1
|
Raji Reddy C, Neeliveettil A, Ajaykumar U, Punna N, Neuville L, Masson G. Access to N-Fused Quinazolinones by Radical-Promoted Cascade Annulations of Alkenyl N-Cyanamides with Aromatic Aldehydes. J Org Chem 2024; 89:7115-7124. [PMID: 38691342 DOI: 10.1021/acs.joc.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A cascade radical cyclization of alkenyl N-cyanamides with aromatic aldehydes has been achieved for an expeditious synthesis of keto-methylated dihydropyrrolo-quinazolinones. Benzoyl radicals, generated from aryl aldehydes in the presence of di-tert-butyl peroxide (DTBP), promoted the domino annulations leading to distinctive functionalized quinazolinones in good yields. In addition, the robustness of the present protocol is validated by employing heterocyclic and natural product-based aldehydes.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anootha Neeliveettil
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
2
|
Zueva IV, Vasilieva EA, Gaynanova GA, Moiseenko AV, Burtseva AD, Boyko KM, Zakharova LY, Petrov KA. Can Activation of Acetylcholinesterase by β-Amyloid Peptide Decrease the Effectiveness of Cholinesterase Inhibitors? Int J Mol Sci 2023; 24:16395. [PMID: 38003588 PMCID: PMC10671303 DOI: 10.3390/ijms242216395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-β (Aβ) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aβ augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 μM of Aβ1-40, leading to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation by Aβ1-40 was associated with increased Vmax and unchanged Km. Although BChE activity also increased following incubation with Aβ1-40, this was less efficiently achieved as compared with AChE. Ex vivo electrophysiological experiments showed that 10 μM of Aβ1-40 significantly decreased the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.
Collapse
Affiliation(s)
- Irina V. Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
| | - Elmira A. Vasilieva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
| | - Gulnara A. Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
| | - Andrey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1–12, 119991 Moscow, Russia
| | - Anna D. Burtseva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33/2, 119071 Moscow, Russia; (A.D.B.); (K.M.B.)
- Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Institutsky Lane, 9, Dolgoprudny, 141700 Moscow, Russia
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33/2, 119071 Moscow, Russia; (A.D.B.); (K.M.B.)
| | - Lucia Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
| | - Konstantin A. Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia; (I.V.Z.); (L.Y.Z.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
3
|
A Novel Isaindigotone Derivative Displays Better Anti-Proliferation Activities and Induces Apoptosis in Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms23148028. [PMID: 35887375 PMCID: PMC9324172 DOI: 10.3390/ijms23148028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
Isaindigotone is an alkaloid containing a pyrrolo-[2,1-b]quinazoline moiety conjugated with a benzylidene group and isolated from the root of Isatis indigotca Fort. However, further anticancer activities of this alkaloid and its derivatives have not been fully explored. In this work, a novel isaindigotone derivative was synthesized and three different gastric cell lines and one human epithelial gastric cell line were used to study the anti-proliferation effects of the novel isaindigotone derivative BLG26. HGC27 cells and AGS cells were used to further explore the potential mechanisms. BLG26 exhibited better anti-proliferation activities in AGS cells with a half-maximal inhibitory concentration (IC50) of 1.45 μM. BLG26 caused mitochondrial membrane potential loss and induced apoptosis in both HGC27 cells and AGS cells by suppressing mitochondrial apoptotic pathway and PI3K/AKT/mTOR axis. Acute toxicity experiment showed that LD50 (median lethal dose) of BLG26 was above 1000.0 mg/kg. This research suggested that BLG26 can be a potential candidate for the treatment of gastric cancer.
Collapse
|
4
|
Zeng Y, Nie L, Liu L, Niu C, Li Y, Bozorov K, Zhao J, Shen J, Aisa HA. Design, Synthesis, in vitro Evaluation of a New Pyrrolo[1,2‐
a
]thiazolo[5,4‐
d
]pyrimidinone Derivatives as Cholinesterase Inhibitors Against Alzheimer's Disease. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zeng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Yi Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Faculty of Chemistry Samarkand State University Samarkand Uzbekistan
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| | - Jingshan Shen
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
Nerella A, Jeripothula M. Design, synthesis and biological evaluation of novel deoxyvasicinone-indole as multi-target agents for Alzheimer's disease. Bioorg Med Chem Lett 2021; 49:128212. [PMID: 34153471 DOI: 10.1016/j.bmcl.2021.128212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022]
Abstract
In this study, a series of multifunctional hybrids (6a-6l) against Alzheimer's disease were designed and obtained by conjugating the pharmacophores of deoxyvasicinone and indole. These analogs of deoxyvasicinone-indole were evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid aggregation (Aβ1-42) for treatment of Alzheimer's disease (AD). Subsequently, AChE induced Aβ aggregation inhibition test was also performed for selected compounds. Biological activity results demonstrated that compound 6b was the most potent and balanced dual ChEs inhibitor with IC50 values 0.12 µM and 0.15 µM for eeAChE and eqBuChE, respectively. Kinetic analysis and docking study indicated that compound 6b was a mixed-type inhibitor for both AChE and BuChE. Compound 6b also found to be the best inhibitors of self-induced Aβ1-42 aggregation with IC50 values of 1.21 µM. Compound 6b also afforded excellent inhibition of AChE-induced Aβ1-42 aggregation by 81.1%. Overall, these results indicate that 6b may be considered as lead compound for the development of highly effective anti-AD drugs.
Collapse
Affiliation(s)
- Ashok Nerella
- Department of Chemistry, Kakatiya University, Warangal, Telangana, India; Government Polytechnic, Warangal, Telangana, India
| | | |
Collapse
|
6
|
Manzoor S, Gabr MT, Rasool B, Pal K, Hoda N. Dual targeting of acetylcholinesterase and tau aggregation: Design, synthesis and evaluation of multifunctional deoxyvasicinone analogues for Alzheimer's disease. Bioorg Chem 2021; 116:105354. [PMID: 34562674 DOI: 10.1016/j.bioorg.2021.105354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Development of multitargeted ligands have demonstrated remarkable efficiency as potential therapeutics for Alzheimer's disease (AD). Herein, we reported a new series of deoxyvasicinone analogues as dual inhibitor of acetylcholinesterase (AChE) and tau aggregation that function as multitargeted ligands for AD. All the multitargeted ligands 11(a-j) and 15(a-g) were designed, synthesized, and validated by 1HNMR, 13CNMR and mass spectrometry. All the synthesized compounds 11(a-j) and 15(a-g) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. All the screened compounds possessed weak inhibition of BACE-1, Aβ42 and α-syn aggregation. However, several compounds were identified as potential hits in the AChE inhibitory screening assay and cellular tau aggregation screening. Among all compounds, 11f remarkably inhibited AChE activity and cellular tau oligomerization at single-dose screening (10 µM). Moreover, 11f displayed a half-maximal inhibitory concentration (IC50) value of 0.91 ± 0.05 µM and half-maximal effective concentration (EC50) value of 3.83 ± 0.51 µM for the inhibition of AChE and cellular tau oligomerization, respectively. In addition, the neuroprotective effect of 11f was determined in tau-expressing SH-SY5Y cells incubated with Aβ oligomers. These findings highlighted the potential of 11f to function as a multifunctional ligand for the development of promising anti-AD drugs.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA 94305, United States.
| | - Bisma Rasool
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
7
|
Bowroju SK, Penthala NR, Lakkaniga NR, Balasubramaniam M, Ayyadevara S, Shmookler Reis RJ, Crooks PA. Novel hydroxybenzylamine-deoxyvasicinone hybrids as anticholinesterase therapeutics for Alzheimer's disease. Bioorg Med Chem 2021; 45:116311. [PMID: 34304133 DOI: 10.1016/j.bmc.2021.116311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022]
Abstract
A series of novel 2-hydroxybenzylamine-deoxyvasicinone hybrid analogs (8a-8n) have been synthesized and evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid peptide (Aβ1-42) aggregation, for treatment of Alzheimer's disease (AD). These dual acting compounds exhibited good AChE inhibitory activities ranging from 0.34 to 6.35 µM. Analogs8g and 8n were found to be the most potent AChE inhibitors in the series with IC50values of 0.38 µM and 0.34 µM, respectively. All the analogs (8a-8n) exhibited weak BuChE inhibitory activities ranging from 14.60 to 21.65 µM. Analogs8g and 8n exhibited BuChE with IC50values of 15.38 µM and 14.60 µM, respectively, demonstrating that these analogs were greater than 40-fold more selective for inhibition of AChE over BuChE. Additionally, compounds8g and 8n were also found to be the best inhibitors of self-induced Aβ1-42 peptide aggregation with IC50values of 3.91 µM and 3.22 µM, respectively; 8g and 8n also inhibited AChE-induced Aβ1-42 peptide aggregation by 68.7% and 72.6%, respectively. Kinetic analysis and molecular docking studies indicate that analogs 8g and 8n bind to a new allosteric pocket (site B) on AChE. In addition, the observed inhibition of AChE-induced Aβ1-42 peptide aggregation by 8n is likely due to allosteric inhibition of the binding of this peptide at the CAS site on AChE. Overall, these results indicate that 8g and 8n are examples of dual-acting lead compounds for the development of highly effective anti-AD drugs.
Collapse
Affiliation(s)
- Suresh K Bowroju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Robert J Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, United States; BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
8
|
Du H, Jiang X, Ma M, Xu H, Liu S, Ma F. Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorg Med Chem Lett 2020; 30:127659. [PMID: 33137375 DOI: 10.1016/j.bmcl.2020.127659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
A novel series of deoxyvasicinone-tetrahydro-beta-carboline hybrids were synthesized and evaluated as acetylcholinesterase (AChE) and β-amyloid peptide (Aβ) aggregation inhibitors for the treatment of Alzheimer's disease. The results revealed that the derivatives had multifunctional profiles, including AChE inhibition, Aβ1-42 aggregation inhibition, and neuroprotective properties. Inspiringly, hybrids 8b and 8d displayed excellent inhibitory activities against hAChE (IC50 = 0.93 and 1.08 nM, respectively) and Aβ1-42 self-aggregation (IC50 = 19.71 and 2.05 μM, respectively). In addition, 8b and 8d showed low cytotoxicity and good neuroprotective activity against Aβ1-42-induced damage in SH-SY5Y cells.
Collapse
Affiliation(s)
- Hongtao Du
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; College of Science, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Xinyu Jiang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Meng Ma
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Huili Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Fang Ma
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
9
|
Kumar V, De P, Ojha PK, Saha A, Roy K. A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2020; 20:1601-1627. [DOI: 10.2174/1568026620666200616142753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Alzheimer’s disease (AD), a neurological disorder, is the most common cause
of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain acetylcholine
(ACh) neurotransmitter, but in the case of Alzheimer’s disease (AD), BuChE activity gradually
increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh
plays an essential role in regulating learning and memory as the cortex originates from the basal forebrain,
and thus, is involved in memory consolidation in these sites.
Methods:
In this work, we have developed a partial least squares (PLS)-regression based two dimensional
quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes
of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization
for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant
descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using
stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression technique
and at the end best subset selection prior to development of final model thus reducing noise in the
input. Partial least squares (PLS) regression technique was employed for the development of the final
model while model validation was performed using various stringent validation criteria.
Results:
The results obtained from the QSAR model suggested that the quality of the model is acceptable
in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2
Pred= 0.657) validation parameters.
The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen
bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model
further suggests that the presence of hydrophobic features like long carbon chain would increase the
BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen
bond interactions would be important for increasing the inhibitory activity against BuChE enzyme.
Conclusion:
Furthermore, molecular docking studies have been carried out to understand the molecular
interactions between the ligand and receptor, and the results are then correlated with the structural features
obtained from the QSAR models. The information obtained from the QSAR models are well corroborated
with the results of the docking study.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 APC Road, Kolkata 700 032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Antiamoebic activity of 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one library against Acanthamoeba castellanii. Parasitol Res 2020; 119:2327-2335. [PMID: 32476058 DOI: 10.1007/s00436-020-06710-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Acanthamoeba castellanii is a free-living amoeba which can cause a blinding keratitis and fatal granulomatous amoebic encephalitis. The treatment of Acanthamoeba infections is challenging due to formation of cyst. Quinazolinones are medicinally important scaffold against parasitic diseases. A library of nineteen new 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one derivatives was synthesized to evaluate their antiamoebic activity against Acanthamoeba castellanii. One-pot synthesis of 3-aryl-6,7-dimethoxyquinazolin-4(3H)-ones (1-19) was achieved by reaction of 2-amino-4,5-dimethoxybenzoic acid, trimethoxymethane, and different substituted anilines. These compounds were purified and characterized by standard chromatographic and spectroscopic techniques. Antiacanthamoebic activity of these compounds was determined by amoebicidal, encystation, excystation and host cell cytopathogenicity in vitro assays at concentrations of 50 and 100 μg/mL. The IC50 was found to be between 100 and 50 μg/mL for all the compounds except compound 5 which did not exhibit amoebicidal effects at these concentrations. Furthermore, lactate dehydrogenase assay was also performed to evaluate the in vitro cytotoxicity of these compounds against human keratinocyte (HaCaT) cells. The results revealed that eighteen out of nineteen derivatives of quinazolinones significantly decreased the viability of A. castellanii. Furthermore, eighteen out of nineteen tested compounds inhibited the encystation and excystation, as well as significantly reduced the A. castellanii-mediated cytopathogenicity against human cells. Interestingly, while tested against human normal cell line HaCaT keratinocytes, all compounds did not exhibit any overt cytotoxicity. Furthermore, a detailed structure-activity relationship is also studied to optimize the most potent hit from these synthetic compounds. This report presents several potential lead compounds belonging to 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one derivatives for drug discovery against infections caused by Acanthamoeba castellanii.
Collapse
|
11
|
Huang WY, Zhang XR, Lyu L, Wang SQ, Zhang XT. Pyridazino[1,6-b]quinazolinones as new anticancer scaffold: Synthesis, DNA intercalation, topoisomerase I inhibition and antitumor evaluation in vitro and in vivo. Bioorg Chem 2020; 99:103814. [PMID: 32278208 DOI: 10.1016/j.bioorg.2020.103814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
A new anticancer N-containing heterocyclic scaffold was designed and 30 pyridazino[1,6-b]quinazolinone derivatives were synthesized and characterized. Antiproliferation evaluation in vitro against four human cancer cell lines including SK-OV-3(ovarian cell), CNE-2(nasopharyngeal cell), MGC-803(gastric cell) and NCI-H460(lung cell) indicated that most of them exhibited potent anticancer activity and the IC50 value of the most potent compound lowered to sub-μM. DNA interaction assay indicated that compounds 4e, 4g, 6o, 6p, 8o can intercalate into DNA. Compounds 6 and 8 also demonstrated potent topoisomerase I (topo I) activity. Annexin V- FITC/propidium iodide dual staining assay and cell cycle analysis indicated that 2-(4-bromophenyl)-4-((3-(diethylamino)propyl)amino) -10H-pyridazino [1,6-b]quinazolin- 10-one (8p) could induce arrest cell cycle at G2 phase and apoptosis in MGC-803 cells in a dose-dependent manner. The in vivo antitumor efficiency of compound 8p was also evaluated on MGC-803 xenograft nude mice, and the relative tumor growth inhibition was up to 55.9% at a dose of 20 mg/kg per two days. The results suggested that pyridazino[1,6-b]-quinazolinones might serve as a promising novel scaffold for the development of new antitumor agents.
Collapse
Affiliation(s)
- Wan-Yun Huang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Xiao-Rong Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Liang Lyu
- Department of Pharmacology, College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Shu-Qin Wang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Xiao-Ting Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
12
|
Cheminformatic modelling of β-amyloid aggregation inhibitory activity against Alzheimer's disease. Comput Biol Med 2020; 118:103658. [DOI: 10.1016/j.compbiomed.2020.103658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 11/21/2022]
|
13
|
Malviya B, Singh K, Jaiswal PK, Shukla M, Verma VP, Vanangamudi M, Jassal AK, Punjabi PB, Sharma S. Catalyst- and Solvent-Free Coupling of 2-Methyl Quinazolinones and Isatins: An Environmentally Benign Access of Diastereoselective Schizocommunin Analogues. ACS OMEGA 2019; 4:12146-12155. [PMID: 31460329 PMCID: PMC6682076 DOI: 10.1021/acsomega.9b01514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
An environmentally benign highly atom-economic protocol for the construction of the C-C bond has been developed under catalyst- and solvent-free conditions. This protocol involves the efficient coupling of 2-methyl quinazolinones with isatin for the highly diastereoselective access of schizocommunin derivatives in excellent yields (up to 97%). Furthermore, the preliminary cytotoxicity screening of selected schizocommunin analogues displayed promising anticancer activity against human cancer cell lines, and the cytotoxic potential of active compound 12ac was also validated by in silico molecular docking simulation studies.
Collapse
Affiliation(s)
| | - Karandeep Singh
- Department
of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Pradeep K. Jaiswal
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Monika Shukla
- Department
of Chemistry, Banasthali University, Newai-Jodhpuriya Road, Vanasthali 304022, India
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali University, Newai-Jodhpuriya Road, Vanasthali 304022, India
| | - Murugesan Vanangamudi
- Department
of Medicinal and Pharmaceutical Chemistry, Sree Vidyanikethan College of Pharmacy, Tirupati, 517102 India
| | - Amanpreet Kaur Jassal
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Technion 3200003, Israel
| | - Pinki B. Punjabi
- Department
of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Siddharth Sharma
- Department
of Chemistry, Mohanlal Sukhadia University, Udaipur 313001, India
| |
Collapse
|
14
|
Ganeshpurkar A, Swetha R, Kumar D, Gangaram GP, Singh R, Gutti G, Jana S, Kumar D, Kumar A, Singh SK. Protein-Protein Interactions and Aggregation Inhibitors in Alzheimer's Disease. Curr Top Med Chem 2019; 19:501-533. [PMID: 30836921 DOI: 10.2174/1568026619666190304153353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD), a multifaceted disorder, involves complex pathophysiology and plethora of protein-protein interactions. Thus such interactions can be exploited to develop anti-AD drugs. OBJECTIVE The interaction of dynamin-related protein 1, cellular prion protein, phosphoprotein phosphatase 2A and Mint 2 with amyloid β, etc., studied recently, may have critical role in progression of the disease. Our objective has been to review such studies and their implications in design and development of drugs against the Alzheimer's disease. METHODS Such studies have been reviewed and critically assessed. RESULTS Review has led to show how such studies are useful to develop anti-AD drugs. CONCLUSION There are several PPIs which are current topics of research including Drp1, Aβ interactions with various targets including PrPC, Fyn kinase, NMDAR and mGluR5 and interaction of Mint2 with PDZ domain, etc., and thus have potential role in neurodegeneration and AD. Finally, the multi-targeted approach in AD may be fruitful and opens a new vista for identification and targeting of PPIs in various cellular pathways to find a cure for the disease.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gore P Gangaram
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Srabanti Jana
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
15
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
16
|
Du H, Liu X, Xie J, Ma F. Novel Deoxyvasicinone-Donepezil Hybrids as Potential Multitarget Drug Candidates for Alzheimer's Disease. ACS Chem Neurosci 2019; 10:2397-2407. [PMID: 30720268 DOI: 10.1021/acschemneuro.8b00699] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this study, we designed and synthesized a series of deoxyvasicinone-donepezil hybrids and determined whether they could be used as novel multitarget inhibitors for Alzheimer's disease. In vitro studies showed that most of the hybrids demonstrated moderate to potent inhibition of hAChE, BACE1, and Aβ1-42 aggregation. In particular, the hybrids 10a, 10d, 11a, and 11j exhibited excellent inhibitory activities against hAChE (IC50 = 56.14, 5.91, 3.29, and 8.65 nM, respectively), BACE1 (IC50 = 0.834, 0.167, 0.129, and 0.085 μM, respectively), and Aβ1-42 aggregation (IC50 = 13.26, 19.43, 9.26, and 5.41 μM, respectively). In addition, 10a and 11a exhibited very low cytotoxicity and showed remarkable neuroprotective activity against Aβ1-42-induced damage in SH-SY5Y cells.
Collapse
Affiliation(s)
- Hongtao Du
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xinlian Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
- Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Jusen Xie
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
- Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Fang Ma
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
17
|
Xiao H, Xu J. Isaindigotone as an inhibitor of the lipopolysaccharide‑induced inflammatory reaction of BV‑2 cells and corresponding mechanisms. Mol Med Rep 2019; 19:2890-2896. [PMID: 30720138 DOI: 10.3892/mmr.2019.9909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/25/2019] [Indexed: 11/06/2022] Open
Abstract
Isaindigotone possesses extensive pharmacological activities, including anti‑inflammatory effects. The present study investigated the role of isaindigotone in the inhibition of neuroinflammation. Mouse BV‑2 cells were incubated with lipopolysaccharide (LPS; 1 mg/l) for 24 h in a microglial inflammatory model in vitro. The effects of isaindigotone on BV‑2 cell proliferation were observed using the 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide method. Following co‑incubation, an enzyme‑linked immunosorbent assay and western blot analysis were used to analyze cellular levels of cytokines and associated protein expression, including the phosphorylation of nuclear factor (NF)‑κB. The effects of isaindigotone concentration on LPS‑mediated cell chemotaxis behavior were assessed using a chemotaxis assay. The results indicated that isaindigotone is non‑toxic towards BV‑2 cells. Compared with the LPS group, isaindigotone significantly reduced the secretion of tumor necrosis factor‑α and interleukin‑1β in BV‑2 cells and reduced the cell chemotaxis caused by LPS; it also reversed morphological changes in the BV‑2 cells and inhibited the phosphorylation of NF‑κB. The results of the present study suggest that isaindigotone can inhibit inflammatory reactions in LPS‑induced BV‑2 cells, and provides a theoretical basis and experimental evidence for examining the mechanism underlying the isaindigotone‑induced inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jianhua Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
18
|
Khan MV, Zakariya SM, Khan RH. Protein folding, misfolding and aggregation: A tale of constructive to destructive assembly. Int J Biol Macromol 2018; 112:217-229. [DOI: 10.1016/j.ijbiomac.2018.01.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
|
19
|
Sukumaran SD, Faraj FL, Lee VS, Othman R, Buckle MJC. 2-Aryl-3-(arylideneamino)-1,2-dihydroquinazoline-4(3 H)-ones as inhibitors of cholinesterases and self-induced β-amyloid (Aβ) aggregation: biological evaluations and mechanistic insights from molecular dynamics simulations. RSC Adv 2018; 8:7818-7831. [PMID: 35539141 PMCID: PMC9078462 DOI: 10.1039/c7ra11872d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/19/2018] [Indexed: 11/21/2022] Open
Abstract
A series of 2-aryl-3-(arylideneamino)-1,2-dihydroquinazoline-4(3H)-ones were evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation. All the compounds were found to inhibit both forms of cholinesterase (IC50 in the range 4-32 μM) with some selectivity for BuChE. Most of the compounds also showed self-induced Aβ aggregation inhibitory activities, which were comparable or higher than those obtained for reference compounds, curcumin and myricetin. Docking and molecular dynamics (MD) simulation experiments suggested that the compounds are able to disrupt the dimer form of Aβ.
Collapse
Affiliation(s)
- Sri Devi Sukumaran
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia +60-3-7967-4959
- Drug Design and Development Research Group (DDDRG), University of Malaya 50603 Kuala Lumpur Malaysia
| | - Fadhil Lafta Faraj
- Department of Chemistry, Faculty of Science, University of Diyala Diyala Governorate Iraq
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya 50603 Kuala Lumpur Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +60 163208906
| | - Rozana Othman
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia +60-3-7967-4959
- Drug Design and Development Research Group (DDDRG), University of Malaya 50603 Kuala Lumpur Malaysia
| | - Michael J C Buckle
- Department of Pharmacy, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia +60-3-7967-4959
- Drug Design and Development Research Group (DDDRG), University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
20
|
Alam P, Beg AZ, Siddiqi MK, Chaturvedi SK, Rajpoot RK, Ajmal MR, Zaman M, Abdelhameed AS, Khan RH. Ascorbic acid inhibits human insulin aggregation and protects against amyloid induced cytotoxicity. Arch Biochem Biophys 2017; 621:54-62. [DOI: 10.1016/j.abb.2017.04.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022]
|
21
|
Rigi G, Nakhaei MVA, Eidipour H, Najimi A, Tajik F, Taher N, Yarahmadi K. Virtual screening following rational drug design based approach for introducing new anti amyloid beta aggregation agent. Bioinformation 2017; 13:42-45. [PMID: 28642635 PMCID: PMC5463618 DOI: 10.6026/97320630013042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/09/2016] [Accepted: 04/09/2016] [Indexed: 12/25/2022] Open
Abstract
Amyloid β (Aβ) sheets aggregations is the main reason of Alzheimer disease. The interacting areas between monomers are residue number 38 to 42. Inhibition of interaction between Aβ molecules prevents plaque formation. In the present study, we have performed a high-throughput virtual screening among ZINC database and top 1000 hits were checked again regarding binding affinity by AutoDock software. Top 4 successive second step screening hits was considered for drug design purpose against aggregation site of Aβ molecules. The toxicity and pharmacological properties of new designed ligands was assessed by PROTOX and FAFdrugs3 webservers. Several steps of modifications performed in the structures of hit#1 and hit#2 and finally new designed ligand based on hit 1, 1-RD-3 (3-[(Z)-6-Hydroxy-4-{[5-(2-methoxyethyl)-6-methyltetrahydro-2H-pyran-2-yl]methyl}-1-methyl-3-hexenyloxy]tetrahydro-2Hpyran- 4-ol) and a designed ligand based on hit 2, 2-RD-2 (6-(Hydroxymethyl)-4-{5-hydroxy-6-methyl-4-[(3- methylcyclohexyl)methyl]tetrahydro-2H-pyran-2-yloxy}tetrahydro-2H-pyran-2,3,5-triol) could successfully pass pharmacological filters. The LD50 of 37000 mg/kg for 1-RD-3 and 2000 mg/kg for 2-RD-2 indicates that the designed ligands can be considered as new candidates for anti Aβ aggregation to treat Alzheimer's disease. Interestingly, after performing several modification steps still a considerable binding affinity of -9.3 kcal/mol for 1-RD-3 and -9.8 kcal/mol for 2-RD-2 still remained. Theoretically, the new designed molecules can reduce the deposition of Aβ in the cerebral cortex and as the results the Alzheimer symptoms could be decreased.
Collapse
Affiliation(s)
- Garshasb Rigi
- Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | | | | | | | | | | | | |
Collapse
|
22
|
Shan C, Yan JW, Wang YQ, Che T, Huang ZL, Chen AC, Yao PF, Tan JH, Li D, Ou TM, Gu LQ, Huang ZS. Design, Synthesis, and Evaluation of Isaindigotone Derivatives To Downregulate c-myc Transcription via Disrupting the Interaction of NM23-H2 with G-Quadruplex. J Med Chem 2017; 60:1292-1308. [DOI: 10.1021/acs.jmedchem.6b01218] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chan Shan
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Institute
for Translation Medicine, Qingdao University, Shandong 266021, People’s Republic of China
| | - Jin-Wu Yan
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- School
of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, People’s Republic of China
| | - Yu-Qing Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Tong Che
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhou-Li Huang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ai-Chun Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Pei-Fen Yao
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Jia-Heng Tan
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ding Li
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Tian-Miao Ou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Lian-Quan Gu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhi-Shu Huang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
23
|
Biberoglu K, Tek MY, Ghasemi ST, Tacal O. Toluidine blue O is a potent inhibitor of human cholinesterases. Arch Biochem Biophys 2016; 604:57-62. [DOI: 10.1016/j.abb.2016.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
|
24
|
Cheng S, Zheng W, Gong P, Zhou Q, Xie Q, Yu L, Zhang P, Chen L, Li J, Chen J, Chen H, Chen H. (-)-Meptazinol-melatonin hybrids as novel dual inhibitors of cholinesterases and amyloid-β aggregation with high antioxidant potency for Alzheimer's therapy. Bioorg Med Chem 2015; 23:3110-8. [PMID: 26025073 DOI: 10.1016/j.bmc.2015.04.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/22/2023]
Abstract
The multifactorial pathogenesis of Alzheimer's disease (AD) implicates that multi-target-directed ligands (MTDLs) intervention may represent a promising therapy for AD. Amyloid-β (Aβ) aggregation and oxidative stress, two prominent neuropathological hallmarks in patients, play crucial roles in the neurotoxic cascade of this disease. In the present study, a series of novel (-)-meptazinol-melatonin hybrids were designed, synthesized and biologically characterized as potential MTDLs against AD. Among them, hybrids 7-7c displayed higher dual inhibitory potency toward cholinesterases (ChEs) and better oxygen radical absorbance capacity (ORAC) than the parental drugs. Furthermore, compound 7c could effectively inhibit Aβ self-aggregation, showed favorable safety and the blood-brain barrier (BBB) permeability. Therefore, 7c may serve as a valuable candidate that is worthy of further investigations in the treatment of AD.
Collapse
Affiliation(s)
- Shaobing Cheng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Wei Zheng
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China.
| | - Ping Gong
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Qiang Zhou
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medical, 164 Lanxi Road, Shanghai 200062, PR China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Lining Yu
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Peiyi Zhang
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Liangkang Chen
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Juan Li
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China.
| | - Jianxing Chen
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Hailin Chen
- NPFPC Key Laboratory of Contraceptives Drugs & Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, PR China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| |
Collapse
|
25
|
Blood–brain barrier permeable anticholinesterase aurones: Synthesis, structure–activity relationship, and drug-like properties. Eur J Med Chem 2015; 94:195-210. [DOI: 10.1016/j.ejmech.2015.02.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/29/2022]
|
26
|
Guzior N, Wieckowska A, Panek D, Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease. Curr Med Chem 2015; 22:373-404. [PMID: 25386820 PMCID: PMC4435057 DOI: 10.2174/0929867321666141106122628] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/29/2014] [Accepted: 10/30/2014] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is limited to the symptomatic treatment and its efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the development of an effective therapy is crucial for public health. Due to the multifactorial aetiology of this disease, the multi-target-directed ligand (MTDL) approach is a promising method in search for new drugs for AD. This review updates information on the development of multifunctional potential anti-AD agents published within the last three years. The majority of the recently reported structures are acetylcholinesterase inhibitors, often endowed with some additional properties. These properties enrich the pharmacological profile of the compounds giving hope for not only symptomatic but also causal treatment of the disease. Among these advantageous properties, the most often reported are an amyloid-β antiaggregation activity, inhibition of β-secretase and monoamine oxidase, an antioxidant and metal chelating activity, NOreleasing ability and interaction with cannabinoid, NMDA or histamine H3 receptors. The majority of novel molecules possess heterodimeric structures, able to interact with multiple targets by combining different pharmacophores, original or derived from natural products or existing therapeutics (tacrine, donepezil, galantamine, memantine). Among the described compounds, several seem to be promising drug candidates, while others may serve as a valuable inspiration in the search for new effective therapies for AD.
Collapse
Affiliation(s)
| | | | | | - Barbara Malawska
- Jagiellonian University, Medical College, Chair of Pharmaceutical Chemistry, Department of Physicochemical Drug Analysis, 30-688 Krakow, Medyczna 9, Poland.
| |
Collapse
|
27
|
Tricyclic Quinazoline Alkaloids: Isolation, Synthesis, Chemical Modification, and Biological Activity. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-1086-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Liu HR, Liu XJ, Fan HQ, Tang JJ, Gao XH, Liu WK. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 2014; 22:6124-33. [PMID: 25260958 DOI: 10.1016/j.bmc.2014.08.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 01/24/2023]
Abstract
A novel series of chalcone derivatives (4a-8d) were designed, synthesized, and evaluated for the inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The logP values of the compounds were shown to range from 1.49 to 2.19, which suggested that they were possible to pass blood brain barriers in vivo. The most promising compound 4a (IC50: 4.68 μmol/L) was 2-fold more potent than Rivastigmine against AChE (IC50: 10.54 μmol/L) and showed a high selectivity for AChE over BuChE (ratio: 4.35). Enzyme kinetic study suggested that the inhibition mechanism of compound 4a was a mixed-type inhibition. Meanwhile, the result of molecular docking showed its potent inhibition of AChE and high selectivity for AChE over BuChE.
Collapse
Affiliation(s)
- Hao-ran Liu
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha 410082, China.
| | - Xian-jun Liu
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha 410082, China
| | - Hao-qun Fan
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha 410082, China
| | - Jing-jing Tang
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha 410082, China
| | - Xiao-hui Gao
- College of Pharmacy, Hu'nan University of Traditional Chinese Medicine (TCM), Changsha 410208, China
| | - Wu-Kun Liu
- College of Chemistry and Chemical Engineering, Hu'nan University, Changsha 410082, China
| |
Collapse
|
29
|
Lodarski K, Jończyk J, Guzior N, Bajda M, Gładysz J, Walczyk J, Jeleń M, Morak-Młodawska B, Pluta K, Malawska B. Discovery of butyrylcholinesterase inhibitors among derivatives of azaphenothiazines. J Enzyme Inhib Med Chem 2014; 30:98-106. [DOI: 10.3109/14756366.2014.889127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Shi DH, Huang W, Li C, Liu YW, Wang SF. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors. Eur J Med Chem 2014; 75:289-96. [DOI: 10.1016/j.ejmech.2014.01.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 11/24/2022]
|
31
|
Muthu Mareeswaran P, Babu E, Sathish V, Kim B, Woo SI, Rajagopal S. p-Sulfonatocalix[4]arene as a carrier for curcumin. NEW J CHEM 2014. [DOI: 10.1039/c3nj00935a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Xie R, Zhang T, Zhao Q, Zhang T, Mei X, Yuan H, Ning J. Bivalent Organophosphorus Compounds—Synthesis and Acetylcholinesterase Inhibitory Activity. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.736097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ruliang Xie
- a Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing , 100193 , China
| | - Ting Zhang
- b State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing , 100029 , China
| | - Qianfei Zhao
- a Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing , 100193 , China
| | - Tao Zhang
- a Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing , 100193 , China
| | - Xiangdong Mei
- a Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing , 100193 , China
| | - Huizhu Yuan
- a Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing , 100193 , China
| | - Jun Ning
- a Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing , 100193 , China
| |
Collapse
|
33
|
Chen YP, Zhang ZY, Li YP, Li D, Huang SL, Gu LQ, Xu J, Huang ZS. Syntheses and evaluation of novel isoliquiritigenin derivatives as potential dual inhibitors for amyloid-beta aggregation and 5-lipoxygenase. Eur J Med Chem 2013; 66:22-31. [PMID: 23786711 DOI: 10.1016/j.ejmech.2013.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
A series of new isoliquiritigenin (ISL) derivatives were synthesized and evaluated as dual inhibitors for amyloid-beta (Aβ) aggregation and 5-lipoxygenase (5-LO). It was found that all these synthetic compounds inhibited Aβ (1-42) aggregation effectively with their IC₅₀ values ranged from 2.2 ± 1.5 μM to 23.8 ± 2.0 μM. These derivatives also showed inhibitory activity to 5-LO with their IC50 values ranged from 6.1 ± 0.1 μM to 35.9 ± 0.3 μM. Their structure-activity relationships (SAR) and mechanisms of inhibitions were studied. This study provided potentially important information for further development of ISL derivatives as multifunctional agents for Alzheimer's disease (AD) treatment.
Collapse
Affiliation(s)
- Yi-Ping Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23:2636-41. [DOI: 10.1016/j.bmcl.2013.02.095] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/09/2013] [Accepted: 02/21/2013] [Indexed: 01/07/2023]
|
35
|
Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 2013; 14:5608-32. [PMID: 23478436 PMCID: PMC3634507 DOI: 10.3390/ijms14035608] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/31/2013] [Accepted: 02/28/2013] [Indexed: 01/14/2023] Open
Abstract
Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.
Collapse
|
36
|
Shi DH, Huang W, Li C, Wang LT, Wang SF. Synthesis, biological evaluation and molecular modeling of aloe-emodin derivatives as new acetylcholinesterase inhibitors. Bioorg Med Chem 2013; 21:1064-73. [PMID: 23380475 DOI: 10.1016/j.bmc.2013.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
Abstract
A series of aloe-emodin derivatives were designed, synthesized and evaluated as acetylcholinesterase inhibitors. Most of the new prepared compounds showed remarkable acetylcholinesterase inhibitory activities. Among them, the compound 1-((4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl) methyl) pyridin-1-ium chloride (C3) which has a pyridinium substituent possessed the best inhibitory activity of acetylcholinesterase (IC(50)=0.09 μM). The docking study performed with AUTODOCK demonstrated that C3 could interact with the catalytic active site (CAS) and the peripheral anionic site (PAS) of acetylcholinesterase.
Collapse
Affiliation(s)
- Da-Hua Shi
- School of Ocean, Hainan University, Haikou 570228, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Xie R, Zhao Q, Zhang T, Fang J, Mei X, Ning J, Tang Y. Design, synthesis and biological evaluation of organophosphorous-homodimers as dual binding site acetylcholinesterase inhibitors. Bioorg Med Chem 2013. [DOI: 10.1016/j.bmc.2012.10.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Ferrocene tripeptide Gly-Pro-Arg conjugates: Synthesis and inhibitory effects on Alzheimer’s Aβ1–42 fibrillogenesis and Aβ-induced cytotoxicity in vitro. Bioorg Med Chem 2013; 21:395-402. [DOI: 10.1016/j.bmc.2012.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022]
|
39
|
|
40
|
Abstract
In this chapter we provided the overall background to the subject of protein aggregation and fibrillogenesis in amyloidogenesis, with introduction and brief discussion of the various topics that are included with the coming chapters. The division of the book into basic science and clinical science sections enables correlation of the topics to be made. The many proteins and peptides that have currently been found to undergo fibrillogenesis are tabulated. A broad technical survey is made, to indicate the vast array of techniques currently available to study aspects of protein oligomerization, aggregation and fibrillogenesis. These are split into three groups and tabulated, as the microscopical techniques, the analytical and biophysical methods, and the biochemical and cellular techniques. A few techniques are discussed, but in most cases only a link to relevant recent literature is provided.
Collapse
|