1
|
Gillespie P, Channon RB, Meng X, Islam MN, Ladame S, O'Hare D. Nucleic acid sensing via electrochemical oligonucleotide-templated reactions. Biosens Bioelectron 2021; 176:112891. [PMID: 33397596 DOI: 10.1016/j.bios.2020.112891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Short single-stranded nucleic acids as found in a variety of bodily fluids have recently emerged as minimally invasive biomarkers for a broad range of pathologies, most notably cancer. Because of their small size, low natural abundance and high sequence homology between family members they are challenging to detect using standard technologies suitable for use at the point-of-care. Herein we report the design, engineering and testing of a novel sensing strategy: electrochemically active molecular probes based on peptide nucleic acid (PNA) scaffolds for the detection of single-stranded oligonucleotides, in particular microRNAs (or miRs). As a proof-of-principle, a wide range of probes were designed and tested to detect miR-141, a known diagnostic biomarker for prostate cancer. Optimal quantitative sensing of miR-141 was achieved via the first example of an electrochemical oligonucleotide-templated reaction (EOTR), whereby two PNA probes - functionalized with an aniline and a 1,4-catechol respectively - preferentially react with each other upon simultaneous hybridization to the same RNA target strand, serving here as a template. Quantitative, electrochemical detection of the product of this bio-orthogonal reaction showed direct correlation between adduct formation and miR-141 concentration. Coupling the specificity of OTR with the speed and sensitivity of electrochemical sensing delivers EOTRs as a promising new technique for fast, low-cost, quantitative and sequence-specific detection of short nucleic acids from liquid biopsies.
Collapse
Affiliation(s)
- Philip Gillespie
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Robert B Channon
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Xiaotong Meng
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Md Nazmul Islam
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK; School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BA, UK
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Saini V, Dawar R, Suneja S, Gangopadhyay S, Kaur C. Can microRNA become next-generation tools in molecular diagnostics and therapeutics? A systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-020-00125-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
MicroRNAs (miRNAs) represent a novel class of single-stranded RNA molecules of 18–22 nucleotides that serve as powerful tools in the regulation of gene expression. They are important regulatory molecules in several biological processes.
Main body
Alteration in the expression profiles of miRNAs have been found in several diseases. It is anticipated that miRNA expression profiling can become a novel diagnostic tool in the future.
Hence, this review evaluates the implications of miRNAs in various diseases and the recent advances in miRNA expression level detection and their target identification. A systematic approach to review existing literature available on databases such as Medline, PubMed, and EMBASE was conducted to have a better understanding of mechanisms mediating miRNA-dependent gene regulation and their role as diagnostic markers and therapeutic agents.
Conclusion
A clear understanding of the complex multilevel regulation of miRNA expression is a prerequisite to explicate the origin of a wide variety of diseases. It is understandable that miRNAs offer potential targets both in diagnostics and therapeutics of a multitude of diseases. The inclusion of specific miRNA expression profiles as biomarkers may lead to crucial advancements in facilitating disease diagnosis and classification, monitoring its prognosis, and treatment. However, standardization of methods has a pivotal role in the success of extensive use of miRNA expression profiling in routine clinical settings.
Collapse
|
3
|
Singh KRB, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. ENGINEERING REPORTS : OPEN ACCESS 2020; 2:e12238. [PMID: 32838227 PMCID: PMC7404446 DOI: 10.1002/eng2.12238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/03/2023]
Abstract
Peptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed. They are being used widely in polymerase chain reaction modulation/mutation, fluorescent in-situ hybridization, and in microarray as a probe; they are also utilized in many in-vitro and in-vivo assays and for developing micro and nano-sized biosensor/chip/array technologies. Earlier reviews, focused only on PNA properties, structure, and modifications related to diagnostics and therapeutics; our review emphasizes on PNA properties and synthesis along with its potential applications in diagnosis and therapeutics. Furthermore, prospects in biomedical applications of PNAs are being discussed in depth.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Parikipandla Sridevi
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| |
Collapse
|
4
|
Chang D, Kim KT, Lindberg E, Winssinger N. Smartphone DNA or RNA Sensing Using Semisynthetic Luciferase-Based Logic Device. ACS Sens 2020; 5:807-813. [PMID: 32124606 DOI: 10.1021/acssensors.9b02454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Detection of specific oligonucleotide sequences is central to numerous applications, and technologies amenable to point-of-care diagnostics or end users are needed. Here, we report a technology making use of a bioluminescent readout and smartphone quantification. The sensor is a semisynthetic luciferase (H-Luc-PNA conjugate) that is turned on by a strand-displacement reaction. We demonstrated sensing of three different microRNAs (miRs), as representative cancer biomarkers, and demonstrate the possibility to integrate an AND gate to sense two sequences simultaneously.
Collapse
Affiliation(s)
- Dalu Chang
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Ki Tae Kim
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Eric Lindberg
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
5
|
Pavagada S, Channon RB, Chang JYH, Kim SH, MacIntyre D, Bennett PR, Terzidou V, Ladame S. Oligonucleotide-templated lateral flow assays for amplification-free sensing of circulating microRNAs. Chem Commun (Camb) 2019; 55:12451-12454. [PMID: 31556888 DOI: 10.1039/c9cc05607f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we demonstrate the first example of oligonucleotide-templated reaction (OTR) performed on paper, using lateral flow to capture and concentrate specific nucleic acid biomarkers on a test line. Quantitative analysis, using a low-cost benchtop fluorescence reader showed very high specificity down to the single nucleotide level and proved sensitive enough for amplification-free, on-chip, detection of endogenous concentrations of miR-150-5p, a recently identified predictive blood biomarker for preterm birth.
Collapse
Affiliation(s)
- Suraj Pavagada
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Robert B Channon
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Jason Y H Chang
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sung Hye Kim
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - David MacIntyre
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK and March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK and Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Phillip R Bennett
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK and March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK and Queen Charlotte's Hospital, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Vasso Terzidou
- Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK and March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK and Chelsea & Westminster Hospital, Imperial College Healthcare NHS Trust, London, SW10 9NH, UK
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. and March of Dimes European Preterm Birth Research Centre, Imperial College London, London, UK
| |
Collapse
|
6
|
MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. J Transl Med 2019; 99:452-469. [PMID: 30542067 DOI: 10.1038/s41374-018-0143-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
The volume of point of care (POC) testing continues to grow steadily due to the increased availability of easy-to-use devices, thus making it possible to deliver less costly care closer to the patient site in a shorter time relative to the central laboratory services. A novel class of molecules called microRNAs have recently gained attention in healthcare management for their potential as biomarkers for human diseases. The increasing interest of miRNAs in clinical practice has led to an unmet need for assays that can rapidly and accurately measure miRNAs at the POC. However, the most widely used methods for analyzing miRNAs, including Northern blot-based platforms, in situ hybridization, reverse transcription qPCR, microarray, and next-generation sequencing, are still far from being used as ideal POC diagnostic tools, due to considerable time, expertize required for sample preparation, and in terms of miniaturizations making them suitable platforms for centralized labs. In this review, we highlight various existing and upcoming technologies for miRNA amplification and detection with a particular emphasis on the POC testing industries. The review summarizes different miRNA targets and signals amplification-based assays, from conventional methods to alternative technologies, such as isothermal amplification, paper-based, oligonucleotide-templated reaction, nanobead-based, electrochemical signaling- based, and microfluidic chip-based strategies. Based on critical analysis of these technologies, the possibilities and feasibilities for further development of POC testing for miRNA diagnostics are addressed and discussed.
Collapse
|
7
|
Zhang X, Chen L, Lim KH, Gonuguntla S, Lim KW, Pranantyo D, Yong WP, Yam WJT, Low Z, Teo WJ, Nien HP, Loh QW, Soh S. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804540. [PMID: 30624820 DOI: 10.1002/adma.201804540] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/09/2018] [Indexed: 05/22/2023]
Abstract
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man-made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli-responsive materials; these "smart" materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli-responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self-regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli-responsive materials as the basic building blocks.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Spandhana Gonuguntla
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Wen Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wai Pong Yong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wei Jian Tyler Yam
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhida Low
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wee Joon Teo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Ping Nien
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiao Wen Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
8
|
Anzola M, Winssinger N. Turn On of a Ruthenium(II) Photocatalyst by DNA-Templated Ligation. Chemistry 2018; 25:334-342. [PMID: 30451338 DOI: 10.1002/chem.201804283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 01/05/2023]
Abstract
Here, the synthesis of a RuII photocatalyst by light-directed oligonucleotide-templated ligation reaction is described. The photocatalyst was found to have tremendous potential for signal amplification with >15000 turnovers measured in 9 hours. A templated reaction was used to turn on the activity of this ruthenium(II) photocatalyst in response to a specific DNA sequence. The photocatalysis of the ruthenium(II) complex was harnessed to uncage a new precipitating dye that is highly fluorescent and photostable in the solid state. This reaction was used to discriminate between different DNA analytes based on localization of the precipitate as well as for in cellulo miRNA detection. Finally, a bipyridine ligand functionalized with two different peptide nucleic acid (PNA) sequences was shown to enable template-mediated ligation (turn on of the ruthenium(II) photocatalysis) and recruitment of substrate for templated photocatalysis.
Collapse
Affiliation(s)
- Marcello Anzola
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
9
|
Oberemok VV, Laikova KV, Repetskaya AI, Kenyo IM, Gorlov MV, Kasich IN, Krasnodubets AM, Gal'chinsky NV, Fomochkina II, Zaitsev AS, Bekirova VV, Seidosmanova EE, Dydik KI, Meshcheryakova AO, Nazarov SA, Smagliy NN, Chelengerova EL, Kulanova AA, Deri K, Subbotkin MV, Useinov RZ, Shumskykh MN, Kubyshkin AV. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey. Molecules 2018; 23:E1302. [PMID: 29844255 PMCID: PMC6099785 DOI: 10.3390/molecules23061302] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023] Open
Abstract
Antisense oligonucleotides (ASO), short single-stranded polymers based on DNA or RNA chemistries and synthesized in vitro, regulate gene expression by binding in a sequence-specific manner to an RNA target. The functional activity and selectivity in the action of ASOs largely depends on the combination of nitrogenous bases in a target sequence. This simple and natural property of nucleic acids provides an attractive route by which scientists can create different ASO-based techniques. Over the last 50 years, planned and realized applications in the field of antisense and nucleic acid nanotechnologies have produced astonishing results and posed new challenges for further developments, exemplifying the essence of the post-genomic era. Today the majority of ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake. This review critically analyzes some successful cases using the antisense approach in medicine to address severe diseases, such as Duchenne muscular dystrophy and spinal muscular atrophy, and suggests some prospective directions for future research. We also examine in detail the elaboration of unmodified insect-specific DNA insecticides and RNA preparations in the areas of agriculture and forestry, a relatively new branch of ASO that allows circumvention of the use of non-selective chemical insecticides. When considering the variety of successful ASO modifications with an efficient signal-to-noise ratio of action, coupled with the affordability of in vitro oligonucleotide synthesis and post-synthesis procedures, we predict that the next half-century will produce a fruitful yield of tools created from effective ASO-based end products.
Collapse
MESH Headings
- Agriculture/methods
- Animals
- Biological Control Agents/chemical synthesis
- Biological Control Agents/history
- Biological Control Agents/pharmacology
- DNA/antagonists & inhibitors
- DNA/genetics
- DNA/metabolism
- Forestry/methods
- Gene Expression Regulation/drug effects
- History, 20th Century
- History, 21st Century
- Humans
- Larva/drug effects
- Larva/genetics
- Larva/metabolism
- Moths/drug effects
- Moths/genetics
- Moths/growth & development
- Moths/metabolism
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neuromuscular Agents/chemical synthesis
- Neuromuscular Agents/history
- Neuromuscular Agents/therapeutic use
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Kateryna V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Anna I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 29500 Simferopol, Crimea.
| | - Igor M Kenyo
- Academy of Bioresources and Environmental Management of V.I. Vernadsky Crimean Federal University, 95492 Agrarnoye, Crimea.
| | - Mikhail V Gorlov
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia.
| | - Igor N Kasich
- Rostov State Medical University, Nakhchivan Lane 29, 344022 Rostov-on-Don, Russia.
| | - Alisa M Krasnodubets
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Nikita V Gal'chinsky
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Iryna I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Aleksei S Zaitsev
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Viktoriya V Bekirova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Eleonora E Seidosmanova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Ksenia I Dydik
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anna O Meshcheryakova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Sergey A Nazarov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Natalya N Smagliy
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Edie L Chelengerova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Alina A Kulanova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Karim Deri
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Mikhail V Subbotkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Refat Z Useinov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Maksym N Shumskykh
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anatoly V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| |
Collapse
|
10
|
Zavoiura O, Resch-Genger U, Seitz O. Quantum Dot-PNA Conjugates for Target-Catalyzed RNA Detection. Bioconjug Chem 2018; 29:1690-1702. [PMID: 29694033 DOI: 10.1021/acs.bioconjchem.8b00157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detection of pathogenic nucleic acids remains one of the most reliable approaches for the diagnosis of a broad range of diseases. Current PCR-based methods require experienced personnel and cannot be easily used for point-of-care diagnostics, making alternative strategies for the sensitive, reliable, and cost-efficient detection of pathogenic nucleic acids highly desirable. Here, we report an enzyme-free method for the fluorometric detection of RNA that relies on a target-induced fluorophore transfer onto a semiconductor quantum dot (QD), uses PNA probes as selective recognition elements and can be read out with simple and inexpensive equipment. For QD-PNA conjugates with optimized PNA content, limits of detection of dengue RNA in the range of 10 pM to 100 nM can be realized within 5 h in the presence of a high excess of noncomplementary RNA.
Collapse
Affiliation(s)
- Oleksandr Zavoiura
- Division Biophotonics , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstaetter Strasse 11 , 12489 , Berlin , Germany.,Department of Chemistry , Humboldt University of Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany.,School of Analytical Sciences Adlershof , Humboldt University of Berlin , Unter den Linden 6 , 10099 , Berlin , Germany
| | - Ute Resch-Genger
- Division Biophotonics , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstaetter Strasse 11 , 12489 , Berlin , Germany
| | - Oliver Seitz
- Department of Chemistry , Humboldt University of Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| |
Collapse
|
11
|
Khadsai S, Seeja N, Deepuppha N, Rutnakornpituk M, Vilaivan T, Nakkuntod M, Rutnakornpituk B. Poly(acrylic acid)-grafted magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for specific adsorption with real DNA. Colloids Surf B Biointerfaces 2018; 165:243-251. [PMID: 29494954 DOI: 10.1016/j.colsurfb.2018.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/30/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022]
Abstract
Magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid (MNP@PNA) was synthesized for use as both a magnetic nano-support and a probe for specific adsorption with complementary deoxyribonucleic acid (DNA). MNP@PNA with the size ranging between 120 and 170 nm in diameter was prepared via a free radical polymerization of acrylic acid in the presence of acrylamide-grafted MNP to obtain negatively charged magnetic nanoclusters, followed by ionic adsorption with PNA. According to fluorescence spectrophotometry and gel electrophoresis, this MNP@PNA can differentiate between fully matched, single-base mismatched and fully mismatched synthetic DNAs tagged with different fluorophores. UV-vis spectrophotometry and gel electrophoresis indicated that MNP@PNA can be used for specific adsorption with real DNA (zein gene of maize) having complementary sequence with the PNA probe. This novel anionic MNP conjugated with the PNA probe might be potentially applicable for use as a magnetic support for DNA base discrimination and might be a promising tool for testing genetic modification.
Collapse
Affiliation(s)
- Sudarat Khadsai
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Noppadol Seeja
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nunthiya Deepuppha
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Metha Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Maliwan Nakkuntod
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Boonjira Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; The Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
12
|
Manicardi A, Rozzi A, Korom S, Corradini R. Building on the peptide nucleic acid (PNA) scaffold: a biomolecular engineering approach. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1371720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alex Manicardi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
- Organic and Biomimetic Chemistry Research Group (OBCR), Department of Organic and Macromolecular Chemistry, Faculty of Sciences – Ghent University Campus Sterre, Belgium
| | - Andrea Rozzi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
| | - Saša Korom
- National Institute for Biostructures and Biosystems (INBB), Roma, Italy
| | - Roberto Corradini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
- National Institute for Biostructures and Biosystems (INBB), Roma, Italy
| |
Collapse
|
13
|
Boonlua C, Charoenpakdee C, Vilaivan T, Praneenararat T. Preparation and Performance Evaluation of a Pyrrolidinyl Peptide Nucleic-Acid-Based Displacement Probe as a DNA Sensor. ChemistrySelect 2016. [DOI: 10.1002/slct.201601075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chalothorn Boonlua
- Organic Synthesis Research Unit, Department of Chemistry; Faculty of Science, Chulalongkorn University; Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| | - Chayan Charoenpakdee
- Organic Synthesis Research Unit, Department of Chemistry; Faculty of Science, Chulalongkorn University; Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry; Faculty of Science, Chulalongkorn University; Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| | - Thanit Praneenararat
- Organic Synthesis Research Unit, Department of Chemistry; Faculty of Science, Chulalongkorn University; Phayathai Rd., Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
14
|
Metcalf GAD, Shibakawa A, Patel H, Sita-Lumsden A, Zivi A, Rama N, Bevan CL, Ladame S. Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis. Anal Chem 2016; 88:8091-8. [PMID: 27498854 DOI: 10.1021/acs.analchem.6b01594] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening.
Collapse
Affiliation(s)
- Gavin A D Metcalf
- Department of Bioengineering, Imperial College London , South Kensington Campus, London SW72AZ, U.K.,Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Akifumi Shibakawa
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Hinesh Patel
- Department of Bioengineering, Imperial College London , South Kensington Campus, London SW72AZ, U.K
| | - Ailsa Sita-Lumsden
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Andrea Zivi
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Nona Rama
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial College London , Hammersmith Hospital Campus, London W120NN, U.K
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London , South Kensington Campus, London SW72AZ, U.K
| |
Collapse
|
15
|
Surin M. From nucleobase to DNA templates for precision supramolecular assemblies and synthetic polymers. Polym Chem 2016. [DOI: 10.1039/c6py00480f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this minireview, we report on the recent advances of utilization of nucleobases and DNA as templates to achieve well-defined supramolecular polymers, synthetic polymers, and sequence-controlled polymers.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel Materials
- Center for Innovation and Research in Materials and Polymers
- University of Mons – UMONS
- B-7000 Mons
- Belgium
| |
Collapse
|