1
|
Yu X, Huang J, Wu C, Zhang W. Biocompatible autonomous self-healing PVA-CS/TA hydrogels based on hydrogen bonding and electrostatic interaction. Sci Rep 2025; 15:1893. [PMID: 39805869 PMCID: PMC11730298 DOI: 10.1038/s41598-025-85298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
The biocompatible autonomous self-healing hydrogels have great potential in biomedical applications. However, the fairly weak tensile strength of the hydrogels seriously hinders their application. Here, we introduced chitosan (CS) into the polyvinyl alcohol (PVA)-tannic acid (TA) hydrogel and investigated the effects of the CS content, as CS can not only form reversible H bonds with PVA and TA but also form reversible electrostatic interactions with TA. Since the bond energy of electrostatic interaction is much stronger than that of the H bond, the tensile strength and self-healing properties of PVA-TA hydrogel can potentially be improved by adding the CS. The results suggested that when the PVA content and the total content of CS and TA were fixed (PVA: 30 wt.%; CS + TA: 3 wt.%) and the CS content was increased to 1 wt.%, the tensile strength of the PVA-CS/TA hydrogel could be up to 447 kPa, and the self-healing efficiency remained at 84% in 2 h. Compared with the reported self-healing hydrogels with similar biocompatibility and self-healing properties, whose tensile strength is usually less than 300 kPa, the PVA-CS/TA hydrogel prepared here shows a significant improvement in the tensile strength.
Collapse
Affiliation(s)
- Xiaogang Yu
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering, Xinyu University, Xinyu, 338004, China
| | - Jinxin Huang
- State Key Laboratory of Structure Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structure Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China
| | - Wei Zhang
- State Key Laboratory of Structure Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Aribuga H, Ertugral U, Alcay Y, Yavuz O, Yildirim MS, Ozdemir E, Kaya K, Sert ABO, Kok FN, Tuzun NŞ, Yilmaz I. A new Fe 3+-selective, sensitive, and dual-channel turn-on probe based on rhodamine carrying thiophenecarboxaldehyde: Smartphone application and imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122060. [PMID: 36395583 DOI: 10.1016/j.saa.2022.122060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A new dual-channel probe based on rhodamine B derivative (MSB) was successfully designed, synthesized, characterized by Nuclear Magnetic Resonance (NMR) Spectroscopy, Fourier Transform Infrared Spectrophotometer (FTIR), Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS), X-ray Photoelectron Spectroscopy (XPS), and Single Crystal X-rayDiffraction, and the sensing abilities toward Fe3+ cation have been demonstrated and the probe was successfully utilized for fluorescence imaging of Fe3+ in living cells. The probe demonstrated quite fast, sensitive, and selective response to Fe3+ by causing an extreme enhancement in UV-vis and fluorescence spectroscopy techniques in the buffered aqueous media which makes MSB a dual-channel probe. While the color of MSB solution was initially light yellow, it turned pink in the presence of Fe3+, which provided highly selective naked-eye determination among several ions as alkaline, alkaline-earth, and transition metal ions. After that, the probe was easily applied to paper strips and real samples such as drinking waters and supplementary iron tablets for sensing Fe3+ in an aqueous solution. The detection limit (LOD) and the response time of the probe were determined as 4.85x10-9 M and 4 min, respectively, which are quite lower compared with other rhodamine based Fe3+ sensors in the literature. According to Job's plot, 1H NMR titration, MALDI-TOF MS, XPS, and DFT study techniques, the complexation ratio between MSB and Fe3+ was found as 1:1. Moreover, the spectral response was reversible with alternately addition of Fe3+ or Na2EDTA to the MSB solution. In addition, fluorescence imaging in NIH/3T3 mouse fibroblast cells and studies in real samples with a quite high recovery rate exhibited that the probe is qualified for detection of Fe3+ ion with multiple practical usages.
Collapse
Affiliation(s)
- Hulya Aribuga
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Utku Ertugral
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Yusuf Alcay
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ozgur Yavuz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | | | - Emre Ozdemir
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Kerem Kaya
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ayse Buse Ozdabak Sert
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, MOBGAM, 34469 Maslak, Istanbul, Turkey; Istanbul Technical University, Molecular Biology and Genetics Department, 34469 Maslak, Istanbul, Turkey
| | - Fatma Nese Kok
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, MOBGAM, 34469 Maslak, Istanbul, Turkey; Istanbul Technical University, Molecular Biology and Genetics Department, 34469 Maslak, Istanbul, Turkey
| | - Nurcan Şenyurt Tuzun
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ismail Yilmaz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
3
|
Saleem M, Hanif M, Rafiq M, Hassan M, Tahir T. Synthesis, Characterization, Optical Properties, Molecular Modeling and Urease Inhibition Analysis of Organic Ligands and Their Metal Complexes. J Fluoresc 2023; 33:113-124. [PMID: 36282345 DOI: 10.1007/s10895-022-03032-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 02/04/2023]
Abstract
Recently, screening of efficient urease inhibitors by employing organic small molecules metalloderivatives interests the scientific community due to their efficacy for treatment of urease triggered health complications. This study comprises the synthesis, urease inhibition activity, optical analysis and molecular modeling of hydrazinecarbothioamide and hydrazinecarboxamide metalloderivatives. Characterization of synthesized materials was done by UV-visible, fluorescence, NMR and FTIR spectroscopic analysis. Metalloderivatization of ligands induce increment in urease inhibition potential and effect was prominent for copper complexes with 10-fold enhancement, cobalt complex with 3.5 fold's enhancement and palladium with 2-fold increment in the inhibition efficacy toward urease when it was compared with reference urease inhibitor. Zinc and iron complexes cause declined urease inhibition activity of the bare ligand. The overall activity of hydrazinecarbothioamide slightly exceeds than that of hydrazinecarboxamide, possibly due to larger complexation ability of sulfur-based ligand in comparison to oxygenated derivatives i.e., hydrazinecarboxamide. The enzyme inhibition kinetics for the most active complexes represent the mixed type urease inhibition for 3a and competitive urease inhibition for 5a, as determined by Lineweaver-Burk plots. The docked scoring values for both the ligands were calculated to be 61.34, 64.72, 56.68, 62.94, 64.98 and 58.98. Three active hydrogen bonds were observed in docking complex upon computational analysis of most potent metallodrug 3a inside active region of targeted protein.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan. .,Department of Chemistry, Thal University Bhakkar, 30000, Bhakkar, Pakistan.
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub campus layyah-31200, Faisalabad, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, 6300, Bahawalpur, Pakistan
| | - Mubashir Hassan
- Institute of Molecular biology and Biotechnology/(IMBB), The University of Lahore, 1-KM, Defence Road, Bhubtian Chowk, Lahore, Pakistan
| | - Tehreem Tahir
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, 6300, Bahawalpur, Pakistan
| |
Collapse
|
4
|
Incorporation of Rhodamine into a Host Polymer via In-Situ Generated Isocyanato Group and Application for the Detection of Cu2+ Ion. CRYSTALS 2022. [DOI: 10.3390/cryst12060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A rhodamine-based fluorescent polymer P(MMA-co-RB) has been synthesized via an intermediate NCO-containing polymer generated by the Lossen rearrangement reaction. The fluorescent property of P(MMA-co-RB) with regard to metal ions, such as Cu2+, Fe3+, Cr3+, Al3+, Zn2+, Co2+, Sn2+ and Ag+, was studied by fluorescence emission spectroscopy. The results demonstrate that the fluorescence intensity of P(MMA-co-RB) decreased gradually with an increase of the concentration of Cu2+ ion. Furthermore, a test strip made of P(MMA-co-RB) can be used for fast and quantitative determination of Cu2+ ion. In the presence of Cu2+ ion, the sensory tester undergoes distinct changes in fluorescence intensity and visible color.
Collapse
|
5
|
Khairy GM, Amin AS, Moalla SMN, Medhat A, Hassan N. Fluorescence determination of Fe( iii) in drinking water using a new fluorescence chemosensor. RSC Adv 2022; 12:27679-27686. [PMID: 36276051 PMCID: PMC9516559 DOI: 10.1039/d2ra05144c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
A new fluorescence chemosensor based on (Z)-2-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)hydrazine-1-carbothioamide (CEHC) has been developed for the determination of Fe(iii) in drinking water. The optimum conditions were acetate buffer solution with a pH 5.0. In this approach, the determination of Fe(iii) is based on static quenching of the luminescence of the probe upon increasing concentrations of Fe(iii). The CEHC sensor binds Fe(iii) in a 1 : 1 stoichiometry with a binding constant Ka = 1.30 × 104 M−1. CEHC responds to Fe(iii) in a way that is more sensitive, selective, and quick to turn off the fluorescence than to other heavy metal ions. Selectivity was proved against seven other metal ions (Mn(ii), Al(iii), Cu(ii), Ni(ii), Zn(ii), Pb(ii), and Cd(ii)). The calibration curve was constructed based on the Stern–Volmer equation. The linear range was 2.50–150 μM with the correlation coefficient of 0.9994, and the LOD was 0.76 μM. The method was successfully applied to determine Fe(iii) in drinking water samples, and the accuracy of the chemosensor was validated by atomic absorption spectrometry. A new fluorescence chemosensor based on (Z)-2-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)hydrazine-1-carbothioamide (CEHC) has been developed for the determination of the fluorescence probe of Fe(iii) in drinking water.![]()
Collapse
Affiliation(s)
- Gasser M. Khairy
- Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Alaa S. Amin
- Department of Chemistry, Faculty of Science, Benha University, Egypt
| | - Sayed M. N. Moalla
- Department of Chemistry, Faculty of Science, Port Said University, Egypt
| | - Ayman Medhat
- Department of Chemistry, Faculty of Science, Port Said University, Egypt
| | - Nader Hassan
- Department of Chemistry, Faculty of Science, Port Said University, Egypt
| |
Collapse
|
6
|
Manigandan S, Muthusamy A, Nandhakumar R, David CI, Anand S. Synthesis, characterization, theoretical investigations and fluorescent sensing behavior of oligomeric azine-based Fe3+Chemosensors. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211055675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three azine oligomeric esters were synthesized, characterized by IR, UV, 1H, 13C{1H} and GPC technique, and applied to chemosensor application. The sensitivity response of the oligomers towards the metal ion was evaluated for a metal ion series. The results have shown selective and sensitive “turn off” fluorescence response towards Fe3+ ion in DMF/H2O (1:1, pH: 7.4, fluorophore: 5 μM) solution. The binding stoichiometry and binding constant of the fluorophores were calculated using the Stern–Volmer equation and Benesi–Hildebrand plots, respectively. The quenching of fluorophores on the addition of Fe3+ ion indicates the capability of fluorophore towards quantitative analysis of Fe3+. The dimer of oligomers was theoretically studied using DFT, B3LYP/6-311G level basic set to support and explain the quenching mechanism of LMCT, PET process and to explain the DC, AC electrical studies results. The electrical conductivity measurements of solid-state, I2 doped and undoped oligomers were carried out and the conductivity gradually increases with increase in iodine vapor contact time of oligomers. The electrical conductivity was related with band gap and charge density values of imine nitrogen obtained by Huckel calculations. The dielectric measurements at different temperatures and frequencies were made by two probe method. Among the oligomers, EBHAP has recorded a high dielectric constant at the low applied frequency of 50 Hz at 373 K due to loosely attached π bonds resulting good polarization.
Collapse
Affiliation(s)
- Subramani Manigandan
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
| | - Athianna Muthusamy
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
| | - Raju Nandhakumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, India
| | - Charles Immanuel David
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, India
| | - Siddeswaran Anand
- Department of Chemistry, Muthayammal Engineering College, Namakkal, India
| |
Collapse
|
7
|
Manigandan S, Muthusamy A, Nandhakumar R, David CI. Recognition of Mn2+ Ion by Azine Based Fluorescent Chemo Sensor and Its Theoretical Investigation. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21350121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
BODIPY-Pyridylhydrazone Probe for Fluorescence Turn-On Detection of Fe3+ and Its Bioimaging Application. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel pyridylhydrazone-tethered BODIPY (BODIPY-PH) was synthesized, fully characterized via nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopic (FTIR), and single-crystal X-ray diffraction (SC-XRD) techniques, and developed for the selective detection of Fe3+ through fluorescent enhancement process. This derivative showed 1:1 binding with Fe3+ in an acetonitrile-water mixture (1:9 v/v) with the binding constant (K) of 5.4 × 104 M−1 and the limit of detection of 0.58 µM. The Fe3+ complexation reaction has been proved to be a reversible process and could be effectively repeated up to three cycles. The electronic properties of BODIPY-PH and its Fe3+ complex modeled by the density functional theory (DFT) method suggested the presence of chelation-enhanced fluorescence (CHEF) effect in the Fe3+ binding reaction. The X-ray absorption spectroscopy (XAS) probed at Fe K-edge confirmed the complex formation between BODIPY-PH and the Fe3+ in an octahedral geometry. Finally, bioimaging against human embryonic kidney (Hek293) cell, through confocal fluorescence microscopic technique indicated that the BODIPY-PH displayed good permeability and low toxicity toward the tested cell lines and showed enhanced fluorescent signal in the cells incubated with Fe3+ proving its capability for Fe3+ analysis in cellular matrix.
Collapse
|
9
|
Li K, Xue Y, Zhang L, Han Y. β-FeOOH/Fe-TiO 2 heterojunctions on Ti for bacteria inactivation under light irradiation and biosealing. Biomater Sci 2020; 8:6004-6016. [PMID: 32996477 DOI: 10.1039/d0bm01290d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraosseous transcutaneous implants transferring mechanical stress directly from the skeleton to a prosthesis are an area of biological mechanics. However, bacterial invasion and weak biosealing with skin tissue usually induce implant failure. In this paper, composite coatings consisting of β-FeOOH as an outer layer and Fe-TiO2 as an inner layer were prepared on Ti via micro-arc oxidation and hydrothermal treatment (HT). The surface microstructures and optical absorption properties of the coatings were observed, the production of reactive oxygen species (ROS) was measured, Staphylococcus aureus (S. aureus) and fibroblast behaviors were studied in vitro, and bacteria inactivation and skin tissue responses on different surfaces were evaluated in vivo. The results show that Fe3+ was doped into TiO2 and β-FeOOH nanoparticles were gradually deposited on TiO2 during HT treatment, forming β-FeOOH/Fe-TiO2 heterojunctions. The light absorption of the composite coatings shifted to the longer wavelength region because of a narrowed TiO2 bandgap and the formation of heterojunctions. Under light irradiation, photoinduced electrons and holes on the heterojunctions were separated efficiently. Via optimizing the amount of Fe3+ in TiO2, ROS that formed at the heterojunctions after light irradiation for 10 min could kill 80% of S. aureus compared with pure Ti in vitro, but they did not affect fibroblast behavior, including proliferation and phenotyping. In vivo, the optimized β-FeOOH/Fe-TiO2 heterojunctions, upon light irradiation, could inhibit bacterial infection, suppress an inflammatory response, and promote integration with skin tissue. Such results provide a new perspective suggesting the potential application of β-FeOOH/Fe-TiO2 heterojunctions in percutaneous Ti implants, especially in infected cases.
Collapse
Affiliation(s)
- Kai Li
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | |
Collapse
|
10
|
|
11
|
A rhodamine–bistriazole based fluorescent and colorimetric sensor containing a phenyl linker for Fe(III) detection. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01349-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Manigandan S, Muthusamy A, Nandhakumar R, Immanuel David C. Recognition of Fe3+ by a new azine-based fluorescent “turn-off” chemosensor and its binding mode analysis using DFT. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Hanif M, Rafiq M, Yousuf M, Kotwica-Mojzych K, Saleem M, Mojzych M. Organic small molecular receptors as fluorimetric/bioimaging probe for extracellular/intracellular zinc sensation. Bioorg Chem 2019; 94:103398. [PMID: 31679837 DOI: 10.1016/j.bioorg.2019.103398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus Layyah, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Yousuf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Radziwiłłowska 11, (Collegium Medicum), 20-080 Lublin, Poland
| | - Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sub-campus Bhakkar, Pakistan.
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland.
| |
Collapse
|
14
|
Sahoo SK, Crisponi G. Recent Advances on Iron(III) Selective Fluorescent Probes with Possible Applications in Bioimaging. Molecules 2019; 24:E3267. [PMID: 31500326 PMCID: PMC6767235 DOI: 10.3390/molecules24183267] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
Iron(III) is well-known to play a vital role in a variety of metabolic processes in almost all living systems, including the human body. However, the excess or deficiency of Fe3+ from the normal permissible limit can cause serious health problems. Therefore, novel analytical methods are developed for the simple, direct, and cost-effective monitoring of Fe3+ concentration in various environmental and biological samples. Because of the high selectivity and sensitivity, fast response time, and simplicity, the fluorescent-based molecular probes have been developed extensively in the past few decades to detect Fe3+. This review was narrated to summarize the Fe3+-selective fluorescent probes that show fluorescence enhancement (turn-on) and ratiometric response. The Fe3+ sensing ability, mechanisms along with the analytical novelties of recently reported 77 fluorescent probes are discussed.
Collapse
Affiliation(s)
- Suban K. Sahoo
- Department of Applied Chemistry, S.V. National Institute Technology, Surat 395007, Gujrat, India
| | - Guido Crisponi
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
15
|
Kailasa SK, Ha S, Baek SH, Phan LMT, Kim S, Kwak K, Park TJ. Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:834-842. [PMID: 30813090 DOI: 10.1016/j.msec.2019.01.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/06/2023]
|
16
|
Sarkar PK, Kar P, Halder A, Lemmens P, Pal SK. Development of Highly Efficient Dual Sensor Based on Carbon Dots for Direct Estimation of Iron and Fluoride Ions in Drinking Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201900453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Probir Kumar Sarkar
- Department of ChemicalBiological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake Kolkata 700 106 India
- Department of PhysicsAnanda Mohan College, 102/1, Raja Rammohan Sarani Kolkata–700009 India
| | - Prasenjit Kar
- Department of ChemicalBiological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake Kolkata 700 106 India
| | - Animesh Halder
- Department of ChemicalBiological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake Kolkata 700 106 India
- Technical Research Centre (TRC)S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake Kolkata 700106 India
| | - Peter Lemmens
- Institute for Condensed Matter PhysicsTU Braunschweig, Mendelssohnsstr 3 38106 Braunschweig Germany, and Laboratory for Emergent Nanometrology, Braunschweig, Germany
| | - Samir Kumar Pal
- Department of ChemicalBiological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake Kolkata 700 106 India
- Technical Research Centre (TRC)S. N. Bose National Centre for Basic Sciences Block JD, Sector III, Salt Lake Kolkata 700106 India
| |
Collapse
|
17
|
Hanif M, Kanwal F, Rafiq M, Hassan M, Mustaqeem M, Seo SY, Zhang Y, Lu C, Chen T, Saleem M. Symmetrical Heterocyclic Cage Skeleton: Synthesis, Urease Inhibition Activity, Kinetic Mechanistic Insight, and Molecular Docking Analyses. Molecules 2019; 24:E312. [PMID: 30654516 PMCID: PMC6359172 DOI: 10.3390/molecules24020312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/30/2022] Open
Abstract
The present study focuses on the design and synthesis of a cage-like organic skeleton containing two triazole rings jointed via imine linkage. These molecules can act as urease inhibitors. The in-vitro urease inhibition screening results showed that the combination of the two triazole skeleton in the cage-like morphology exhibited comparable urease inhibition activity to that of the reference thiourea while the metallic complexation, especially with copper, nickel, and palladium, showed excellent activity results with IC50 values of 0.94 ± 0.13, 3.71 ± 0.61, and 7.64 ± 1.21 (3a⁻c), and 1.20 ± 0.52, 3.93 ± 0.45, and 12.87 ± 2.11 µM (4a⁻c). However, the rest of compounds among the targeted series exhibited a low to moderate enzyme inhibition potential. To better understand the compounds' underlying mechanisms of the inhibitory effect (3a and 4a) and their most active metal complexes (3b and 4b), we performed an enzymatic kinetic analysis using the Lineweaver⁻Burk plot in the presence of different concentrations of inhibitors to represent the non-competitive inhibition nature of the compounds, 3a, 4a, and 4b, while mixed type inhibition was represented by the compound, 3b. Moreover, molecular docking confirmed the binding interactive behavior of 3a within the active site of the target protein.
Collapse
Affiliation(s)
- Muhammad Hanif
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
- Department of Chemistry, GC University Faisalabad, Sub campus Layyah 31200, Pakistan.
| | - Fariha Kanwal
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan.
| | - Mubashir Hassan
- College of Natural Science, Department of Biology, Kongju National University, Gongju, Chungcheongnam 32588, Korea.
| | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha, Sub-campus Bhakkar 30000, Pakistan.
| | - Sung-Yum Seo
- College of Natural Science, Department of Biology, Kongju National University, Gongju, Chungcheongnam 32588, Korea.
| | - Yunlong Zhang
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Changrui Lu
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Ting Chen
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sub-campus Bhakkar 30000, Pakistan.
| |
Collapse
|
18
|
Overview of the chemosensor ligands used for selective detection of anions and metal ions (Zn2+, Cu2+, Ni2+, Co2+, Fe2+, Hg2+). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Jiang C, Wang M, Wang Y, Tang X, Zhang Y, Zhang H, Ma L, Wang J. Synthesis and evaluation of two novel rhodamine-based fluorescence probes for specific recognition of Fe c+ ion. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Bishnoi S, Milton MD. Selective and sensitive novel benzimidazolium-based fluorescent probes for micromolar detection of Fe3+ ions in pure aqueous media. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Li C, Yin FF, Zhu WJ, Fang M, Wu ZY, Xu Y, Wang HL, Wang Y. A New Fluorescence Chemosensor for Hg2+ Based on Carbazole and Thiourea. HETEROCYCLES 2017. [DOI: 10.3987/com-15-13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Li J, Wang Q, Guo Z, Ma H, Zhang Y, Wang B, Bin D, Wei Q. Highly selective fluorescent chemosensor for detection of Fe(3+) based on Fe3O4@ZnO. Sci Rep 2016; 6:23558. [PMID: 27000972 PMCID: PMC4802302 DOI: 10.1038/srep23558] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/09/2016] [Indexed: 11/09/2022] Open
Abstract
The combination of fluorescent nanoparticles and specific molecular probes appears to be a promising strategy for developing fluorescent nanoprobes. In this work, L-cysteine (L-Cys) capped Fe3O4@ZnO core-shell nanoparticles were synthesized for the highly selective detection of Fe3+. The proposed nanoprobe shows excellent fluorescent property and high selectivity for Fe3+ due to the binding affinity of L-Cys with Fe3+. The binding of Fe3+ to the nanoprobe induces an apparent decrease of the fluorescence. Thus a highly selective fluorescent chemosensor for Fe3+ was proposed based on Fe3O4@ZnO nanoprobe. The magnetism of the nanoprobe enables the facile separation of bound Fe3+ from the sample solution with an external magnetic field, which effectively reduces the interference of matrix. The detection limit was 3 nmol L−1 with a rapid response time of less than 1 min. The proposed method was applied to detect Fe3+ in both serum and wastewater samples with acceptable performance. All above features indicated that the proposed fluorescent probe as sensing platform held great potential in applications of biological and analytical field.
Collapse
Affiliation(s)
- Jingshuai Li
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Qi Wang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Zhankui Guo
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Bing Wang
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Du Bin
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
23
|
Mun G, Jung SH, Ahn A, Lee SS, Choi MY, Kim DH, Kim JY, Jung JH. Fluorescence imaging for Fe3+ in Arabidopsis by using simple naphthalene-based ligands. RSC Adv 2016. [DOI: 10.1039/c6ra09133d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Naphthalene-based probes 1 and 1A were found to dramatically decrease fluorescence upon addition of Fe3+, but not with other metal ions. Furthermore, 1 and 1A displayed high fluorescence quenched-imaging for Fe3+ in Arabidopsis as well as nanofibruous films.
Collapse
Affiliation(s)
- Gyuri Mun
- Department of Chemistry
- Gyeongsang National University
- Jinju
- Republic of Korea
| | - Sung Ho Jung
- Department of Chemistry
- Gyeongsang National University
- Jinju
- Republic of Korea
| | - Ahreum Ahn
- Department of Chemistry
- Gyeongsang National University
- Jinju
- Republic of Korea
| | - Shim Sung Lee
- Department of Chemistry
- Gyeongsang National University
- Jinju
- Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry
- Gyeongsang National University
- Jinju
- Republic of Korea
| | - Dong Hyeon Kim
- Division of Life Science
- Gyeongsang National University
- Jinju
- Republic of Korea
| | - Jae-Yean Kim
- Division of Life Science
- Gyeongsang National University
- Jinju
- Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry
- Gyeongsang National University
- Jinju
- Republic of Korea
| |
Collapse
|
24
|
Feyisa Bogale R, Ye J, Sun Y, Sun T, Zhang S, Rauf A, Hang C, Tian P, Ning G. Highly selective and sensitive detection of metal ions and nitroaromatic compounds by an anionic europium(iii) coordination polymer. Dalton Trans 2016; 45:11137-44. [DOI: 10.1039/c6dt01636g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A luminescent Eu(iii)-based coordination polymer has been synthesized, which can serve as a visual selective sensor for the detection of 4-nitrophenol and Fe3+ ions via a fluorescence quenching mechanism.
Collapse
Affiliation(s)
- Raji Feyisa Bogale
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Yuan Sun
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Tongxin Sun
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Siqi Zhang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Abdul Rauf
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Cheng Hang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Peng Tian
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
25
|
Santhoshkumar S, Velmurugan K, Prabhu J, Radhakrishnan G, Nandhakumar R. A naphthalene derived Schiff base as a selective fluorescent probe for Fe2+. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Saleem M, Lee KH. Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 2015. [DOI: 10.1039/c5ra11388a] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review, we cover the recent developments in fluorogenic and chromogenic sensors for Cu2+, Fe2+/Fe3+, Zn2+and Hg2+.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| | - Ki Hwan Lee
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| |
Collapse
|
27
|
Lin J, Zhu C, Liu X, Chen B, Zhang Y, Xue J, Liu J. A Highly Selective and Turn-on Fluorescent Probe for Fe3+Ion Based on Perylene Tetracarboxylic Diimide. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Geng T, Huang R, Wu D. Turn-on fluorogenic and chromogenic detection of Fe3+and Cr3+in a completely water medium with polyacrylamide covalently bonding to rhodamine B using diethylenetriamine as a linker. RSC Adv 2014. [DOI: 10.1039/c4ra08640f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Bao X, Shi J, Nie X, Zhou B, Wang X, Zhang L, Liao H, Pang T. A new Rhodamine B-based 'on-off' chemical sensor with high selectivity and sensitivity toward Fe(3+) and its imaging in living cells. Bioorg Med Chem 2014; 22:4826-35. [PMID: 25065941 DOI: 10.1016/j.bmc.2014.06.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
Abstract
A new fluorescent chemosensor based on a Rhodamine B and pyrrole conjugate (RBPY) has been designed and synthesized. UV-vis absorption and fluorescence spectroscopic studies show that RBPY exhibits a high selectivity and sensitivity toward Fe(3+) among many other metal cations in a MeOH/H2O solution (3:2, v/v, pH 7.10, HEPES buffer, 0.1mM) by forming a 1:1 complex with Fe(3+). Furthermore, results reveal that the formation of the RBPY-Fe(3+) complex is fully reversible in the presence of sulfide anions and could also be used as an efficient sensor for S(2-). Importantly, fluorescence microscopy experiments further demonstrated that RBPY can be utilized as a fluorescent probe for the detection of Fe(3+) in human liver (L-02) cells.
Collapse
Affiliation(s)
- Xiaofeng Bao
- Department of Biochemical Engineering, Nanjing University of Science & Technology, Chemical Engineering Building B308, 200 Xiaolinwei, Nanjing 210094, PR China.
| | - Jiaxin Shi
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xuemei Nie
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Baojing Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Luyong Zhang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hong Liao
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tao Pang
- Jiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|