1
|
de Oliveira GB, Santos Costa ÉC, Severina do Monte Z, de Almeida GC, da Silva Falcão EP, Scotti L, Tullius Scotti M, Oliveira Silva R, de Sousa Oliveira DS, Ademar Sales Junior P, Alves Pereira VR, José de Melo S. Structure-based Virtual Screening and Drug Design Development of Leishmanicidal Pyrimidines. Chem Biodivers 2025; 22:e202402881. [PMID: 39814686 DOI: 10.1002/cbdv.202402881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
Leishmaniasis is a neglected disease caused by parasites of the genus Leishmania sp. that causes approximately 1 million cases and 650,000 deaths annually worldwide. Its treatment has several limitations mainly due to high toxicity and clinical resistance, and the search for alternatives is highly desirable. The present work aimed to design new antileishmanial compounds through a virtual screening of a small in-house library of pyrimidine compounds, never tested against Leishmania, using the active site of trypanothione reductase (TR) as a target model. The compounds showed favorable affinity with the amino acid residues of the active site of TR. Pyr 1-9 were synthesized and tested against Leishmania amazonensis strain. Four derivatives demonstrated activity against promastigote (IC50 value between 11.23 and 91.5 µM) and three other compounds demonstrated discreet activity against amastigote, IC50 value between 81.29 and 153.21 µM. Based on the results obtained in the screening, three new pyrimidines Pyr 10-12 were designed to optimize activity, cytotoxicity, and selectivity. Pyr 10 and Pyr 11 demonstrated good activity against promastigotes, with IC50 of 11.38 ± 9.7 and 20.01 ± 13.55 µM, respectively, and improved cytotoxicity and selectivity. No activity was obtained against amastigotes. Thus, this study contributes important information for the development of new pyrimidines active against Leishmania.
Collapse
Affiliation(s)
- Gerliny Bezerra de Oliveira
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Érick Caique Santos Costa
- Department of Biosciences, Postgraduate Program in Biological Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Zenaide Severina do Monte
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Gleybson Correia de Almeida
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | | | - Luciana Scotti
- Department of Chemistry, Health Sciences Center, Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Federal University of Paraiba, Joao Pessoa, Brazil
| | - Marcus Tullius Scotti
- Department of Chemistry, Health Sciences Center, Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Federal University of Paraiba, Joao Pessoa, Brazil
| | | | - Daniele Santana de Sousa Oliveira
- Department of Immunology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco, Recife, Brazil
| | - Policarpo Ademar Sales Junior
- Department of Immunology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco, Recife, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco, Recife, Brazil
| | - Sebastião José de Melo
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
- Department of Biosciences, Postgraduate Program in Biological Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| |
Collapse
|
2
|
Nwoke EA, Lowe S, Aldabbagh F, Kalesh K, Kadri H. Nucleoside Analogues for Chagas Disease and Leishmaniasis Therapy: Current Status and Future Perspectives. Molecules 2024; 29:5234. [PMID: 39598623 PMCID: PMC11596272 DOI: 10.3390/molecules29225234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Chagas disease and leishmaniasis are two neglected tropical diseases that affect millions of people in low- and middle-income tropical countries. These diseases caused by protozoan parasites pose significant global health challenges, which have been exacerbated by the recent COVID-19 pandemic. There is an urgent need for novel therapeutics as current treatments are limited by toxicity and drug resistance. Nucleoside analogues, which have been extensively studied and successfully applied in antiviral and antitumor therapies, hold potential that has yet to be fully explored for treating these neglected diseases. In this review, we discuss the use of nucleoside analogues as promising therapeutic agents for Chagas disease and leishmaniasis. After briefly examining the pathology, progression, and current treatment options for these diseases, we provide a comprehensive analysis of the status of nucleoside analogues and explore their prospects. By outlining the current landscape and future directions, this review aims to guide research and development efforts towards more effective nucleoside-based treatments for Chagas disease and leishmaniasis.
Collapse
Affiliation(s)
- Emmanuel Awucha Nwoke
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (E.A.N.); (S.L.); (F.A.)
| | - Silvester Lowe
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (E.A.N.); (S.L.); (F.A.)
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (E.A.N.); (S.L.); (F.A.)
| | - Karunakaran Kalesh
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Hachemi Kadri
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK; (E.A.N.); (S.L.); (F.A.)
| |
Collapse
|
3
|
Chirwa KA, Francisco KR, Dube PS, Park H, Legoabe LJ, Teixeira TR, Caffrey CR, Beteck RM. Tractable Quinolone Hydrazides Exhibiting Sub-Micromolar and Broad Spectrum Antitrypanosomal Activities. ChemMedChem 2024; 19:e202300667. [PMID: 38326914 PMCID: PMC11076157 DOI: 10.1002/cmdc.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 μM), and most were non-toxic to HEK293 cells (CC50 values>5 μM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.
Collapse
Affiliation(s)
- Kgothatso A Chirwa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Hayoung Park
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Benčić P, Keppler M, Kuge M, Qiu D, Schütte LM, Häner M, Strack K, Jessen HJ, Andexer JN, Loenarz C. Non-canonical nucleosides: Biomimetic triphosphorylation, incorporation into mRNA and effects on translation and structure. FEBS J 2023; 290:4899-4920. [PMID: 37329249 DOI: 10.1111/febs.16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in mRNA therapeutics demand efficient toolkits for the incorporation of nucleoside analogues into mRNA suitable for downstream applications. Herein, we report the application of a versatile enzyme cascade for the triphosphorylation of a broad range of nucleoside analogues, including unprotected nucleobases containing chemically labile moieties. Our biomimetic system was suitable for the preparation of nucleoside triphosphates containing adenosine, cytidine, guanosine, uridine and non-canonical core structures, as determined by capillary electrophoresis coupled to mass spectrometry. This enabled us to establish an efficient workflow for transcribing and purifying functional mRNA containing these nucleoside analogues, combined with mass spectrometric verification of analogue incorporation. Our combined methodology allows for analyses of how incorporation of nucleoside analogues that are commercially unavailable as triphosphates affect mRNA properties: The translational fidelity of the produced mRNA was demonstrated in analyses of how incorporated adenosine analogues impact translational recoding. For the SARS-CoV-2 frameshifting site, analyses of the mRNA pseudoknot structure using circular dichroism spectroscopy allowed insight into how the pharmacologically active 7-deazaadenosine destabilises RNA secondary structure, consistent with observed changes in recoding efficiency.
Collapse
Affiliation(s)
- Patricia Benčić
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Michael Keppler
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Marco Kuge
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Lena M Schütte
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Katharina Strack
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | | | | | - Christoph Loenarz
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| |
Collapse
|
5
|
Bege M, Singh V, Sharma N, Debreczeni N, Bereczki I, Poonam, Herczegh P, Rathi B, Singh S, Borbás A. In vitro and in vivo antiplasmodial evaluation of sugar-modified nucleoside analogues. Sci Rep 2023; 13:12228. [PMID: 37507429 PMCID: PMC10382589 DOI: 10.1038/s41598-023-39541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
Drug-resistant Plasmodium falciparum (Pf) infections are a major burden on the population and the healthcare system. The establishment of Pf resistance to most existing antimalarial therapies has complicated the problem, and the emergence of resistance to artemisinin derivatives is even more concerning. It is increasingly difficult to cure malaria patients due to the limited availability of effective antimalarial drugs, resulting in an urgent need for more efficacious and affordable treatments to eradicate this disease. Herein, new nucleoside analogues including morpholino-nucleoside hybrids and thio-substituted nucleoside derivatives were prepared and evaluated for in vitro and in vivo antiparasitic activity that led a few hits especially nucleoside-thiopyranoside conjugates, which are highly effective against Pf3D7 and PfRKL-9 strains in submicromolar concentration. One adenosine derivative and four pyrimidine nucleoside analogues significantly reduced the parasite burden in mouse models infected with Plasmodium berghei ANKA. Importantly, no significant hemolysis and cytotoxicity towards human cell line (RAW) was observed for the hits, suggesting their safety profile. Preliminary research suggested that these thiosugar-nucleoside conjugates could be used to accelerate the antimalarial drug development pipeline and thus deserve further investigation.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei Körút 98, Debrecen, 4032, Hungary
- MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Nóra Debreczeni
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007, India
- Delhi School of Public Health, Institution of Eminence (IoE), University of Delhi, Delhi, 110007, India
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India.
- Delhi School of Public Health, Institution of Eminence (IoE), University of Delhi, Delhi, 110007, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary.
- National Laboratory of Virology, University of Pécs, Ifjúság Útja 20, Pécs, 7624, Hungary.
| |
Collapse
|
6
|
Barnadas-Carceller B, Martinez-Peinado N, Gómez LC, Ros-Lucas A, Gabaldón-Figueira JC, Diaz-Mochon JJ, Gascon J, Molina IJ, Pineda de las Infantas y Villatoro MJ, Alonso-Padilla J. Identification of compounds with activity against Trypanosoma cruzi within a collection of synthetic nucleoside analogs. Front Cell Infect Microbiol 2023; 12:1067461. [PMID: 36710960 PMCID: PMC9880260 DOI: 10.3389/fcimb.2022.1067461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and it is the most important neglected tropical disease in the Americas. Two drugs are available to treat the infection, but their efficacy in the chronic stage of the disease, when most cases are diagnosed, is reduced. Their tolerability is also hindered by common adverse effects, making the development of safer and efficacious alternatives a pressing need. T. cruzi is unable to synthesize purines de novo, relying on a purine salvage pathway to acquire these from its host, making it an attractive target for the development of new drugs. Methods We evaluated the anti-parasitic activity of 23 purine analogs with different substitutions in the complementary chains of their purine rings. We sequentially screened the compounds' capacity to inhibit parasite growth, their toxicity in Vero and HepG2 cells, and their specific capacity to inhibit the development of amastigotes. We then used in-silico docking to identify their likely targets. Results Eight compounds showed specific anti-parasitic activity, with IC50 values ranging from 2.42 to 8.16 μM. Adenine phosphoribosyl transferase, and hypoxanthine-guanine phosphoribosyl transferase, are their most likely targets. Discussion Our results illustrate the potential role of the purine salvage pathway as a target route for the development of alternative treatments against T. cruzi infection, highlithing the apparent importance of specific substitutions, like the presence of benzene groups in the C8 position of the purine ring, consistently associated with a high and specific anti-parasitic activity.
Collapse
Affiliation(s)
- Berta Barnadas-Carceller
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laura Córdoba Gómez
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | | | - Juan J. Diaz-Mochon
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Ignacio J. Molina
- Institute of Biopathology and Regenerative Medicine, Centre for Biomedical Research, University of Granada, Granada, Spain
| | - María José Pineda de las Infantas y Villatoro
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain,*Correspondence: Julio Alonso-Padilla, ; María José Pineda de las Infantas y Villatoro,
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain,*Correspondence: Julio Alonso-Padilla, ; María José Pineda de las Infantas y Villatoro,
| |
Collapse
|
7
|
Jain S, Sahu U, Kumar A, Khare P. Metabolic Pathways of Leishmania Parasite: Source of Pertinent Drug Targets and Potent Drug Candidates. Pharmaceutics 2022; 14:pharmaceutics14081590. [PMID: 36015216 PMCID: PMC9416627 DOI: 10.3390/pharmaceutics14081590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a tropical disease caused by a protozoan parasite Leishmania that is transmitted via infected female sandflies. At present, leishmaniasis treatment mainly counts on chemotherapy. The currently available drugs against leishmaniasis are costly, toxic, with multiple side effects, and limitations in the administration route. The rapid emergence of drug resistance has severely reduced the potency of anti-leishmanial drugs. As a result, there is a pressing need for the development of novel anti-leishmanial drugs with high potency, low cost, acceptable toxicity, and good pharmacokinetics features. Due to the availability of preclinical data, drug repurposing is a valuable approach for speeding up the development of effective anti-leishmanial through pointing to new drug targets in less time, having low costs and risk. Metabolic pathways of this parasite play a crucial role in the growth and proliferation of Leishmania species during the various stages of their life cycle. Based on available genomics/proteomics information, known pathways-based (sterol biosynthetic pathway, purine salvage pathway, glycolysis, GPI biosynthesis, hypusine, polyamine biosynthesis) Leishmania-specific proteins could be targeted with known drugs that were used in other diseases, resulting in finding new promising anti-leishmanial therapeutics. The present review discusses various metabolic pathways of the Leishmania parasite and some drug candidates targeting these pathways effectively that could be potent drugs against leishmaniasis in the future.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
- Correspondence: or (A.K.); (P.K.)
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462026, Madhya Pradesh, India; (S.J.); (U.S.)
- Division of Synthetic Biology, Absolute Foods, Plot 68, Sector 44, Gurugram 122003, Haryana, India
- Correspondence: or (A.K.); (P.K.)
| |
Collapse
|
8
|
Sengupta S, Das P. Application of diazonium chemistry in purine modifications: A focused review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saumitra Sengupta
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
9
|
Martinez-Peinado N, Lorente-Macías Á, García-Salguero A, Cortes-Serra N, Fenollar-Collado Á, Ros-Lucas A, Gascon J, Pinazo MJ, Molina IJ, Unciti-Broceta A, Díaz-Mochón JJ, Pineda de las Infantas y Villatoro MJ, Izquierdo L, Alonso-Padilla J. Novel Purine Chemotypes with Activity against Plasmodium falciparum and Trypanosoma cruzi. Pharmaceuticals (Basel) 2021; 14:ph14070638. [PMID: 34358064 PMCID: PMC8308784 DOI: 10.3390/ph14070638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
Malaria and Chagas disease, caused by Plasmodium spp. and Trypanosoma cruzi parasites, remain important global health problems. Available treatments for those diseases present several limitations, such as lack of efficacy, toxic side effects, and drug resistance. Thus, new drugs are urgently needed. The discovery of new drugs may be benefited by considering the significant biological differences between hosts and parasites. One of the most striking differences is found in the purine metabolism, because most of the parasites are incapable of de novo purine biosynthesis. Herein, we have analyzed the in vitro anti-P. falciparum and anti-T. cruzi activity of a collection of 81 purine derivatives and pyrimidine analogs. We firstly used a primary screening at three fixed concentrations (100, 10, and 1 µM) and progressed those compounds that kept the growth of the parasites < 30% at 100 µM to dose–response assays. Then, we performed two different cytotoxicity assays on Vero cells and human HepG2 cells. Finally, compounds specifically active against T. cruzi were tested against intracellular amastigote forms. Purines 33 (IC50 = 19.19 µM) and 76 (IC50 = 18.27 µM) were the most potent against P. falciparum. On the other hand, 6D (IC50 = 3.78 µM) and 34 (IC50 = 4.24 µM) were identified as hit purines against T. cruzi amastigotes. Moreover, an in silico docking study revealed that P. falciparum and T. cruzi hypoxanthine guanine phosphoribosyltransferase enzymes could be the potential targets of those compounds. Our study identified two novel, purine-based chemotypes that could be further optimized to generate potent and diversified anti-parasitic drugs against both parasites.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Álvaro Lorente-Macías
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; (Á.L.-M.); (J.J.D.-M.)
- Institute of Biopathology and Regenerative Medicine, Centre for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain;
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - Alejandro García-Salguero
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Ángel Fenollar-Collado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
| | - Ignacio J. Molina
- Institute of Biopathology and Regenerative Medicine, Centre for Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18100 Granada, Spain;
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - Juan J. Díaz-Mochón
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; (Á.L.-M.); (J.J.D.-M.)
| | - María J. Pineda de las Infantas y Villatoro
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain; (Á.L.-M.); (J.J.D.-M.)
- Correspondence: (M.J.P.d.l.I.y.V.); (L.I.); (J.A.-P.); Tel.: +34-958249360 (M.J.P.d.l.I.y.V.); +34-932275400 (ext. 4569) (L.I.); +34-932275400 (ext. 4569) (J.A.-P.)
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
- Correspondence: (M.J.P.d.l.I.y.V.); (L.I.); (J.A.-P.); Tel.: +34-958249360 (M.J.P.d.l.I.y.V.); +34-932275400 (ext. 4569) (L.I.); +34-932275400 (ext. 4569) (J.A.-P.)
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (A.G.-S.); (N.C.-S.); (Á.F.-C.); (A.R.-L.); (J.G.); (M.-J.P.)
- Correspondence: (M.J.P.d.l.I.y.V.); (L.I.); (J.A.-P.); Tel.: +34-958249360 (M.J.P.d.l.I.y.V.); +34-932275400 (ext. 4569) (L.I.); +34-932275400 (ext. 4569) (J.A.-P.)
| |
Collapse
|
10
|
Lin C, Ferreira de Almeida Fiuza L, Cardoso Santos C, Ferreira Nunes D, Cruz Moreira O, Bouton J, Karalic I, Maes L, Caljon G, Hulpia F, de Nazaré C Soeiro M, Van Calenbergh S. 6-Methyl-7-Aryl-7-Deazapurine Nucleosides as Anti-Trypanosoma cruzi Agents: Structure-Activity Relationship and in vivo Efficacy. ChemMedChem 2021; 16:2231-2253. [PMID: 33856742 DOI: 10.1002/cmdc.202100144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 01/04/2023]
Abstract
Chagas disease is a tropical infectious disease resulting in progressive organ-damage and currently lacks efficient treatment and vaccine options. The causative pathogen, Trypanosoma cruzi, requires uptake and processing of preformed purines from the host because it cannot synthesize these de novo, instigating the evaluation of modified purine nucleosides as potential trypanocides. By modifying the pyrimidine part of a previously identified 7-aryl-7-deazapurine nucleoside, we found that substitution of a 6-methyl for a 6-amino group allows retaining T. cruzi amastigote growth inhibitory activity but confers improved selectivity towards mammalian cells. By keeping the 6-methyl group unaltered, and introducing different 7-aryl groups, we identified several analogues with sub-micromolar antitrypanosomal activity. The 7-(4-chlorophenyl) analogue 14, which was stable in microsomes, was evaluated in an acute mouse model. Oral administration of 25 mg/kg b.i.d. suppressed peak parasitemia and protected mice from infection-related mortality, gave similar reductions as the reference drug of blood parasite loads determined by qPCR, but as benznidazole failed to induce sterile cure in the short time period of drug exposure (5 days).
Collapse
Affiliation(s)
- Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Ludmila Ferreira de Almeida Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Camila Cardoso Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Daniela Ferreira Nunes
- Plataforma de PCR em Tempo Real RPT09A-Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Otacílio Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A-Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Izet Karalic
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium.,Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maria de Nazaré C Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| |
Collapse
|
11
|
Kamdem BP, Elizabeth FI. The Role of Nitro (NO 2-), Chloro (Cl), and Fluoro (F) Substitution in the Design of Antileishmanial and Antichagasic Compounds. Curr Drug Targets 2021; 22:379-398. [PMID: 33371845 DOI: 10.2174/1389450121666201228122239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas diseases are among the most severe NTDs, and are caused by the Leishmania sp and Trypanosoma cruzi, respectively. Glucantime, pentamidine, and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, are known to improve biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluorosynthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand-searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth mentioning that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro-, and chloro-groups in the compound backbone. All in all, nitro and halogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as the baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts in in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.
Collapse
Affiliation(s)
- Boniface P Kamdem
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
12
|
Bege M, Bereczki I, Molnár DJ, Kicsák M, Pénzes-Daku K, Bereczky Z, Ferenc G, Kovács L, Herczegh P, Borbás A. Synthesis and oligomerization of cysteinyl nucleosides. Org Biomol Chem 2020; 18:8161-8178. [PMID: 33020786 DOI: 10.1039/d0ob01890b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleoside and nucleic acid analogues are known to possess a considerable therapeutic potential. In this work, by coupling cysteine to nucleosides, we successfully synthesized compounds that may not only have interesting biological properties in their monomeric form, but can be used beyond that, for oligomerization, in order to produce new types of synthetic nucleic acids. We elaborated different strategies for the synthesis of cysteinyl nucleosides as monomers of cysteinyl nucleic acids using nucleophilic substitution or thiol-ene coupling as a synthetic tool, and utilised on two complementary nucleosides, uridine and adenosine. Dipeptidyl dinucleosides and pentameric cysteinyl uridine were prepared from the monomeric building blocks, which are the first members of a new class of peptide nucleic acids containing the entire ribofuranosyl nucleoside units bound to the peptide backbone.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary. and Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, H-4032, Hungary and MTA-DE Molecular Recognition and Interaction Research Group, University of Debrecen, Debrecen, H-4032, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Dénes J Molnár
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Máté Kicsák
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Krisztina Pénzes-Daku
- Division of Clinical Laboratory Science, University of Debrecen, Debrecen, H-4032, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, University of Debrecen, Debrecen, H-4032, Hungary
| | - Györgyi Ferenc
- Nucleic Acid Synthesis Laboratory, Biological Research Center, Szeged, H-6726, Hungary
| | - Lajos Kovács
- Nucleic Acids Laboratory, Department of Medicinal Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|
13
|
Campagnaro GD, de Koning HP. Purine and pyrimidine transporters of pathogenic protozoa - conduits for therapeutic agents. Med Res Rev 2020; 40:1679-1714. [PMID: 32144812 DOI: 10.1002/med.21667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Purines and pyrimidines are essential nutrients for any cell. Most organisms are able to synthesize their own purines and pyrimidines, but this ability was lost in protozoans that adapted to parasitism, leading to a great diversification in transporter activities in these organisms, especially for the acquisition of amino acids and nucleosides from their hosts throughout their life cycles. Many of these transporters have been shown to have sufficiently different substrate affinities from mammalian transporters, making them good carriers for therapeutic agents. In this review, we summarize the knowledge obtained on purine and pyrimidine activities identified in protozoan parasites to date and discuss their importance for the survival of these parasites and as drug carriers, as well as the perspectives of developments in the field.
Collapse
Affiliation(s)
- Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| |
Collapse
|
14
|
Revisiting tubercidin against kinetoplastid parasites: Aromatic substitutions at position 7 improve activity and reduce toxicity. Eur J Med Chem 2019; 164:689-705. [DOI: 10.1016/j.ejmech.2018.12.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/09/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
|