1
|
Morsy NA, Omar MA, Ebrahium MM, Srour AM. New alkanesulfonate-based quinazolinone-acetohydrazide scaffolds: Rational design, synthesis, molecular docking, anticancer properties and potential EGFR and its T790M/L858R mutants inhibitors. Bioorg Chem 2025; 160:108405. [PMID: 40187030 DOI: 10.1016/j.bioorg.2025.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Leveraging their potential anticancer properties, two novel series of quinazolinone-based scaffolds, 3a-i and 7a-i, have been designed, synthesized, and scanned for their anticancer efficacy across three diverse human cancer cell lines, HepG-2, MCF-7, and HCT-116, alongside a normal cell line (BJ-1). Erlotinib and Doxorubicin served as the reference drugs. Notably, derivatives 3i and 7f exhibited the most potent activity against HepG-2, with IC50 values of 1.66 μM and 1.67 μM, respectively, demonstrating about two-fold greater potency than erlotinib and doxorubicin (IC50 = 2.85 μM and 4.25 μM, respectively). Additionally, compound 7i showed superior efficacy against MCF-7 with an IC50 of 3.25 μM, outperforming erlotinib and doxorubicin (IC50 = 3.56 μM and 5.38 μM, respectively). In the case of colon cancer (HCT-116), compound 7i also displayed the highest cytotoxic activity compared to erlotinib and doxorubicin (IC50 = 1.20 μM versus 3.05 and 5.70 μM, respectively). Notably, most tested compounds exhibited a favorable safety profile against the normal human cell line (BJ-1). Furthermore, the derivatives demonstrated significant inhibitory properties on the Epidermal Growth Factor Receptor (EGFR) besides its mutations, EGFRL858R and EGFRT790M, compared with Erlotinib, the reference drug. Compound 7f notably increased Bax and Bcl-2 levels by 1.9 and 1.3 folds, respectively, relative to Erlotinib. Moreover, 7f induced the apoptotic effect, arrested the cell cycle at the G0/G1 phase, and halted the mitotic cycle in HepG-2 cells. To further validate these findings, docking simulations of the promising derivatives 7i and 7f were conducted to assess their anticipated binding affinities with EGFR and its T790M/L858R mutants. Thus, compound 7f has the potential to be developed into a potent anticancer agent.
Collapse
Affiliation(s)
- Nagy A Morsy
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia; Chemistry of Natural Compounds Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| | - Mohamed A Omar
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Mohamad M Ebrahium
- Department of Chemistry, Applied College at Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Aladdin M Srour
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
2
|
Nguyen MK, Nguyen VP, Yang SY, Min BS, Kim JA. Astraoleanosides E-P, oleanane-type triterpenoid saponins from the aerial parts of Astragalus membranaceus Bunge and their β-glucuronidase inhibitory activity. Bioorg Chem 2024; 145:107230. [PMID: 38387397 DOI: 10.1016/j.bioorg.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent β-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for β-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where β-glucuronidase plays a crucial role.
Collapse
Affiliation(s)
- Manh Khoa Nguyen
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; National Institute of Medicinal Materials (NIMM), Hanoi 100000, Vietnam
| | - Viet Phong Nguyen
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| | - Jeong Ah Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Sahoo S, Rao MA, Pal S. An Aldehyde-Driven, Fe(0)-Mediated, One-Pot Reductive Cyclization: Direct Access to 5,6-Dihydro-quinazolino[4,3- b]quinazolin-8-ones and Photophysical Study. J Org Chem 2023. [PMID: 37471271 DOI: 10.1021/acs.joc.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A short, proficient, and regioselective synthesis of biheterocyclic 5,6-dihydro-quinazolino[4,3-b]quinazolin-8-ones has been revealed via an Fe(0)-powder-mediated, one-pot reductive cyclization protocol. Mechanistic investigation proved that water acts as a source of hydrogen for the reduction of the nitro group and the reaction rate was accelerated by an aldehyde. The designed transformation works under aerobic conditions, providing a series of bio-inspired molecular scaffolds. In addition, the photophysical study showed blue fluorescence emission with a good fluorescence quantum yield.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Manthri Atchuta Rao
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
4
|
Sanati-Tirgan P, Eshghi H, Mohammadinezhad A. Designing a new method for growing metal-organic framework (MOF) on MOF: synthesis, characterization and catalytic applications. NANOSCALE 2023; 15:4917-4931. [PMID: 36779859 DOI: 10.1039/d2nr06729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks as a unique class of high-surface-area materials have gained considerable attention due to their characteristic properties. In this perspective, herein, we report an eco-friendly and inexpensive route for the synthesis of 4(3H)-quinazolinones using magnetically separable core-shell-like bimetallic Fe3O4-MAA@Co-MOF@Cu-MOF NPs as environmentally-friendly heterogeneous catalysts. To the best of our knowledge, this is the first example of the integration of two different types of MOFs, which contain two different metal ions (Co2+ in the core and Cu2+ in the shell) using an external ligand. Our study not only introduces a novel nanostructured catalyst for the organic reaction but also presents a new strategy for the combination of two MOFs in one particle at the nanometer level. To survey the structural and compositional features of the synthesized nanocatalyst, a variety of spectroscopic and microscopic techniques including FT-IR, XRD, BET, TEM, HR-TEM, FE-SEM, EDX, EDX-mapping, TGA, VSM, and ICP-OES were employed. The combination of magnetic Co-MOF with Cu-MOF leads to achieving unique structural and compositional properties for Fe3O4-MAA@Co-MOF@Cu-MOF NPs with a particle size of 20-70 nm, mesostructure, and relatively large specific surface area (236.16 m2 g-1). The as-prepared nanostructured catalyst can be an excellent environment catalyst for the synthesis of a wide library of 4(3H)-quinazolinones derivatives, including electron-donating and electron-withdrawing aromatic, heteroaromatic, and aliphatic compounds under solvent-free conditions much better than the parent precursors. Moreover, by investigating the longevity of the nanocatalyst, the conclusion could be derived that the aforesaid nanocatalyst is stable under reaction conditions and could be recycled for at least seven recycle runs without a discernible decrease in its catalytic activity.
Collapse
Affiliation(s)
- Parvin Sanati-Tirgan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| | - Arezou Mohammadinezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| |
Collapse
|
5
|
Wu W, Fan S, Wu X, Fang L, Zhu J. Cobalt Homeostatic Catalysis for Coupling of Enaminones and Oxadiazolones to Quinazolinones. J Org Chem 2023; 88:1945-1962. [PMID: 36705660 DOI: 10.1021/acs.joc.2c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transition metal catalysis has revolutionized modern synthetic chemistry for its diverse modes of coordination reactivity. However, this versatility in reactivity is also the predominant cause of catalyst deactivation, a persisting issue that can significantly compromise its synthetic value. Homeostatic catalysis, a catalytic process that can sustain its productive catalytic cycle even when chemically disturbed, is proposed herein as an effective tactic to address the challenge. In particular, a cobalt homeostatic catalysis process has been developed for the water-tolerant coupling of enaminones and oxadiazolones to quinazolinones. Dynamic covalent bonding serves as a mechanistic handle for the preferred buffering of water onto enaminone and reverse exchange by a released secondary amine, thus securing reversible entry into cobalt's dormant and active states for productive catalysis. Through this homeostatic catalysis mode, a broad structural scope has been achieved for quinazolinones, enabling further elaboration into distinct pharmaceutically active agents.
Collapse
Affiliation(s)
- Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Babatunde O, Hameed S, Mbachu K, Saleem F, Chigurupati S, Wadood A, Ur R, Venugopal V, Khan K, Taha M, Ekundayo O, Khan M. Evaluation of derivatives of 2,3-dihydroquinazolin-4(1H)-one as inhibitors of cholinesterases and their antioxidant activity: In vitro, in silico, and kinetics studies. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2023; 88:825-840. [DOI: 10.2298/jsc211106005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In search of potent inhibitors of cholinesterase enzymes and antioxidant agents, synthetic derivatives of dihydroquinazolin-4(1H)-one (1?38) were evaluated as potential anti-Alzheimer agents through in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitions and radical (DPPH and ABTS) scavenging activities. The structure?activity relationship (SAR) was mainly based on the different substituents at the aryl part which showed a significant effect on the inhibitory potential of enzymes and radical scavenging activities. The kinetic studies of most active compounds showed a noncompetitive mode of inhibition for AChE and a competitive mode of inhibition for the BChE enzyme. Additionally, molecular modelling studies were carried out to investigate the possible binding interactions of quinazolinone derivatives with the active site of both enzymes.
Collapse
Affiliation(s)
- Oluwatoyin Babatunde
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kingsley Mbachu
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan + Department of Chemistry, University of Ibadan, Nigeria
| | - Faiza Saleem
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Rehman Ur
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Khalid Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan + Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Maria Khan
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Ullah H, Zada H, Khan F, Hayat S, Rahim F, Hussain A, Manzoor A, Wadood A, Ayub K, Rehman AU, Sarfaraz S. Benzimidazole bearing thiourea analogues: Synthesis, β-glucuronidase inhibitory potential and their molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Synthesis of 2-Aminopyrimidine Derivatives and Their Evaluation as β-Glucuronidase Inhibitors: In Vitro and In Silico Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227786. [PMID: 36431887 PMCID: PMC9693052 DOI: 10.3390/molecules27227786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Currently the discovery and development of potent β-glucuronidase inhibitors is an active area of research due to the observation that increased activity of this enzyme is associated with many pathological conditions, such as colon cancer, renal diseases, and infections of the urinary tract. In this study, twenty-seven 2-aminopyrimidine derivatives 1-27 were synthesized by fusion of 2-amino-4,6-dichloropyrimidine with a variety of amines in the presence of triethylamine without using any solvent and catalyst, in good to excellent yields. All synthesized compounds were characterized by EI-MS, HREI-MS and NMR spectroscopy. Compounds 1-27 were then evaluated for their β-glucuronidase inhibitory activity, and among them, compound 24 (IC50 = 2.8 ± 0.10 µM) showed an activity much superior to standard D-saccharic acid 1,4-lactone (IC50 = 45.75 ± 2.16 µM). To predict the binding mode of the substrate and β-glucuronidase, in silico study was performed. Conclusively, this study has identified a potent β-glucuronidase inhibitor that deserves to be further studied for the development of pharmaceutical products.
Collapse
|
9
|
Newly Designed Quinazolinone Derivatives as Novel Tyrosinase Inhibitor: Synthesis, Inhibitory Activity, and Mechanism. Molecules 2022; 27:molecules27175558. [PMID: 36080324 PMCID: PMC9457556 DOI: 10.3390/molecules27175558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
We synthesized a series of quinazolinone derivates as tyrosinase inhibitors and evaluated their inhibition constants. We synthesized 2-(2,6-dimethylhepta-1,5-dien-1-yl)quinazolin-4(3H)-one (Q1) from the natural citral. The concentration, which led to 50% activity loss of Q1, was 103 ± 2 μM (IC50 = 103 ± 2 μM). Furthermore, we considered Q1 to be a mixed-type and reversible tyrosinase inhibitor, and determined the KI and KIS inhibition constants to be 117.07 μM and 423.63 μM, respectively. Our fluorescence experiment revealed that Q1 could interact with the substrates of tyrosine and L-DOPA in addition to tyrosinase. Molecular docking studies showed that the binding of Q1 to tyrosinase was driven by hydrogen bonding and hydrophobicity. Briefly, the current study confirmed a new tyrosinase inhibitor, which is expected to be developed into a novel pigmentation drug.
Collapse
|
10
|
Ahmed U, Ho KY, Simon SE, Saad SM, Ong SK, Anwar A, Tan KO, Sridewi N, Khan KM, Khan NA, Anwar A. Potential anti-acanthamoebic effects through inhibition of CYP51 by novel quinazolinones. Acta Trop 2022; 231:106440. [PMID: 35378058 DOI: 10.1016/j.actatropica.2022.106440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
Acanthamoeba spp. are free living amoebae which can give rise to Acanthamoeba keratitis and granulomatous amoebic encephalitis. The surface of Acanthamoeba contains ergosterol which is an important target for drug development against eukaryotic microorganisms. A library of ten functionally diverse quinazolinone derivatives (Q1-Q10) were synthesised to assess their activity against Acanthamoeba castellanii T4. The in-vitro effectiveness of these quinazolinones were investigated against Acanthamoeba castellanii by amoebicidal, excystation, host cell cytopathogenicity, and NADPH-cytochrome c reductase assays. Furthermore, wound healing capability was assessed at different time durations. Maximum inhibition at 50 μg/mL was recorded for compounds Q5, Q6 and Q8, while the compound Q3 did not exhibit amoebicidal effects at tested concentrations. Moreover, LDH assay was conducted to assess the cytotoxicity of quinazolinones against HaCaT cell line. The results of wound healing assay revealed that all compounds are not cytotoxic and are likely to promote wound healing at 10 μg/mL. The excystation assays revealed that these compounds significantly inhibit the morphological transformation of A. castellanii. Compound Q3, Q7 and Q8 elevated the level of NADPH-cytochrome c reductase up to five folds. Sterol 14alpha-demethylase (CYP51) a reference enzyme in ergosterol pathway was used as a potential target for anti-amoebic drugs. In this study using i-Tasser, the protein structure of Acanthamoeba castellanii (AcCYP51) was developed in comparison with Naegleria fowleri protein (NfCYP51) structure. The sequence alignment of both proteins has shown 42.72% identity. Compounds Q1-Q10 were then molecularly docked with the predicted AcCYP51. Out of ten quinazolinones, three compounds (Q3, Q7 and Q8) showed good binding activity within 3 Å of TYR 114. The in-silico study confirmed that these compounds are the inhibitor of CYP51 target site. This report presents several potential lead compounds belonging to quinazolinone derivatives for drug discovery against Acanthamoeba infections.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Keat-Yie Ho
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Samson Eugin Simon
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | | | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Areeba Anwar
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Kuan Onn Tan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Nanthini Sridewi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, University City, United Arab Emirates
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
11
|
Zhang X, Wang T, Cui S, Li L, Zheng Z, Mi C, Lin B, Ren X, He X. Design of Photosensitive Cobalt Complex Intermediates and Their Application in the Green Syntheses of Molecules Containing the Quinazolin-4(3 H)-imine Scaffold. J Org Chem 2022; 87:8303-8315. [PMID: 35709489 DOI: 10.1021/acs.joc.1c02987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cobalt/photoredox cooperative catalysis is a well-explored technology for visible-light photoredox catalysis. Recently, the photosensitivity of Co(II) complexes in homogeneous catalysis has aroused the interest of scientists. In this study, photosensitive Co(II) complex intermediates were designed to develop new synthetic methods. These intermediates, consisting of Co(II) and two substrate molecules, bind to O2 and absorb visible light over a wide spectral range, triggering in situ oxidative decarboxylation to produce molecules containing the quinazolin-4(3H)-imine scaffold. These reactions employed glyoxylic acid and ketoacids as new building blocks, and good to excellent yields of the corresponding products were obtained under mild reaction conditions using green and inexpensive reagents and solvents. These results are of importance since the design of Co-based photosensitive intermediates will aid in establishing novel methods for harnessing visible light and hence lead to innovation in organic syntheses.
Collapse
Affiliation(s)
- Xianwei Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Tianzhao Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Shisheng Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Lei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Chunlai Mi
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinhua He
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
12
|
Braconi L, Teodori E, Contino M, Riganti C, Bartolucci G, Manetti D, Romanelli MN, Perrone MG, Colabufo NA, Guglielmo S, Dei S. Overcoming Multidrug Resistance (MDR): Design, Biological Evaluation and Molecular Modelling Studies of 2,4-Substituted Quinazoline Derivatives. ChemMedChem 2022; 17:e202200027. [PMID: 35416421 PMCID: PMC9325490 DOI: 10.1002/cmdc.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Some 2,4-disubstituted quinazolines were synthesized and studied as multidrug resistance (MDR) reversers. The new derivatives carried the quinazoline-4-amine scaffold found in modulators of the ABC transporters involved in MDR, as the TKIs gefitinib and erlotinib. Their behaviour on the three ABC transporters, P-gp, MRP1 and BCRP, was investigated. Almost all compounds inhibited the P-gp activity in MDCK-MDR1 cells overexpressing P-gp, showing EC50 values in the nanomolar range (1 d, 1 e, 2 a, 2 c, 2 e). Some compounds were active also towards MRP1 and/or BCRP. Docking results obtained by in silico studies on the P-gp crystal structure highlighted common features for the most potent compounds. The P-gp selective compound 1 e was able to increase the doxorubicin uptake in HT29/DX cells and to restore its antineoplastic activity in resistant cancer cells in the same extent of sensitive cells. Compound 2 a displayed a dual inhibitory effect showing good activities towards both P-gp and BCRP.
Collapse
Affiliation(s)
- Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Marialessandra Contino
- Department of Pharmacy – Drug SciencesUniversity of Bari “A. Moro”via Orabona 470125BariItaly
| | - Chiara Riganti
- Department of OncologyUniversity of TurinVia Santena 5/bis10126TorinoItaly
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Maria Grazia Perrone
- Department of Pharmacy – Drug SciencesUniversity of Bari “A. Moro”via Orabona 470125BariItaly
| | - Nicola Antonio Colabufo
- Department of Pharmacy – Drug SciencesUniversity of Bari “A. Moro”via Orabona 470125BariItaly
| | - Stefano Guglielmo
- Department of Drug Science and TechnologyUniversity of TurinVia P. Giuria 910125TorinoItaly
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child HealthSection of Pharmaceutical and Nutraceutical SciencesUniversity of Florencevia Ugo Schiff 650019Sesto FiorentinoItaly
| |
Collapse
|
13
|
Kim JH, Vinh LB, Hur M, Koo SC, Park WT, Moon YH, Lee YJ, Kim YH, Huh YC, Yang SY. Inhibitory Activity of 4- O-Benzoyl-3'- O-(OMethylsinapoyl) Sucrose from Polygala tenuifolia on Escherichia coliβ-Glucuronidase. J Microbiol Biotechnol 2021; 31:1576-1582. [PMID: 34528918 PMCID: PMC9705844 DOI: 10.4014/jmb.2108.08004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Bacterial β-glucuronidase in the intestine is involved in the conversion of 7-ethyl-10- hydroxycamptochecin glucuronide (derived from irinotecan) to 7-ethyl-10-hydroxycamptothecin, which causes intestinal bleeding and diarrhea (side effects of anti-cancer drugs). Twelve compounds (1-12) from Polygala tenuifolia were evaluated in terms of β-glucuronidase inhibition in vitro. 4-O-Benzoyl-3'-O-(O-methylsinapoyl) sucrose (C3) was highly inhibitory at low concentrations. C3 (an uncompetitive inhibitor) exhibited a ki value of 13.4 μM; inhibitory activity increased as the substrate concentration rose. Molecular simulation revealed that C3 bound principally to the Gln158-Tyr160 enzyme loop. Thus, C3 will serve as a lead compound for development of new β- glucuronidase inhibitors.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Le Ba Vinh
- Institute of Marine Biochemistry(IMBC), Vietnam Academy of Science and Technology(VAST), Hanoi 100000, Vietnam
| | - Mok Hur
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Sung-Cheol Koo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Woo Tae Park
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Youn-Ho Moon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Yoon Jeong Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Chan Huh
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea,
Y.C. Huh Phone: +82-43-871-5662 Fax: +82-43-871-5659 E-mail:
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea,Corresponding authors S.Y. Yang Phone: +82-33-738-7921 Fax: +82-33-738-7652 E-mail:
| |
Collapse
|
14
|
Ullah H, Ahmad S, Khan F, Taha M, Rahim F, Sarfraz M, Aziz A, Wadood A. Synthesis, in-vitro and in-silico studies of triazinoindole bearing bis-Schiff base as β-glucuronidase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Yang L, Hou H, Li L, Wang J, Zhou S, Wu M, Ke F. Electrochemically induced synthesis of quinazolinones via cathode hydration of o-aminobenzonitriles in aqueous solutions. Org Biomol Chem 2021; 19:998-1003. [PMID: 33448270 DOI: 10.1039/d0ob02286a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient and practical electrochemically catalyzed transition metal-free process for the synthesis of substituted quinazolinones from simple and readily available o-aminobenzonitriles and aldehydes in water has been accomplished. I2/base and water play an unprecedented and vital role in the reaction. By electrochemically catalysed hydrolysis of o-aminobenzonitriles, the synthesis of quinazolinones with benzaldehyde was first proposed. The synthetic utility of this method was demonstrated by gram-scale operation, as well as the preparation of bioactive N-(2,5-dichlorophenyl)-6-(2,2,2-trifluoroethoxy) pteridin-4-amine, which enables straightforward, practical and environmentally benign quinazolinone formation.
Collapse
Affiliation(s)
- Li Yang
- College of Chemistry & Chemical Engineering, Yibin University, Yibin, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Waghmare DS, Tambe SD, Kshirsagar UA. Pd‐Catalyzed Decarboxylative Ortho‐Aroylation of 2‐Aryl‐quinazolinone Comprising Intrinsic Directing Group with α‐Oxocarboxylic Acids. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Deepali S. Waghmare
- Department of Chemistry SP Pune University (formerly: University of Pune) Ganesh Khind Pune India
| | - Shrikant D. Tambe
- Department of Chemistry SP Pune University (formerly: University of Pune) Ganesh Khind Pune India
| | - Umesh A. Kshirsagar
- Department of Chemistry SP Pune University (formerly: University of Pune) Ganesh Khind Pune India
- Discipline of Chemistry Indian Institute of Technology Indore Simrol Indore India
| |
Collapse
|
18
|
Abid O, Imran S, Taha M, Ismail NH, Jamil W, Kashif SM, Khan KM, Yusoff J. Synthesis, β-glucuronidase inhibition and molecular docking studies of cyano-substituted bisindole hydrazone hybrids. Mol Divers 2020; 25:995-1009. [PMID: 32301032 DOI: 10.1007/s11030-020-10084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022]
Abstract
The β-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising β-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro β-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the β-glucuronidase and displayed significant binding interactions with essential residues.
Collapse
Affiliation(s)
- Obaidurahman Abid
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia.,Faculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia.,Department of Chemistry, Faculty of Science, Nangarhar University, Jalalabad, Nangarhar, 2601, Afghanistan
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia. .,Faculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia.,Faculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Waqas Jamil
- Institute of Advanced Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, 76080, Pakistan
| | - Syed Muhammad Kashif
- Institute of Advanced Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, 76080, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Juliana Yusoff
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
19
|
Iraji A, Nouri A, Edraki N, Pirhadi S, Khoshneviszadeh M, Khoshneviszadeh M. One-pot synthesis of thioxo-tetrahydropyrimidine derivatives as potent β-glucuronidase inhibitor, biological evaluation, molecular docking and molecular dynamics studies. Bioorg Med Chem 2020; 28:115359. [PMID: 32098709 DOI: 10.1016/j.bmc.2020.115359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 01/26/2023]
Abstract
A series of N,N-diethyl phenyl thioxo-tetrahydropyrimidine carboxamide have been synthesized and investigated for their β-glucuronidase inhibitory activities. All molecules exhibited excellent inhibition with IC50 values ranging from 0.35 to 42.05 µM and found to be even more potent than the standard d-saccharic acid. Structure-activity relationship analysis indicated that the meta-aryl-substituted derivatives significantly influenced β-glucuronidase inhibitory activities while the para-substitution counterpart outperforming moderate potency. The most potent compound in this series was 4g bearing thiophene motif with IC50 of 0.35 ± 0.09 µM. To verify the SAR, molecular docking and molecular dynamics studies were also performed.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nouri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur J Med Chem 2020; 187:111921. [PMID: 31835168 PMCID: PMC7111419 DOI: 10.1016/j.ejmech.2019.111921] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, β-glucuronidase (βGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of β-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of βGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of βGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved βGLU inhibitory potency and the development of new therapeutic agents in consequential.
Collapse
Affiliation(s)
- Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ebenezer Oluwakemi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
21
|
Massari S, Corona A, Distinto S, Desantis J, Caredda A, Sabatini S, Manfroni G, Felicetti T, Cecchetti V, Pannecouque C, Maccioni E, Tramontano E, Tabarrini O. From cycloheptathiophene-3-carboxamide to oxazinone-based derivatives as allosteric HIV-1 ribonuclease H inhibitors. J Enzyme Inhib Med Chem 2019; 34:55-74. [PMID: 30362381 PMCID: PMC6211256 DOI: 10.1080/14756366.2018.1523901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/30/2022] Open
Abstract
The paper focussed on a step-by-step structural modification of a cycloheptathiophene-3-carboxamide derivative recently identified by us as reverse transcriptase (RT)-associated ribonuclease H (RNase H) inhibitor. In particular, its conversion to a 2-aryl-cycloheptathienoozaxinone derivative and the successive thorough exploration of both 2-aromatic and cycloheptathieno moieties led to identify oxazinone-based compounds as new anti-RNase H chemotypes. The presence of the catechol moiety at the C-2 position of the scaffold emerged as critical to achieve potent anti-RNase H activity, which also encompassed anti-RNA dependent DNA polymerase (RDDP) activity for the tricyclic derivatives. Benzothienooxazinone derivative 22 resulted the most potent dual inhibitor exhibiting IC50s of 0.53 and 2.90 μM against the RNase H and RDDP functions. Mutagenesis and docking studies suggested that compound 22 binds two allosteric pockets within the RT, one located between the RNase H active site and the primer grip region and the other close to the DNA polymerase catalytic centre.
Collapse
Affiliation(s)
- Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Jenny Desantis
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, K.U. Leuven, Leuven, Belgium
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
Yousuf M, Shaikh NN, Ul-Haq Z, Choudhary MI. Bioinformatics: A rational combine approach used for the identification and in-vitro activity evaluation of potent β-Glucuronidase inhibitors. PLoS One 2018; 13:e0200502. [PMID: 30517092 PMCID: PMC6281186 DOI: 10.1371/journal.pone.0200502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/27/2018] [Indexed: 11/18/2022] Open
Abstract
Identification of hotspot drug-receptor interactions through in-silico prediction methods (Pharmacophore mapping, virtual screening, 3DQSAR, etc), is considered as a key approach in drug designing and development process. In the current design study, advanced in-silico based computational techniques were used for the identification of lead-like molecules against the targeted receptor β-glucuronidase. The binding pattern of a potent inhibitor in the ligand-receptor X-ray co-crystallize complex was used to identify and extract the structure-base Pharmacophore features. Based on these observations; five structure-based pharmacophore models were derived to conduct the virtual screening of ICCBS in-house data-base. Top-ranked identified Hits (33 compounds) were selected to subject for in-vitro biological activity evaluation against β-glucuronidase enzyme; out of them, twenty compounds (61% of screened compounds) evaluated as actives, however eleven compounds were found to have significantly higher inhibitory activity, including compounds 1, 5–8, 10, 12–13, and 17–19 with IC50 values ranging from 1.2 μM to 34.9 μM. Out of the eleven potent inhibitors, seven compounds 1, 5, 6, 7, 8, 13, and 19 were found new, and evaluated first time for the β-glucuronidase inhibitory activity. Compounds 1, 5 and 19 exhibited a highly potent inhibition in uM of β-glucuronidase enzyme with non-cytotoxic behavior against the mouse fibroblast (3T3) cell line. Our combined in-silico and in-vitro results revealed that the binding pattern analysis of the eleven potent inhibitors, showed almost similar non-covalent interactions, as observed in case of our validated pharmacophore model. The obtained results thus demonstrated that the virtual screening minimizes false positives, and provide a template for the identification and development of new and more potent β-glucuronidase inhibitors with non-toxic effects.
Collapse
Affiliation(s)
- Maria Yousuf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- * E-mail:
| | - Nimra Naveed Shaikh
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - M. Iqbal Choudhary
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Wei B, Yang W, Yan ZX, Zhang QW, Yan R. Prenylflavonoids sanggenon C and kuwanon G from mulberry (Morus alba L.) as potent broad-spectrum bacterial β-glucuronidase inhibitors: Biological evaluation and molecular docking studies. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
24
|
Wu Y, Yi H, Lei A. Electrochemical Acceptorless Dehydrogenation of N-Heterocycles Utilizing TEMPO as Organo-Electrocatalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04137] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yong Wu
- Institute
for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Hong Yi
- Institute
for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Aiwen Lei
- Institute
for Advanced Studies, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- National
Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| |
Collapse
|
25
|
Taha M, Arbin M, Ahmat N, Imran S, Rahim F. Synthesis: Small library of hybrid scaffolds of benzothiazole having hydrazone and evaluation of their β-glucuronidase activity. Bioorg Chem 2018; 77:47-55. [PMID: 29331764 DOI: 10.1016/j.bioorg.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/30/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
Due to the great biological importance of β-glucuronidase inhibitors, here in this study, we have synthesized a library of novel benzothiazole derivatives (1-30), characterized by different spectroscopic methods and evaluated for β-glucuronidase inhibitory potential. Among the series sixteen compounds i.e.1-6, 8, 9, 11, 14, 15, 20-23 and 26 showed outstanding inhibitory potential with IC50 value ranging in between 16.50 ± 0.26 and 59.45 ± 1.12 when compared with standard d-Saccharic acid 1,4-lactone (48.4 ± 1.25 µM). Except compound 8 and 23 all active analogs showed better potential than the standard. Structure activity relationship has been established.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia.
| | - Mastura Arbin
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam Campus, Malaysia; Faculty of Applied Science Universiti Teknologi MARA, 40450 ShahAlam, Selangor D.E, Malaysia
| | - Norizan Ahmat
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam Campus, Malaysia; Faculty of Applied Science Universiti Teknologi MARA, 40450 ShahAlam, Selangor D.E, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam Campus, Malaysia; Faculty of Applied Science Universiti Teknologi MARA, 40450 ShahAlam, Selangor D.E, Malaysia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| |
Collapse
|
26
|
Liu W, Wu G, Gao W, Ding J, Huang X, Liu M, Wu H. Palladium-catalyzed oxidative CC bond cleavage with molecular oxygen: one-pot synthesis of quinazolinones from 2-amino benzamides and alkenes. Org Chem Front 2018. [DOI: 10.1039/c8qo00670a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Palladium-catalyzed oxidative cleavage/cyclization has been disclosed for the concise synthesis of various quinazolinone derivatives from readily available 2-aminobenzamides and terminal alkenes with excellent functional group tolerance.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Ge Wu
- School of Pharmaceutical Science
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Jinchang Ding
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Huayue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| |
Collapse
|
27
|
Zhang D, Kurihara H. Isogloiosiphone B, a novel acetal, and hydrophobic compounds as β-glucuronidase inhibitors derived from the red alga Neodilsea yendoana. Biosci Biotechnol Biochem 2017; 82:46-48. [PMID: 29207923 DOI: 10.1080/09168451.2017.1403885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel acetal named isogloiosiphone B was isolated from the red alga Neodilsea yendoana, along with three known hydrophobic compounds as β-glucuronidase inhibitors. The acetal was determined as a naturally occurring compound from the extraction experiments with several kinds of solvent. The acetal showed the highest inhibition against β-glucuronidase among the compounds examined.
Collapse
Affiliation(s)
- Duo Zhang
- a Faculty of Fisheries Sciences , Hokkaido University , Hakodate , Japan
| | - Hideyuki Kurihara
- a Faculty of Fisheries Sciences , Hokkaido University , Hakodate , Japan
| |
Collapse
|
28
|
Saleeb M, Sundin C, Aglar Ö, Pinto AF, Ebrahimi M, Forsberg Å, Schüler H, Elofsson M. Structure-activity relationships for inhibitors of Pseudomonas aeruginosa exoenzyme S ADP-ribosyltransferase activity. Eur J Med Chem 2017; 143:568-576. [PMID: 29207339 DOI: 10.1016/j.ejmech.2017.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022]
Abstract
During infection, the Gram-negative opportunistic pathogen Pseudomonas aeruginosa employs its type III secretion system to translocate the toxin exoenzyme S (ExoS) into the eukaryotic host cell cytoplasm. ExoS is an essential in vivo virulence factor that enables P. aeruginosa to avoid phagocytosis and eventually kill the host cell. ExoS elicits its pathogenicity mainly via ADP-ribosyltransferase (ADPRT) activity. We recently identified a new class of ExoS ADPRT inhibitors with in vitro IC50 of around 20 μM in an enzymatic assay using a recombinant ExoS ADPRT domain. Herein, we report structure-activity relationships of this compound class by comparing a total of 51 compounds based on a thieno [2,3-d]pyrimidin-4(3H)-one and 4-oxo-3,4-dihydroquinazoline scaffolds. Improved inhibitors with in vitro IC50 values of 6 μM were identified. Importantly, we demonstrated that the most potent inhibitors block ADPRT activity of native full-length ExoS secreted by viable P. aeruginosa with an IC50 value of 1.3 μM in an enzymatic assay. This compound class holds promise as starting point for development of novel antibacterial agents.
Collapse
Affiliation(s)
- Michael Saleeb
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | | | - Öznur Aglar
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Ana Filipa Pinto
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Mahsa Ebrahimi
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Åke Forsberg
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Herwig Schüler
- Department of Medicinal Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
29
|
Bano B, Arshia, Khan KM, Kanwal, Fatima B, Taha M, Ismail NH, Wadood A, Ghufran M, Perveen S. Synthesis, in vitro β -glucuronidase inhibitory potential and molecular docking studies of quinolines. Eur J Med Chem 2017; 139:849-864. [DOI: 10.1016/j.ejmech.2017.08.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 11/26/2022]
|
30
|
Zhang J, Chen S, Chen F, Xu W, Deng GJ, Gong H. Dehydrogenation of Nitrogen Heterocycles Using Graphene Oxide as a Versatile Metal-Free Catalyst under Air. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700178] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingyu Zhang
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Shiya Chen
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Fangfang Chen
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Wensheng Xu
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Guo-Jun Deng
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Hang Gong
- The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| |
Collapse
|
31
|
Baharudin MS, Taha M, Imran S, Ismail NH, Rahim F, Javid MT, Khan KM, Ali M. Synthesis of indole analogs as potent β-glucuronidase inhibitors. Bioorg Chem 2017; 72:323-332. [DOI: 10.1016/j.bioorg.2017.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
|
32
|
Taha M, Baharudin MS, Ismail NH, Selvaraj M, Salar U, Alkadi KA, Khan KM. Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β -glucuronidase inhibitors. Bioorg Chem 2017; 71:86-96. [DOI: 10.1016/j.bioorg.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/27/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
|
33
|
Salar U, Khan KM, Syed S, Taha M, Ali F, Ismail NH, Perveen S, Wadood A, Ghufran M. Synthesis, in vitro β-glucuronidase inhibitory activity and in silico studies of novel (E)-4-Aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazoles. Bioorg Chem 2016; 70:199-209. [PMID: 28069264 DOI: 10.1016/j.bioorg.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
Current research is based on the synthesis of novel (E)-4-aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazole derivatives (3-15) by adopting two steps route. First step was the condensation between the pyrene-1-carbaldehyde (1) with the thiosemicarbazide to afford pyrene-1-thiosemicarbazone intermediate (2). While in second step, cyclization between the intermediate (2) and phenacyl bromide derivatives or 2-bromo ethyl acetate was carried out. Synthetic derivatives were structurally characterized by spectroscopic techniques such as EI-MS, 1H NMR and 13C NMR. Stereochemistry of the iminic double bond was confirmed by NOESY analysis. All pure compounds 2-15 were subjected for in vitro β-glucuronidase inhibitory activity. All molecules were exhibited excellent inhibition in the range of IC50=3.10±0.10-40.10±0.90μM and found to be even more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.38±1.05μM). Molecular docking studies were carried out to verify the structure-activity relationship. A good correlation was perceived between the docking study and biological evaluation of active compounds.
Collapse
Affiliation(s)
- Uzma Salar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Shazia Syed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Farman Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Mehreen Ghufran
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
34
|
Synthesis, β-glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorg Chem 2016; 68:56-63. [DOI: 10.1016/j.bioorg.2016.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022]
|
35
|
Wang R, Chai WM, Yang Q, Wei MK, Peng Y. 2-(4-Fluorophenyl)-quinazolin-4(3H)-one as a novel tyrosinase inhibitor: Synthesis, inhibitory activity, and mechanism. Bioorg Med Chem 2016; 24:4620-4625. [PMID: 27527415 DOI: 10.1016/j.bmc.2016.07.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 01/12/2023]
Abstract
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with (1)H nuclear magnetic resonance ((1)H NMR), (13)C nuclear magnetic resonance ((13)C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50=120±2μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wei-Ming Chai
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Key Laboratory of Green Chemistry, Nanchang, Jiangxi 330022, China.
| | - Qin Yang
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Key Laboratory of Green Chemistry, Nanchang, Jiangxi 330022, China
| | - Man-Kun Wei
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yiyuan Peng
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Key Laboratory of Green Chemistry, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
36
|
Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Al Muqarrabin LMR, Zaki HM, Ahmat N, Nasir A, Khan F. Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor. Bioorg Chem 2016; 68:15-22. [PMID: 27414468 DOI: 10.1016/j.bioorg.2016.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/24/2022]
Abstract
Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies.
Collapse
Affiliation(s)
- Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia.
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Abdul Wadood
- Depatment of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fazal Rahim
- Depatment of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Laode Muhammad Ramadhan Al Muqarrabin
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Hamizah Mohd Zaki
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Norizan Ahmat
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Abdul Nasir
- Depatment of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fahad Khan
- Depatment of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
37
|
Taha M, Sultan S, Nuzar HA, Rahim F, Imran S, Ismail NH, Naz H, Ullah H. Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent β-glucuronidase inhibitors. Bioorg Med Chem 2016; 24:3696-704. [PMID: 27312423 DOI: 10.1016/j.bmc.2016.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Thirty N-arylidenequinoline-3-carbohydrazides (1-30) have been synthesized and evaluated against β-glucuronidase inhibitory potential. Twenty four analogs showed outstanding β-glucuronidase activity having IC50 values ranging between 2.11±0.05 and 46.14±0.95 than standard d-saccharic acid 1,4 lactone (IC50=48.4±1.25μM). Six analogs showed good β-glucuronidase activity having IC50 values ranging between 49.38±0.90 and 80.10±1.80. Structure activity relationship and the interaction of the active compounds and enzyme active site with the help of docking studies were established. Our study identifies novel series of potent β-glucuronidase inhibitors for further investigation.
Collapse
Affiliation(s)
- Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia.
| | - Sadia Sultan
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia.
| | - Herizal Ali Nuzar
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Applied Science UiTM, 40450 Shah Alam, Selangor, Malaysia
| | - Humera Naz
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia; Faculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia
| | - Hayat Ullah
- Department of Chemistry, Hazara University, Mansehra 21300, Pakistan
| |
Collapse
|
38
|
Ali F, Khan KM, Salar U, Iqbal S, Taha M, Ismail NH, Perveen S, Wadood A, Ghufran M, Ali B. Dihydropyrimidones: As novel class of β-glucuronidase inhibitors. Bioorg Med Chem 2016; 24:3624-35. [PMID: 27325448 DOI: 10.1016/j.bmc.2016.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022]
Abstract
Dihydropyrimidones 1-37 were synthesized via a 'one-pot' three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50=28.16±.056μM), 9 (IC50=18.16±0.41μM), 10 (IC50=22.14±0.43μM), 13 (IC50=34.16±0.65μM), 14 (IC50=17.60±0.35μM), 15 (IC50=15.19±0.30μM), 16 (IC50=27.16±0.48μM), 17 (IC50=48.16±1.06μM), 22 (IC50=40.16±0.85μM), 23 (IC50=44.16±0.86μM), 24 (IC50=47.16±0.92μM), 25 (IC50=18.19±0.34μM), 26 (IC50=33.14±0.68μM), 27 (IC50=44.16±0.94μM), 28 (IC50=24.16±0.50μM), 29 (IC50=34.24±0.47μM), 31 (IC50=14.11±0.21μM) and 32 (IC50=9.38±0.15μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted to establish the structure-activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as (1)H, (13)C NMR, EIMS and HREI-MS.
Collapse
Affiliation(s)
- Farman Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Uzma Salar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sarosh Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor D.E., Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi 75280, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University Mardan, Pakistan
| | - Mehreen Ghufran
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University Mardan, Pakistan
| | - Basharat Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
39
|
Kong LL, Fan LY. Magnetically recyclable copper modified GO/Fe 3 O 4 catalyst for efficient synthesis of quinazolinones. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Salar U, Taha M, Ismail NH, Khan KM, Imran S, Perveen S, Wadood A, Riaz M. Thiadiazole derivatives as New Class of β-glucuronidase inhibitors. Bioorg Med Chem 2016; 24:1909-18. [DOI: 10.1016/j.bmc.2016.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022]
|
41
|
A concise approach to substituted Quinazolin-4(3H)-one natural products catalyzed by Iron(III) Chloride. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Šačkus A, Kriščiūnienė V, Matulevičiūtė G, Paliulis O. Conversion of 2-Thioxo-2,3-dihydroquinazolin-4(1H)-ones to N(3)-Unsubstituted 2-(Het)Arylquinazolin-4(3H)-ones by Copper-Mediated Pd-Catalysed Cross-Coupling Reactions. HETEROCYCLES 2016. [DOI: 10.3987/com-15-s(t)12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Taha M, Ismail NH, Imran S, Anouar EH, Ali M, Jamil W, Uddin N, Kashif SM. Identification of bisindolylmethane–hydrazone hybrids as novel inhibitors of β-glucuronidase, DFT, and in silico SAR intimations. RSC Adv 2016. [DOI: 10.1039/c5ra19513f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and β-glucuronidase inhibition activity of novel bisindolylmethane derivatives (1–30).
Collapse
Affiliation(s)
- Muhammad Taha
- Atta-ur-Rahman Institute for Natural Product Discovery
- Universiti Teknologi MARA (UiTM)
- Bandar Puncak Alam
- Malaysia
- Faculty of Applied Science Universiti Teknologi MARA (UiTM)
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery
- Universiti Teknologi MARA (UiTM)
- Bandar Puncak Alam
- Malaysia
- Faculty of Applied Science Universiti Teknologi MARA (UiTM)
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery
- Universiti Teknologi MARA (UiTM)
- Bandar Puncak Alam
- Malaysia
- Faculty of Applied Science Universiti Teknologi MARA (UiTM)
| | - El Hassane Anouar
- Chemistry Department
- College of Sciences and Humanities
- Prince Sattam bin Abdulaziz University
- Al-Kharij 11942
- Saudi Arabia
| | - Muhammad Ali
- Center for Advanced Drug Research
- COMSATS Institute of Information Technology
- Abbottabad-22060
- Pakistan
- Department of Chemistry
| | - Waqas Jamil
- Institute of Advance Research Studies in Chemical Sciences
- University of Sindh Jamshoro
- Hyderabad 76080
- Pakistan
| | - Nizam Uddin
- Batterje Medical College for Science & Technology
- Jeddah-21442
- Kingdom of Saudi Arabia
| | - Syed Muhammad Kashif
- Institute of Advance Research Studies in Chemical Sciences
- University of Sindh Jamshoro
- Hyderabad 76080
- Pakistan
| |
Collapse
|
44
|
Kausar N, Roy I, Chattopadhyay D, Das AR. Synthesis of 2,3-dihydroquinazolinones and quinazolin-4(3H)-ones catalyzed by graphene oxide nanosheets in an aqueous medium: “on-water” synthesis accompanied by carbocatalysis and selective C–C bond cleavage. RSC Adv 2016. [DOI: 10.1039/c6ra00388e] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Graphene oxide nanosheet catalyzed strategies for construction of 2,3-dihydroquinazolinones and quinazolin-4(3H)-ones starting from anthranilamide and an aldehyde/ketone in aqueous medium at room temperature have been realized.
Collapse
Affiliation(s)
- Nazia Kausar
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| | - Indranil Roy
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | | | - Asish R. Das
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|
45
|
Taha M, Ismail NH, Imran S, Selvaraj M, Rahim A, Ali M, Siddiqui S, Rahim F, Khan KM. Synthesis of novel benzohydrazone–oxadiazole hybrids as β-glucuronidase inhibitors and molecular modeling studies. Bioorg Med Chem 2015; 23:7394-404. [DOI: 10.1016/j.bmc.2015.10.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
|
46
|
Javaid K, Saad SM, Rasheed S, Moin ST, Syed N, Fatima I, Salar U, Khan KM, Perveen S, Choudhary MI. 2-Arylquinazolin-4(3H)-ones: A new class of α-glucosidase inhibitors. Bioorg Med Chem 2015; 23:7417-21. [DOI: 10.1016/j.bmc.2015.10.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022]
|
47
|
Godeau J, Harari M, Laclef S, Deau E, Fruit C, Besson T. Cu/Pd-Catalyzed C-2-H Arylation of Quinazolin-4(3H)-ones with (Hetero)aryl Halides. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
2-Arylquinazolin-4(3H)-ones: A novel class of thymidine phosphorylase inhibitors. Bioorg Chem 2015; 63:142-51. [PMID: 26547232 DOI: 10.1016/j.bioorg.2015.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/21/2022]
Abstract
Thymidine phosphorylase (TP) over expression plays an important role in several pathological conditions, such as rheumatoid arthritis, chronic inflammatory diseases, psoriasis, and tumor angiogenesis. In this regard, a series of twenty-five 2-arylquinazolin-4(3H)-one derivatives 1-25 were evaluated for thymidine phosphorylase inhibitory activity. Six compounds 5, 6, 20, 2, 23, and 3 were found to be active against thymidine phosphorylase enzyme with IC50 values in the range of 42.9-294.6μM. 7-Deazaxanthine (IC50=41.0±1.63μM) was used as a standard inhibitor. Compound 5 showed a significant activity (IC50=42.9±1.0μM), comparable to the standard. The enzyme kinetic studies on the most active compounds 5, 6, and 20 were performed for the determination of their modes of inhibition, and dissociation constants Ki. All active compounds were found to be largely non-cytotoxic against the mouse fibroblast 3T3 cell line. This study identifies a novel class of thymidine phosphorylase inhibitors which may be further investigated as leads to develop therapeutic agents.
Collapse
|
49
|
Zawawi NKNA, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, Ali M, Abdullah N, Khan KM. Novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone: A new class of β-glucuronidase inhibitors and in silico studies. Bioorg Med Chem 2015; 23:3119-25. [DOI: 10.1016/j.bmc.2015.04.081] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
|
50
|
Synthesis, structure and photoluminescent properties of BF2 and BPh2 complexes with N,O-benzazine ligands. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|