple drug resistant strains. Biofilm is a complex microorganism aggregation defined by the presence of a dynamic, sticky, and protective extracellular matrix made of polysaccharides, proteins, and nucleic acids. The infectious diseases are caused by bacteria that flourish within quorum sensing (QS) mediated biofilms. Efforts to disrupt biofilms have enabled the identification of bioactive molecules produced by prokaryotes and eukaryotes. The QS system is quenched predominantly by these molecules. The phenomenon is also termed as quorum sensing (QS). Both synthetic and natural substances have been discovered to be useful in QS. This review describes natural and synthetic quorum sensing inhibitors (QSIs) with the potential to treat bacterial infections. It includes the discussion on quorum sensing, mechanism of quorum sensing, effect of substituents on the activity. These discoveries could result in effective therapies using far lower dosages of medications, particularly antibiotics, are currently needed.
Collapse
Affiliation(s)
- Aditi Vashistha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Nikhil Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Yerramsetti Nanaji
- Texas Tech University Health Sciences Center, Ophthalmology Dept Lbk Genl, Lubbock, Texas, USA, 3601 4th Street, Lubbock TX 79430, United States
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
7
|
Choi HY, Le DD, Kim WG. Curvularin Isolated From Phoma macrostoma Is an Antagonist of RhlR Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2022; 13:913882. [PMID: 35903467 PMCID: PMC9315252 DOI: 10.3389/fmicb.2022.913882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Quorum sensing (QS) is an attractive target for the treatment of multidrug-resistant Pseudomonas aeruginosa, against which new antibiotics are urgently needed. Because LasR is at the top of the QS hierarchy controlling Rhl and PQS systems, most QS inhibitors have been targeted to LasR. However, it has recently been reported that in clinical isolates of P. aeruginosa, LasR is frequently mutated and nonfunctional, and RhlR independently acts to produce virulent factors that maintain toxicity. Thus, for effective treatment of chronic cystic fibrosis infections, RhlR antagonists is needed to prevent the LasR-independent Rhl system, but RhlR antagonists have rarely been reported. In this study, we found that curvularin, an aromatic compound with a cyclized alkyl side chain isolated from Phoma macrostoma, at a low micromolar concentration of 1–30 μM potently and selectively inhibited pyocyanin and rhamnolipid production without affecting the cell viability of P. aeruginosa. Only high concentration (more over 100 μM) curvularin negligibly inhibited biofilm formation and elastase production, suggesting that curvularin at low concentrations selectively inhibits RhlR. The QS antagonism by curvularin was investigated in experiments using QS competition and signaling molecules assays with QS gene expression analysis, and the results showed that, indeed, at low concentrations, curvularin selectively antagonized RhlR; in contrast, it negligibly antagonized LasR only when applied at a high concentration. The exclusive RhlR antagonizing activity of curvularin at low concentrations was confirmed using QS mutants; specifically, curvularin at low concentrations inhibited pyocyanin and rhamnolipid production by selectively antagonizing N-butanoyl homoserine lactone (BHL)-activated RhlR. Moreover, by targeting RhlR, curvularin reduced the in vivo virulence of wild-type P. aeruginosa as well as lasR mutants in Caenorhabditis elegans. Overall, low-concentration curvularin is a pure RhlR antagonist in P. aeruginosa, and to the best of our knowledge, this is the first report describing an RhlR antagonist from natural resources. Hence, curvularin has great potential for the development of chronic P. aeruginosa infection therapeutics and for the study of RhlR function in the complex QS system.
Collapse
Affiliation(s)
- Ha-Young Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Duc Dat Le
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Won-Gon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
- *Correspondence: Won-Gon Kim,
| |
Collapse
|
8
|
Benny AT, Rathinam P, Dev S, Mathew B, Radhakrishnan EK. Perillaldehyde mitigates virulence factors and biofilm formation of Pseudomonas aeruginosa clinical isolates, by acting on the quorum sensing mechanism in vitro. J Appl Microbiol 2022; 133:385-399. [PMID: 35384183 DOI: 10.1111/jam.15565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
Abstract
AIM The incidence of biofilm linked catheter-associated urinary tract infections (CAUTIs) are increasing worldwide and Pseudomonas aeruginosa is one of the major causes. Perillaldehyde (PLD): as a natural, widely used flavouring agent, has been reported to possess various pharmacological properties. We hypothesized that PLD can inhibit biofilm formation and virulence factor production by P. aeruginosa by hampering the quorum sensing (QS) system(s). METHODS AND RESULTS Minimum inhibitory concentration (MIC) of PLD was assessed for standard strain and two multi-drug resistant catheter isolates of P. aeruginosa utilizing the microdilution method. Microtiter plate assay, crystal violet staining and scanning electron microscopy were used to evaluate the biofilm inhibition property. CFU was utilized to assess the antifouling property of PLD. Detection of virulence factors (VFs) and expression analysis of virulence determinants were applied to investigate the anti-virulence activity. Gene expression and molecular docking studies were also executed to explore the QS inhibition and binding of PLD with QS receptors. In the present study, PLD has significantly inhibited biofilm formation and antivirulence activity at sub-MIC levels (2.5 mM and 3.5 mM) in all the tested strains. In addition, molecular docking studies revealed a significant affinity towards quorum sensing receptors. DISCUSSIONS Perillaldehyde (PLD), being a non-toxic food flavouring agent, significantly inhibited biofilm formation, and exhibited antifouling property. PLD exhibited significantly reduced levels of VFs (p<0.001) and their respective genetic determinants (p<0.001). Gene expression analysis and molecular docking studies confirmed the interactions of PLD to the QS receptors, indicating the plausible mechanism for the anti-virulence property. SIGNIFICANCE AND IMPACT OF STUDY This study identified the anti-virulence potential of PLD and provided mechanistic insights. Perillaldehyde can be a suitable, non-toxic candidate for countering biofilms and associated pathogens, contributing to the prevention of biofilm-associated nosocomial infections..
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Science, VIT, Vellore, Tamil Nadu-632014, India
| | - Prasanth Rathinam
- Medical Biotechnology Laboratory, Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, , Thiruvalla, Kerala - 689101, India
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, Kerala, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | | |
Collapse
|
9
|
Ruiz CH, Osorio-Llanes E, Trespalacios MH, Mendoza-Torres E, Rosales W, Gómez CMM. Quorum Sensing Regulation as a Target for Antimicrobial Therapy. Mini Rev Med Chem 2021; 22:848-864. [PMID: 34856897 DOI: 10.2174/1389557521666211202115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/20/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022]
Abstract
Some bacterial species use a cell-to-cell communication mechanism called Quorum Sensing (QS). Bacteria release small diffusible molecules, usually termed signals which allow the activation of beneficial phenotypes that guarantee bacterial survival and the expression of a diversity of virulence genes in response to an increase in population density. The study of the molecular mechanisms that relate signal molecules with bacterial pathogenesis is an area of growing interest due to its use as a possible therapeutic alternative through the development of synthetic analogues of autoinducers as a strategy to regulate bacterial communication as well as the study of bacterial resistance phenomena, the study of these relationships is based on the structural diversity of natural or synthetic autoinducers and their ability to inhibit bacterial QS, which can be approached with a molecular perspective from the following topics: i) Molecular signals and their role in QS regulation; ii) Strategies in the modulation of Quorum Sensing; iii) Analysis of Bacterial QS circuit regulation strategies; iv) Structural evolution of natural and synthetic autoinducers as QS regulators. This mini-review allows a molecular view of the QS systems, showing a perspective on the importance of the molecular diversity of autoinducer analogs as a strategy for the design of new antimicrobial agents.
Collapse
Affiliation(s)
- Caterine Henríquez Ruiz
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| | - Estefanie Osorio-Llanes
- Faculty of Exact and Natural sciences. Grupo de Investigación Avanzada en Biomedicina. Universidad Libre. Barranquilla. Colombia
| | - Mayra Hernández Trespalacios
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| | - Evelyn Mendoza-Torres
- Faculty of Health Sciences. Grupo de Investigación Avanzada en Biomedicina-Universidad Libre. Barranquilla. Colombia
| | - Wendy Rosales
- Faculty of Exact and Natural sciences. Grupo de Investigación Avanzada en Biomedicina. Universidad Libre. Barranquilla. Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| |
Collapse
|
10
|
Li W, Zheng Y, Qu E, Bai J, Deng Q. β
‐Keto Amides: A Jack‐of‐All‐Trades Building Block in Organic Chemistry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Yan Zheng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Erdong Qu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Jin Bai
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Qinyue Deng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| |
Collapse
|
11
|
Pellissier L, Leoni S, Marcourt L, Ferreira Queiroz E, Lecoultre N, Quiros-Guerrero LM, Barthélémy M, Eparvier V, Chave J, Stien D, Gindro K, Perron K, Wolfender JL. Characterization of Pseudomonas aeruginosa Quorum Sensing Inhibitors from the Endophyte Lasiodiplodia venezuelensis and Evaluation of Their Antivirulence Effects by Metabolomics. Microorganisms 2021; 9:microorganisms9091807. [PMID: 34576706 PMCID: PMC8465504 DOI: 10.3390/microorganisms9091807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the "critical priority pathogens" due to its multidrug resistance to a wide range of antibiotics. Its ability to invade and damage host tissues is due to the use of quorum sensing (QS) to collectively produce a plethora of virulence factors. Inhibition of QS is an attractive strategy for new antimicrobial agents because it disrupts the initial events of infection without killing the pathogen. Highly diverse microorganisms as endophytes represent an under-explored source of bioactive natural products, offering opportunities for the discovery of novel QS inhibitors (QSI). In the present work, the objective was to explore selective QSIs within a unique collection of fungal endophytes isolated from the tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted, and screened for their antibacterial and specific anti-QS activities against P. aeruginosa. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation for its selective activity, leading to the isolation of eight compounds in a single step. Among them, two pyran-derivatives were found to be responsible for the QSI activity, with an effect on some QS-regulated virulence factors. Additional non-targeted metabolomic studies on P. aeruginosa documented their effects on the production of various virulence-related metabolites.
Collapse
Affiliation(s)
- Léonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
- Correspondence: (L.P.); (J.-L.W.)
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (S.L.); (K.P.)
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Nicole Lecoultre
- Mycology Group, Research Department Plant Protection, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (N.L.); (K.G.)
| | - Luis-Manuel Quiros-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Morgane Barthélémy
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, UPR 2301, 91198 Gif-sur-Yvette, France; (M.B.); (V.E.)
| | - Véronique Eparvier
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, UPR 2301, 91198 Gif-sur-Yvette, France; (M.B.); (V.E.)
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique (UMR 5174), CNRS, UT3, IRD, Université Toulouse 3, 118 Route de Narbonne, 31062 Toulouse, France;
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-Sur-Mer, France;
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (N.L.); (K.G.)
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (S.L.); (K.P.)
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
- Correspondence: (L.P.); (J.-L.W.)
| |
Collapse
|
12
|
Assessing the Molecular Targets and Mode of Action of Furanone C-30 on Pseudomonas aeruginosa Quorum Sensing. Molecules 2021; 26:molecules26061620. [PMID: 33803983 PMCID: PMC7998126 DOI: 10.3390/molecules26061620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing (QS), a sophisticated system of bacterial communication that depends on population density, is employed by many pathogenic bacteria to regulate virulence. In view of the current reality of antibiotic resistance, it is expected that interfering with QS can address bacterial pathogenicity without stimulating the incidence of resistance. Thus, harnessing QS inhibitors has been considered a promising approach to overriding bacterial infections and combating antibiotic resistance that has become a major threat to public healthcare around the globe. Pseudomonas aeruginosa is one of the most frequent multidrug-resistant bacteria that utilize QS to control virulence. Many natural compounds, including furanones, have demonstrated strong inhibitory effects on several pathogens via blocking or attenuating QS. While the natural furanones show no activity against P. aeruginosa, furanone C-30, a brominated derivative of natural furanone compounds, has been reported to be a potent inhibitor of the QS system of the notorious opportunistic pathogen. In the present study, we assess the molecular targets and mode of action of furanone C-30 on P. aeruginosa QS system. Our results suggest that furanone C-30 binds to LasR at the ligand-binding site but fails to establish interactions with the residues crucial for the protein's productive conformational changes and folding, thus rendering the protein dysfunctional. We also show that furanone C-30 inhibits RhlR, independent of LasR, suggesting a complex mechanism for the agent beyond what is known to date.
Collapse
|
13
|
Molecular simulations of lipid membrane partitioning and translocation by bacterial quorum sensing modulators. PLoS One 2021; 16:e0246187. [PMID: 33561158 PMCID: PMC7872223 DOI: 10.1371/journal.pone.0246187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Quorum sensing (QS) is a bacterial communication process mediated by both native and non-native small-molecule quorum sensing modulators (QSMs), many of which have been synthesized to disrupt QS pathways. While structure-activity relationships have been developed to relate QSM structure to the activation or inhibition of QS receptors, less is known about the transport mechanisms that enable QSMs to cross the lipid membrane and access intracellular receptors. In this study, we used atomistic MD simulations and an implicit solvent model, called COSMOmic, to analyze the partitioning and translocation of QSMs across lipid bilayers. We performed umbrella sampling at atomistic resolution to calculate partitioning and translocation free energies for a set of naturally occurring QSMs, then used COSMOmic to screen the water-membrane partition and translocation free energies for 50 native and non-native QSMs that target LasR, one of the LuxR family of quorum-sensing receptors. This screening procedure revealed the influence of systematic changes to head and tail group structures on membrane partitioning and translocation free energies at a significantly reduced computational cost compared to atomistic MD simulations. Comparisons with previously determined QSM activities suggest that QSMs that are least likely to partition into the bilayer are also less active. This work thus demonstrates the ability of the computational protocol to interrogate QSM-bilayer interactions which may help guide the design of new QSMs with engineered membrane interactions.
Collapse
|
14
|
Styles MJ, Early SA, Tucholski T, West KHJ, Ge Y, Blackwell HE. Chemical Control of Quorum Sensing in E. coli: Identification of Small Molecule Modulators of SdiA and Mechanistic Characterization of a Covalent Inhibitor. ACS Infect Dis 2020; 6:3092-3103. [PMID: 33124430 DOI: 10.1021/acsinfecdis.0c00654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of severe diarrheal disease in humans. Cattle are the natural reservoir of EHEC, and approximately 75% of EHEC infections in humans stem from bovine products. Many common bacterial pathogens, including EHEC, rely on chemical communication systems, such as quorum sensing (QS), to regulate virulence and facilitate host colonization. EHEC uses SdiA from E. coli (SdiAEC), an orphan LuxR-type receptor, to sense N-acyl l-homoserine lactone (AHL) QS signals produced by other members of the bovine enteric microbiome. SdiAEC regulates two phenotypes critical for colonizing cattle: acid resistance and the formation of attaching and effacing lesions. Despite the importance of SdiAEC, there is very little known about its selectivity for different AHL signals, and no chemical inhibitors that act specifically on SdiAEC have been reported. Such compounds would represent valuable tools to study the roles of QS in EHEC virulence. To identify chemical modulators of SdiAEC and delineate the structure-activity relationships (SARs) for AHL activity in this receptor, we report herein the screening of a focused library composed largely of AHLs and AHL analogues in an SdiAEC reporter assay. We describe the identity and SARs of potent modulators of SdiAEC activity, examine the promiscuity of SdiAEC, characterize the mechanism of a covalent inhibitor, and provide phenotypic assay data to support that these compounds can control SdiAEC-dependent acid resistance in E. coli. These SdiAEC modulators could be used to advance the study of LuxR-type receptor/ligand interactions, the biological roles of orphan LuxR-type receptors, and potential QS-based therapeutic approaches.
Collapse
Affiliation(s)
- Matthew J. Styles
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Stephen A. Early
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Korbin H. J. West
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, Wisconsin Institute for Medical Research, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
16
|
Manson DE, O’Reilly MC, Nyffeler KE, Blackwell HE. Design, Synthesis, and Biochemical Characterization of Non-Native Antagonists of the Pseudomonas aeruginosa Quorum Sensing Receptor LasR with Nanomolar IC 50 Values. ACS Infect Dis 2020; 6:649-661. [PMID: 32037806 DOI: 10.1021/acsinfecdis.9b00518] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quorum sensing (QS), a bacterial cell-to-cell communication system mediated by small molecules and peptides, has received significant interest as a potential target to block infection. The common pathogen Pseudomonas aeruginosa uses QS to regulate many of its virulence phenotypes at high cell densities, and the LasR QS receptor plays a critical role in this process. Small molecule tools that inhibit LasR activity would serve to illuminate its role in P. aeruginosa virulence, but we currently lack highly potent and selective LasR antagonists, despite considerable research in this area. V-06-018, an abiotic small molecule discovered in a high-throughput screen, represents one of the most potent known LasR antagonists but has seen little study since its initial report. Herein, we report a systematic study of the structure-activity relationships (SARs) that govern LasR antagonism by V-06-018. We synthesized a focused library of V-06-018 derivatives and evaluated the library for bioactivity using a variety of cell-based LasR reporter systems. The SAR trends revealed by these experiments allowed us to design probes with 10-fold greater potency than that of V-06-018 and 100-fold greater potency than other commonly used N-acyl-l-homoserine lactone (AHL)-based LasR antagonists, along with high selectivities for LasR. Biochemical experiments to probe the mechanism of antagonism by V-06-018 and its analogues support these compounds interacting with the native ligand-binding site in LasR and, at least in part, stabilizing an inactive form of the protein. The compounds described herein are the most potent and efficacious antagonists of LasR known and represent robust probes both for characterizing the mechanisms of LuxR-type QS and for chemical biology research in general in the growing QS field.
Collapse
Affiliation(s)
- Daniel E. Manson
- Department of Chemistry, University of Wisconsin−Madison, 110 University Ave., Madison, Wisconsin 53706 United States
| | - Matthew C. O’Reilly
- Department of Chemistry, University of Wisconsin−Madison, 110 University Ave., Madison, Wisconsin 53706 United States
| | - Kayleigh E. Nyffeler
- Department of Chemistry, University of Wisconsin−Madison, 110 University Ave., Madison, Wisconsin 53706 United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin−Madison, 110 University Ave., Madison, Wisconsin 53706 United States
| |
Collapse
|
17
|
Prateeksha, Bajpai R, Yusuf MA, Upreti DK, Gupta VK, Singh BN. Endolichenic fungus, Aspergillus quandricinctus of Usnea longissima inhibits quorum sensing and biofilm formation of Pseudomonas aeruginosa PAO1. Microb Pathog 2019; 140:103933. [PMID: 31862392 DOI: 10.1016/j.micpath.2019.103933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
Lichens are composite organisms, comprising of a fungus (mycobiont) and a blue-green alga (photobiont). Along with the mycobiont, numerous non-obligate microfungi live in lichen thalli. These microfungi are called endolichenic fungi (ELF). In recent years, the ELF are emerging as promising natural sources because of their capability to exert unique drug molecules. The current study aimed to isolate the ELF from the lichen, Usnea longissima Ach., to control of biofilm formation and quorum sensing phenomenon in Pseudomonas aeruginosa PAO1, an opportunistic multidrug resistance pathogen that uses quorum sensing network to produce an array of pathogenic agents. Therefore, inhibiting quorum sensing to manage the infection caused by PAO1 could be the paramount alternative approach to conventional antibiotics. The isolated ELF was identified by amplifying the long subunit region of the fungal genome. The extracted metabolites of ELF (MELE) using the acetone solvent was further investigated for anti-quorum sensing activity using the biomarker strain Chromobacterium violaceum 12472 which exerts violacein pigment via the AHL mediated quorum sensing signalling. Moreover, the effect of MELE was also evaluated on the production of virulence factors and biofilm formation of P. aeruginosa PAO1. The molecular identification revealed that ELF (accession number MN171299) exhibited 100% similarity with Aspergillus quandricinctus strain CBS 135.52. The MELE showed significant anti-quorum sensing activity at the concentration of 4 mg/mL without affecting the bacterial cell viability of P. aeruginosa PAO1. The MELE diminished the production of virulence factors, including pyocyanin, protease, elastase, rhamnolipids, and extracellular polysaccharides of P. aeruginosa PAO1 in a concentration-dependent manner. The MELE also disturbed biofilm formation of P. aeruginosa PAO1. The 3-D analysis of biofilm architecture showed that the thickness and surface area covered by microcolonies was decreased as the concentration of MELE was increased. The GC-MS analysis of MELE exhibited that organic acids and fatty acids are major constituents of the MELE. The present study reports first time that the ELF, A. quandricinctus possesses potential to inhibit quorum sensing and biofilm formation of P. aeruginosa and can be further exploited for hospital and healthcare facilities.
Collapse
Affiliation(s)
- Prateeksha
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rajesh Bajpai
- Lichenology Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, 226016, Uttar Pradesh, India
| | - Dalip Kumar Upreti
- Lichenology Lab, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Brahma Nand Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
18
|
Chai L, Ding C, Li J, Yang Z, Shi Y. Multi-omics response of Pannonibacter phragmitetus BB to hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:63-73. [PMID: 30878863 DOI: 10.1016/j.envpol.2019.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 05/27/2023]
Abstract
The release of hexavalent chromium [Cr(VI)] into water bodies poses a major threat to the environment and human health. However, studies of the biological response to Cr(VI) are limited. In this study, a toxic bacterial mechanism of Cr(VI) was investigated using Pannonibacter phragmitetus BB (hereafter BB), which was isolated from chromate slag. The maximum Cr(VI) concentrations with respect to the resistance and reduction by BB are 4000 mg L-1 and 2500 mg L-1, respectively. In the BB genome, more genes responsible for Cr(VI) resistance and reduction are observed compared with other P. phragmitetus strains. A total of 361 proteins were upregulated to respond to Cr(VI) exposure, including enzymes for Cr(VI) uptake, intracellular reduction, ROS detoxification, DNA repair, and Cr(VI) efflux and proteins associated with novel mechanisms involving extracellular reduction mediated by electron transfer, quorum sensing, and chemotaxis. Based on metabolomic analysis, 174 metabolites were identified. Most of the upregulated metabolites are involved in amino acid, glucose, lipid, and energy metabolisms. The results show that Cr(VI) induces metabolite production, while metabolites promote Cr(VI) reduction. Overall, multi-enzyme expression and metabolite production by BB contribute to its high ability to resist/reduce Cr(VI). This study provides details supporting the theory of Cr(VI) reduction and a theoretical basis for the efficient bioremoval of Cr(VI) from the environment.
Collapse
Affiliation(s)
- Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Chunlian Ding
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Jiawei Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China.
| |
Collapse
|
19
|
Hansen MJ, Hille JI, Szymanski W, Driessen AJ, Feringa BL. Easily Accessible, Highly Potent, Photocontrolled Modulators of Bacterial Communication. Chem 2019. [DOI: 10.1016/j.chempr.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Styles MJ, Blackwell HE. Non-native autoinducer analogs capable of modulating the SdiA quorum sensing receptor in Salmonella enterica serovar Typhimurium. Beilstein J Org Chem 2018; 14:2651-2664. [PMID: 30410627 PMCID: PMC6204753 DOI: 10.3762/bjoc.14.243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
Quorum sensing (QS) allows many common bacterial pathogens to coordinate group behaviors such as virulence factor production, host colonization, and biofilm formation at high population densities. This cell–cell signaling process is regulated by N-acyl L-homoserine lactone (AHL) signals, or autoinducers, and LuxR-type receptors in Gram-negative bacteria. SdiA is an orphan LuxR-type receptor found in Escherichia, Salmonella, Klebsiella, and Enterobacter genera that responds to AHL signals produced by other species and regulates genes involved in several aspects of host colonization. The inhibition of QS using non-native small molecules that target LuxR-type receptors offers a non-biocidal approach for studying, and potentially controlling, virulence in these bacteria. To date, few studies have characterized the features of AHLs and other small molecules capable of SdiA agonism, and no SdiA antagonists have been reported. Herein, we report the screening of a set of AHL analogs to both uncover agonists and antagonists of SdiA and to start to delineate structure–activity relationships (SARs) for SdiA:AHL interactions. Using a cell-based reporter of SdiA in Salmonella enterica serovar Typhimurium, several non-natural SdiA agonists and the first set of SdiA antagonists were identified and characterized. These compounds represent new chemical probes for exploring the mechanisms by which SdiA functions during infection and its role in interspecies interactions. Moreover, as SdiA is highly stable when produced in vitro, these compounds could advance fundamental studies of LuxR-type receptor:ligand interactions that engender both agonism and antagonism.
Collapse
Affiliation(s)
- Matthew J Styles
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
21
|
Soukarieh F, Williams P, Stocks MJ, Cámara M. Pseudomonas aeruginosa Quorum Sensing Systems as Drug Discovery Targets: Current Position and Future Perspectives. J Med Chem 2018; 61:10385-10402. [PMID: 29999316 DOI: 10.1021/acs.jmedchem.8b00540] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is a serious threat to public health globally, manifested by the frequent emergence of multidrug resistant pathogens that render current chemotherapy inadequate. Health organizations worldwide have recognized the severity of this crisis and implemented action plans to contain its adverse consequences and prolong the utility of conventional antibiotics. Hence, there is a pressing need for new classes of antibacterial agents with novel modes of action. Quorum sensing (QS), a communication system employed by bacterial populations to coordinate virulence gene expression, is a potential target that has been intensively investigated over the past decade. This Perspective will focus on recent advances in targeting the three main quorum sensing systems ( las, rhl, and pqs) of a major opportunistic human pathogen, Pseudomonas aeruginosa, and will specifically evaluate the medicinal chemistry strategies devised to develop QS inhibitors from a drug discovery perspective.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Michael J Stocks
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| |
Collapse
|
22
|
Boursier ME, Manson DE, Combs JB, Blackwell HE. A comparative study of non-native N-acyl l-homoserine lactone analogs in two Pseudomonas aeruginosa quorum sensing receptors that share a common native ligand yet inversely regulate virulence. Bioorg Med Chem 2018; 26:5336-5342. [PMID: 29793752 DOI: 10.1016/j.bmc.2018.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
Abstract
Certain bacteria can coordinate group behaviors via a chemical communication system known as quorum sensing (QS). Gram-negative bacteria typically use N-acyl l-homoserine lactone (AHL) signals and their cognate intracellular LuxR-type receptors for QS. The opportunistic pathogen Pseudomonas aeruginosa has a relatively complex QS circuit in which two of its LuxR-type receptors, LasR and QscR, are activated by the same natural signal, N-(3-oxo)-dodecanoyl l-homoserine lactone. Intriguingly, once active, LasR activates virulence pathways in P. aeruginosa, while activated QscR can inactivate LasR and thus repress virulence. We have a limited understanding of the structural features of AHLs that engender either agonistic activity in both receptors or receptor-selective activity. Compounds with the latter activity profile could prove especially useful tools to tease out the roles of these two receptors in virulence regulation. A small collection of AHL analogs was assembled and screened in cell-based reporter assays for activity in both LasR and QscR. We identified several structural motifs that bias ligand activation towards each of the two receptors. These findings will inform the development of new synthetic ligands for LasR and QscR with improved potencies and selectivities.
Collapse
Affiliation(s)
- Michelle E Boursier
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Daniel E Manson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Joshua B Combs
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA.
| |
Collapse
|
23
|
Li S, Wawrzyniak J, Queneau Y, Soulère L. 2-Substituted Aniline as a Simple Scaffold for LuxR-Regulated QS Modulation. Molecules 2017; 22:molecules22122090. [PMID: 29186042 PMCID: PMC6149922 DOI: 10.3390/molecules22122090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022] Open
Abstract
The ability of the 2-substituted aniline motif to serve as a scaffold for designing potential LuxR-regulated quorum sensing (QS) modulators has been investigated, using docking experiments and biological evaluation of a series of 15 specially synthesized compounds. Aniline, 2-acetyl-aniline and 2-nitroaniline were considered, as well as their N-acylated derivatives. Docking experiments showed that the 2-substituted aniline motif fits within the LuxR binding site at the place of the lactone moiety of AHL, and the biological evaluation revealed QS antagonisitic activity for several compounds, validating the hypothesis that this scaffold acts on QS. Structure activity relationships are discussed regarding interactions with the key residues of the LuxR binding site, showing significant variations in the H-bonding pattern.
Collapse
Affiliation(s)
- Sizhe Li
- Univ Lyon, INSA LYON, Université Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Bât. J. Verne, 20 Avenue A. Einstein, F-69621 Villeurbanne, France.
| | - Julien Wawrzyniak
- Univ Lyon, INSA Lyon, Université Lyon 1, UMR 5240, CNRS, MAP, 10 rue Raphaël Dubois, F-69622 Villeurbanne, France.
| | - Yves Queneau
- Univ Lyon, INSA LYON, Université Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Bât. J. Verne, 20 Avenue A. Einstein, F-69621 Villeurbanne, France.
| | - Laurent Soulère
- Univ Lyon, INSA LYON, Université Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Bât. J. Verne, 20 Avenue A. Einstein, F-69621 Villeurbanne, France.
| |
Collapse
|
24
|
Rathinam P, Vijay Kumar HS, Viswanathan P. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. BIOFOULING 2017; 33:624-639. [PMID: 28792229 DOI: 10.1080/08927014.2017.1350655] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023]
Abstract
The primary objective of this study was to ascertain the anti-biofilm and anti-virulence properties of sub-minimum inhibitory concentration (MIC) levels of eugenol against the standard strain PAO1 and two multi-drug resistant P. aeruginosa clinical isolates utilizing quorum sensing inhibition (QSI). Eugenol at 400 μM significantly reduced biofilm formation on urinary catheters and the virulence factors (VF) including extracellular polysaccharides, rhamnolipid, elastase, protease, pyocyanin, and pyoverdine (p < 0.001). Further, eugenol exhibited a marked effect on the production of QS signals (AIs) (p < 0.001) without affecting their chemical integrity. In silico docking studies demonstrated a stable molecular binding between eugenol and QS receptor(s) in comparison with respective AIs. Investigation on reporter strains confirmed the competitive binding of eugenol to a QS receptor (LasR) as the possible QSI mechanism leading to significant repression of QS associated genes besides the VF genes (p < 0.001). This study provides insights, for the first time, into the mechanism of the anti-virulence properties of eugenol.
Collapse
Affiliation(s)
- Prasanth Rathinam
- a Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology , VIT University , Vellore , India
| | - H S Vijay Kumar
- b Department of Biotechnology , Maharani Lakshmi Ammanni College for Women , Bangalore , India
| | - Pragasam Viswanathan
- a Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology , VIT University , Vellore , India
| |
Collapse
|
25
|
Abstract
Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.
Collapse
|
26
|
Benmansour F, Trist I, Coutard B, Decroly E, Querat G, Brancale A, Barral K. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design. Eur J Med Chem 2017; 125:865-880. [DOI: 10.1016/j.ejmech.2016.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
27
|
Welsh MA, Blackwell HE. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev 2016; 40:774-94. [PMID: 27268906 DOI: 10.1093/femsre/fuw009] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 01/20/2023] Open
Abstract
Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell-cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
28
|
Reuter K, Steinbach A, Helms V. Interfering with Bacterial Quorum Sensing. PERSPECTIVES IN MEDICINAL CHEMISTRY 2016; 8:1-15. [PMID: 26819549 PMCID: PMC4718088 DOI: 10.4137/pmc.s13209] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
Abstract
Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery.
Collapse
Affiliation(s)
- Kerstin Reuter
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.; Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anke Steinbach
- Department of Drug Design and Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
29
|
O’Reilly MC, Blackwell HE. Structure-Based Design and Biological Evaluation of Triphenyl Scaffold-Based Hybrid Compounds as Hydrolytically Stable Modulators of a LuxR-Type Quorum Sensing Receptor. ACS Infect Dis 2016; 2:32-38. [PMID: 26807436 PMCID: PMC4709822 DOI: 10.1021/acsinfecdis.5b00112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/28/2022]
Abstract
![]()
Many
common bacterial pathogens utilize quorum sensing to coordinate group
behaviors and initiate virulence at high cell densities. The use of
small molecules to block quorum sensing provides a means of abrogating
pathogenic phenotypes, but many known quorum sensing modulators have
limitations, including hydrolytic instability and displaying non-monotonic
dose curves (indicative of additional targets and/or modes of action).
To address these issues, we undertook a structure-based scaffold-hopping
approach to develop new chemical modulators of the LasR quorum sensing
receptor in Pseudomonas aeruginosa.
We combined components from a triphenyl derivative known to strongly
agonize LasR with chemical moieties known for LasR antagonism and
generated potent LasR antagonists that are hydrolytically stable across
a range of pH values. Additionally, many of these antagonists do not
exhibit non-monotonic dose effects, delivering probes that inhibit
LasR across a wider range of assay conditions relative to known lactone-based
ligands.
Collapse
Affiliation(s)
- Matthew C. O’Reilly
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Moore JD, Rossi FM, Welsh MA, Nyffeler KE, Blackwell HE. A Comparative Analysis of Synthetic Quorum Sensing Modulators in Pseudomonas aeruginosa: New Insights into Mechanism, Active Efflux Susceptibility, Phenotypic Response, and Next-Generation Ligand Design. J Am Chem Soc 2015; 137:14626-39. [PMID: 26491787 PMCID: PMC4665086 DOI: 10.1021/jacs.5b06728] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quorum sensing (QS) is a chemical signaling mechanism that allows bacterial populations to coordinate gene expression in response to social and environmental cues. Many bacterial pathogens use QS to initiate infection at high cell densities. Over the past two decades, chemical antagonists of QS in pathogenic bacteria have attracted substantial interest for use both as tools to further elucidate QS mechanisms and, with further development, potential anti-infective agents. Considerable recent research has been devoted to the design of small molecules capable of modulating the LasR QS receptor in the opportunistic pathogen Pseudomonas aeruginosa. These molecules hold significant promise in a range of contexts; however, as most compounds have been developed independently, comparative activity data for these compounds are scarce. Moreover, the mechanisms by which the bulk of these compounds act are largely unknown. This paucity of data has stalled the choice of an optimal chemical scaffold for further advancement. Herein, we submit the best-characterized LasR modulators to standardized cell-based reporter and QS phenotypic assays in P. aeruginosa, and we report the first comprehensive set of comparative LasR activity data for these compounds. Our experiments uncovered multiple interesting mechanistic phenomena (including a potential alternative QS-modulatory ligand binding site/partner) that provide new, and unexpected, insights into the modes by which many of these LasR ligands act. The lead compounds, data trends, and mechanistic insights reported here will significantly aid the design of new small molecule QS inhibitors and activators in P. aeruginosa, and in other bacteria, with enhanced potencies and defined modes of action.
Collapse
Affiliation(s)
- Joseph D Moore
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Francis M Rossi
- Department of Chemistry, SUNY Cortland , Cortland, New York 13045, United States
| | - Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kayleigh E Nyffeler
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Gerdt JP, McInnis CE, Schell TL, Blackwell HE. Unraveling the contributions of hydrogen-bonding interactions to the activity of native and non-native ligands in the quorum-sensing receptor LasR. Org Biomol Chem 2015; 13:1453-62. [PMID: 25474181 DOI: 10.1039/c4ob02252a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quorum sensing (QS) via the synthesis and detection of N-acyl L-homoserine lactone (AHL) signals regulates important pathogenic and mutualistic phenotypes in many bacteria. Over the past two decades, the development of non-native molecules that modulate this cell-cell signaling process has become an active area of research. The majority of these compounds were designed to block binding of the native AHL signal to its cognate LuxR-type receptor, and much effort has focused on LasR in the opportunistic pathogen Pseudomonas aeruginosa. Despite a small set of reported LasR structural data, it remains unclear which polar interactions are most important for either (i) activation of the LasR receptor by its native AHL signal, N-(3-oxo)-dodecanoyl L-homoserine lactone (OdDHL), or (ii) activation or inhibition of LasR by related AHL analogs. Herein, we report our investigations into the activity of OdDHL and five synthetic analogs in wild-type LasR and in nine LasR mutants with modifications to key polar residues in their ligand binding sites. Our results allowed us to rank, for the first time, the relative importance of each LasR:OdDHL hydrogen bond for LasR activation and provide strong evidence for the five synthetic ligands binding LasR in a very similar orientation as OdDHL. By delineating the specific molecular interactions that are important for LasR modulation by AHLs, these findings should aid in the design of new synthetic modulators of LasR (and homologous LuxR-type receptors) with improved potencies and selectivities.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA.
| | | | | | | |
Collapse
|
32
|
Design, synthesis and biological evaluation of 4-(alkyloxy)-6-methyl-2H-pyran-2-one derivatives as quorum sensing inhibitors. Bioorg Med Chem Lett 2015; 25:2913-7. [DOI: 10.1016/j.bmcl.2015.05.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 01/10/2023]
|
33
|
Abstract
The article by Gerdt and colleagues in this issue of Chemistry & Biology provides molecular insights into how nonlactone quorum sensing modulators either activate or deactivate LasR. Interestingly, an antagonist could flip into an agaonist upon mutation of a single residue in the autoinducer binding site.
Collapse
|
34
|
Kim HS, Lee SH, Byun Y, Park HD. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 2015; 5:8656. [PMID: 25728862 PMCID: PMC4345325 DOI: 10.1038/srep08656] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/29/2015] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression.
Collapse
Affiliation(s)
- Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong-ro 2511, Jochiwon-eup, Sejong, 339-700, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, South Korea
| |
Collapse
|
35
|
Miller LC, O'Loughlin CT, Zhang Z, Siryaporn A, Silpe JE, Bassler BL, Semmelhack MF. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa. J Med Chem 2015; 58:1298-306. [PMID: 25597392 DOI: 10.1021/jm5015082] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence factor produced by P. aeruginosa. Interestingly, these new antagonists appear to suppress P. aeruginosa virulence factor production through a pathway that is independent of LasR and RhlR.
Collapse
Affiliation(s)
- Laura C Miller
- Department of Chemistry and ‡Department of Molecular Biology, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Gerdt JP, McInnis CE, Schell TL, Rossi FM, Blackwell HE. Mutational analysis of the quorum-sensing receptor LasR reveals interactions that govern activation and inhibition by nonlactone ligands. ACTA ACUST UNITED AC 2014; 21:1361-1369. [PMID: 25242287 DOI: 10.1016/j.chembiol.2014.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023]
Abstract
Gram-negative bacteria use N-acyl L-homoserine lactone (AHL) quorum-sensing (QS) signals to regulate the expression of myriad phenotypes. Non-native AHL analogs can strongly attenuate QS receptor activity and thereby QS signaling; however, we currently lack a molecular understanding of the mechanisms by which most of these compounds elicit their agonistic or antagonistic profiles. In this study, we investigated the origins of striking activity profile switches (i.e., receptor activator to inhibitor, and vice versa) observed upon alteration of the lactone head group in certain AHL analogs. Reporter gene assays of mutant versions of the Pseudomonas aeruginosa QS receptor LasR revealed that interactions between the ligands and Trp60, Tyr56, and Ser129 govern whether these ligands behave as LasR activators or inhibitors. Using this knowledge, we propose a model for the modulation of LasR by AHL analogs-encompassing a subtly different interaction with the binding pocket to a global change in LasR conformation.
Collapse
Affiliation(s)
- Joseph P Gerdt
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christine E McInnis
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Trevor L Schell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Francis M Rossi
- Department of Chemistry, SUNY Cortland, Cortland, NY 13045, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Moore JD, Gerdt JP, Eibergen NR, Blackwell HE. Active efflux influences the potency of quorum sensing inhibitors in Pseudomonas aeruginosa. Chembiochem 2014; 15:435-42. [PMID: 24478193 DOI: 10.1002/cbic.201300701] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Indexed: 12/15/2022]
Abstract
Many bacteria regulate gene expression through a cell-cell signaling process called quorum sensing (QS). In proteobacteria, QS is largely mediated by signaling molecules known as N-acylated L-homoserine lactones (AHLs) and their associated intracellular LuxR-type receptors. The design of non-native small molecules capable of inhibiting LuxR-type receptors (and thereby QS) in proteobacteria is an active area of research, and numerous lead compounds are AHL derivatives that mimic native AHL molecules. Much of this previous work has focused on the pathogen Pseudomonas aeruginosa, which controls an arsenal of virulence factors and biofilm formation through QS. The MexAB-OprM efflux pump has been shown to play a role in the secretion of the major AHL signal in P. aeruginosa, N-(3-oxododecanoyl) L-homoserine lactone. In the current study, we show that a variety of non-native AHLs and related derivatives capable of inhibiting LuxR-type receptors in P. aeruginosa display significantly higher potency in a P. aeruginosa Δ(mexAB-oprM) mutant, suggesting that MexAB-OprM also recognizes these compounds as substrates. We also demonstrate that the potency of 5,6-dimethyl-2-aminobenzimidazole, recently shown to be a QS and biofilm inhibitor in P. aeruginosa, is not affected by the presence/absence of the MexAB-OprM pump. These results have implications for the use of non-native AHLs and related derivatives as QS modulators in P. aeruginosa and other bacteria, and provide a potential design strategy for the development of new QS modulators that are resistant to active efflux.
Collapse
Affiliation(s)
- Joseph D Moore
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (USA)
| | | | | | | |
Collapse
|
38
|
McInnis CE, Blackwell HE. Non-native N-aroyl L-homoserine lactones are potent modulators of the quorum sensing receptor RpaR in Rhodopseudomonas palustris. Chembiochem 2013; 15:87-93. [PMID: 24281952 DOI: 10.1002/cbic.201300570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 12/14/2022]
Abstract
Quorum sensing (QS) is a process by which bacteria use low-molecular-weight signaling molecules (or autoinducers) to assess their local population densities and alter gene expression levels at high cell numbers. Many Gram-negative bacteria use N-acyl L-homoserine lactones (AHLs) with aliphatic acyl groups as signaling molecules for QS. However, bacteria that utilize AHLs with aroyl acyl groups have been recently discovered; they include the metabolically versatile soil bacterium Rhodopseudomonas palustris, which uses p-coumaroyl HL (p-cAHL) as its QS signal. This autoinducer is especially unusual because its acyl group is believed to originate from a monolignol (i.e., p-coumarate) produced exogenously by plants in the R. palustris environment, rather than through the endogenous fatty acid biosynthesis pathway like other native AHLs. As such, p-cAHL could signal not only bacterial density, but also the availability of an exogenous plant-derived substrate and might even constitute an interkingdom signal. Like other Gram-negative bacteria, QS in R. palustris is controlled by the p-cAHL signal binding its cognate LuxR-type receptor, RpaR. We sought to determine if non-native aroyl HLs (ArHLs) could potentially activate or inhibit RpaR in R. palustris, and thereby modulate QS in this bacterium. Herein, we report the testing of a set of synthetic ArHLs for RpaR agonism and antagonism by using a R. palustris reporter strain. Several potent non-native RpaR agonists and antagonists were identified. Additionally, the screening data revealed that lower concentrations of ArHL are required to strongly agonize RpaR than to antagonize it. Structure-activity relationship analyses of the active ArHLs indicated that potent RpaR agonists tend to have sterically small substituents on their aryl groups, most notably in the ortho position. In turn, the most potent RpaR antagonists were based on either the phenylpropionyl HL (PPHL) or the phenoxyacetyl HL (POHL) scaffold, and many contained an electron-withdrawing group at either the meta or para positions of the aryl ring. To our knowledge, the compounds reported herein represent the first abiotic chemical modulators of RpaR, and more generally, the first abiotic ligands capable of intercepting QS in bacteria that utilize native ArHL signals. In view of the origins of the p-cAHL signal in R. palustris, the largely unknown role of QS in this bacterium, and R. palustris' unique environmental lifestyles, we anticipate that these compounds could be valuable as chemical probes to study QS in R. palustris in a range of fundamental and applied contexts.
Collapse
Affiliation(s)
- Christine E McInnis
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706 (USA); Current address: Dow Microbial Control, The Dow Chemical Company, 727 Norristown Rd., P. O. Box 904, Spring House, PA 19477 (USA)
| | | |
Collapse
|
39
|
Abstract
Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals.
Collapse
|
40
|
Design and synthesis of a biotinylated chemical probe for detecting the molecular targets of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin. Molecules 2013; 18:11783-96. [PMID: 24071985 PMCID: PMC6269773 DOI: 10.3390/molecules181011783] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a human pathogen associated with a variety of life-threatening nosocomial infections. This organism produces a range of virulence factors which actively cause damage to host tissues. One such virulence factor is pyocyanin, known to play a crucial role in the pathogenesis of P. aeruginosa infections. Previous studies had identified a novel compound capable of strongly inhibiting the production of pyocyanin. It was postulated that this inhibition results from modulation of an intercellular communication system termed quorum sensing, via direct binding of the compound with the LasR protein receptor. This raised the possibility that the compound could be an antagonist of quorum sensing in P. aeruginosa, which could have important implications as this intercellular signaling mechanism is known to regulate many additional facets of P. aeruginosa pathogenicity. However, there was no direct evidence for the binding of the active compound to LasR (or any other targets). Herein we describe the design and synthesis of a biotin-tagged version of the active compound. This could potentially be used as an affinity-based chemical probe to ascertain, in a direct fashion, the active compound’s macromolecular biological targets, and thus better delineate the mechanism by which it reduces the level of pyocyanin production.
Collapse
|
41
|
Stacy DM, Le Quement ST, Hansen CL, Clausen JW, Tolker-Nielsen T, Brummond JW, Givskov M, Nielsen TE, Blackwell HE. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Org Biomol Chem 2012; 11:938-54. [PMID: 23258305 DOI: 10.1039/c2ob27155a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many bacterial species are capable of assessing their local population densities through a cell-cell signaling mechanism termed quorum sensing (QS). This intercellular communication process is mediated by small molecule or peptide ligands and their cognate protein receptors. Numerous pathogens use QS to initiate virulence once they achieve a threshold cell number on a host. Consequently, approaches to intercept QS have attracted considerable attention as potential anti-infective therapies. Our interest in the development of small molecule tools to modulate QS pathways motivated us to evaluate triazole-containing analogs of natural N-acyl L-homoserine lactone (AHL) signals as non-native QS agonists and antagonists in Gram-negative bacteria. We synthesized 72 triazole derivatives of five broad structure types in high yields and purities using efficient Cu(I)-catalyzed azide-alkyne couplings. These compounds were evaluated for their ability to activate or inhibit two QS receptors from two prevalent pathogens - LasR from Pseudomonas aeruginosa and AbaR from Acinetobacter baumannii- using bacterial reporter strains. Several triazole derivatives were identified that were capable of strongly modulating the activity of LasR and AbaR. These compounds represent a new and synthetically accessible class of AHL analogs, and could find utility as chemical tools to study QS and its role in bacterial virulence.
Collapse
Affiliation(s)
- Danielle M Stacy
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stacy DM, Welsh MA, Rather PN, Blackwell HE. Attenuation of quorum sensing in the pathogen Acinetobacter baumannii using non-native N-Acyl homoserine lactones. ACS Chem Biol 2012; 7:1719-28. [PMID: 22853441 DOI: 10.1021/cb300351x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many bacterial pathogens use quorum sensing (QS) to control virulence. As a result, the development of methods to intercept QS has attracted significant interest as a potential anti-infective therapy. Acinetobacter baumannii has emerged as a pan-drug-resistant pathogen and displays a remarkable ability to persist in hospital settings despite desiccation and antimicrobial treatment. Recent studies have shown that A. baumannii QS mutants have limited motility and fail to form mature biofilms; these phenotypes are linked to its ability to persist on biotic and abiotic surfaces and increase its pathogenicity. A. baumannii uses N-(3-hydroxydodecanoyl)-l-homoserine lactone (OH-dDHL) and its putative cognate receptor, AbaR, for QS. We sought to identify non-native ligands capable of blocking or promoting AbaR activity in A. baumannii for use as chemical probes to modulate QS phenotypes in this pathogen. We screened a focused library of synthetic, non-native N-acyl homoserine lactones (AHLs) to identify such compounds, and several highly potent antagonists and agonists were uncovered, with IC(50) and EC(50) values in the low micromolar range, respectively. The strongest AbaR antagonists largely contained aromatic acyl groups, whereas the AbaR agonists closely resembled OH-dDHL. Notably, the 10 most potent AbaR antagonists also strongly inhibited A. baumannii motility, and five antagonists reduced biofilm formation in A. baumannii by up to 40%. The discovery of these compounds is significant, as they represent, to our knowledge, the first non-native modulators of QS in A. baumannii to be reported and could find utility as new tools to study the role and timing of QS phenotypes in A. baumannii infections.
Collapse
Affiliation(s)
- Danielle M. Stacy
- Department of Chemistry, University of Madison−Wisconsin, 1101 University
Ave., Madison, Wisconsin 53706, United States
| | - Michael A. Welsh
- Department of Chemistry, University of Madison−Wisconsin, 1101 University
Ave., Madison, Wisconsin 53706, United States
| | - Philip N. Rather
- Department of Microbiology and
Immunology, Emory University School of Medicine, 3001 Rollins Research Center, Atlanta, Georgia 30322, United States
- Research Service, Veterans Affairs Medical Center, 1670 Clairmont Rd.,
Decatur, Georgia 30033, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Madison−Wisconsin, 1101 University
Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
43
|
Morkunas B, Galloway WRJD, Wright M, Ibbeson BM, Hodgkinson JT, O'Connell KMG, Bartolucci N, Della Valle M, Welch M, Spring DR. Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 2012; 10:8452-64. [PMID: 23014532 DOI: 10.1039/c2ob26501j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa is a notorious human pathogen associated with a range of life-threatening nosocomial infections. There is an increasing problem of antibiotic resistance in P. aeruginosa, highlighted by the emergence of multi-drug resistant strains. Thus the exploration of new strategies for the treatment of P. aeruginosa infections is clearly warranted. P. aeruginosa is known to produce a range of virulence factors that enhance its ability to damage the host tissue and cause disease. One of the most important virulence factors is pyocyanin. P. aeruginosa regulates pyocyanin production using an intercellular communication mechanism called quorum sensing, which is mediated by small signalling molecules termed autoinducers. One native autoinducer is N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Herein we report the synthesis of a collection of abiotic OdDHL-mimics. A number of novel compounds capable of competing with the endogenous OdDHL and consequently, inhibiting the production of pyocyanin in cultures of wild type P. aeruginosa were identified. We present evidence suggesting that compounds of this general structural type act as direct antagonists of quorum sensing in P. aeruginosa and as such may find value as molecular tools for the study and manipulation of this signalling pathway. A direct quantitative comparison of the pyocyanin suppressive activities of the most active OdDHL-mimics with some previously-reported inhibitors (based around different general structural frameworks) of quorum sensing from the literature, was also made.
Collapse
Affiliation(s)
- Bernardas Morkunas
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 2012; 20:449-58. [PMID: 22771187 DOI: 10.1016/j.tim.2012.06.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 01/23/2023]
Abstract
Quorum sensing is a form of intercellular communication used by many species of bacteria that facilitates concerted interactions between the cells comprising a population. The phenotypes regulated by quorum sensing are extremely diverse, with many having a significant impact upon healthcare, agriculture, and the environment. Consequently there has been significant interest in developing methods to manipulate this signalling process and recent years have witnessed significant theoretical and practical developments. A wide range of small molecule modulators of quorum sensing systems has been discovered, providing an expansive chemical toolbox for the study and modulation of this signalling mechanism. In this review, a selection of recent case studies which illustrate the value of both activators and inhibitors of quorum sensing in Gram-negative bacteria are discussed.
Collapse
|
45
|
Ng WL, Perez L, Cong J, Semmelhack MF, Bassler BL. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios. PLoS Pathog 2012; 8:e1002767. [PMID: 22761573 PMCID: PMC3386246 DOI: 10.1371/journal.ppat.1002767] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/07/2012] [Indexed: 01/30/2023] Open
Abstract
Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.
Collapse
Affiliation(s)
- Wai-Leung Ng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | |
Collapse
|
46
|
Hodgkinson JT, Galloway WRJD, Wright M, Mati IK, Nicholson RL, Welch M, Spring DR. Design, synthesis and biological evaluation of non-natural modulators of quorum sensing in Pseudomonas aeruginosa. Org Biomol Chem 2012; 10:6032-44. [PMID: 22499353 DOI: 10.1039/c2ob25198a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many species of bacteria employ a mechanism of intercellular communication known as quorum sensing which is mediated by small diffusible signalling molecules termed autoinducers. The most common class of autoinducer used by Gram-negative bacteria are N-acylated-L-homoserine lactones (AHLs). Pseudomonas aeruginosa is a clinically important bacterium which is known to use AHL-mediated quorum sensing systems to regulate a variety of processes associated with virulence. Thus the selective disruption of AHL-based quorum sensing represents a strategy to attenuate the pathogenicity of this bacterium. Herein we describe the design, synthesis and biological evaluation of a collection of structurally novel AHL mimics. A number of new compounds capable of modulating the LasR-dependent quorum sensing system of P. aeruginosa were identified, which could have value as molecular tools to study and manipulate this signalling pathway. Worthy of particular note, this research has delivered novel potent quorum sensing antagonists, which strongly inhibit the production of virulence factors in a wild type strain of this pathogenic bacterium.
Collapse
Affiliation(s)
- James T Hodgkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|