1
|
Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther 2023; 251:108548. [PMID: 37858628 DOI: 10.1016/j.pharmthera.2023.108548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Boron has become a crucial weapon in anticancer research due to its significant intervention in cell proliferation. Being an excellent bio-isosteric replacement of carbon, it has modulated the anticancer efficacy of various molecules in the development pipeline. It has elicited promising results through interactions with various therapeutic targets such as HIF-1α, steroid sulfatase, arginase, proteasome, etc. Since boron liberates alpha particles, it has a wide-scale application in Boron Neutron Capture therapy (BNCT), a radiotherapy that demonstrates selectivity towards cancer cells due to high boron uptake capacity. Significant advances in the medicinal chemistry of boronated compounds, such as boronated sugars, natural/unnatural amino acids, boronated DNA binders, etc., have been reported over the past few years as BNCT agents. In addition, boronated nanoparticles have assisted the field of bio-nano medicines by their usage in radiotherapy. This review exclusively focuses on the medicinal chemistry aspects, radiotherapeutic, and chemotherapeutic aspects of boron in cancer therapeutics. Emphasis is also given on the mechanism of action along with advantages over conventional therapies.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Dyuti Bhandary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
2
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Anbar HS, Isa Z, Elounais JJ, Jameel MA, Zib JH, Samer AM, Jawad AF, El-Gamal MI. Steroid sulfatase inhibitors: the current landscape. Expert Opin Ther Pat 2021; 31:453-472. [PMID: 33783295 DOI: 10.1080/13543776.2021.1910237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Steroid sulfatase (STS) enzyme is responsible for transforming the inactive sulfate metabolites of steroid sex hormones into the active free steroids. Both the deficiency and the over-expression of STS are associated with the pathophysiology of certain diseases. This article provides the readership with a comprehensive review about STS enzyme and its recently reported inhibitors.Areas covered: In the present article, we reviewed the structure, location, and substrates of STS enzyme, physiological functions of STS, and disease states related to over-expression or deficiency of STS enzyme. STS inhibitors reported during the last five years (2016-present) have been reviewed as well.Expert opinion: Irosustat is the most successful STS inhibitor drug candidate so far. It is currently under investigation in clinical trials for treatment of estrogen-dependent breast cancer. Non-steroidal sulfamate is the most favorable scaffold for STS inhibitor design. They can be beneficial for the treatment of hormone-dependent cancers and neurodegenerative disorders without significant estrogenic side effects. Moreover, dual-acting molecules (inhibitors of STS + another synergistic mechanism) can be therapeutically efficient.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Isa
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Jana J Elounais
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mariam A Jameel
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Joudi H Zib
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya M Samer
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya F Jawad
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
4
|
Daśko M, Demkowicz S, Biernacki K, Ciupak O, Kozak W, Masłyk M, Rachon J. Recent progress in the development of steroid sulphatase inhibitors - examples of the novel and most promising compounds from the last decade. J Enzyme Inhib Med Chem 2020; 35:1163-1184. [PMID: 32363947 PMCID: PMC7241464 DOI: 10.1080/14756366.2020.1758692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review article is to provide an overview of recent achievements in the synthesis of novel steroid sulphatase (STS) inhibitors. STS is a crucial enzyme in the biosynthesis of active hormones (including oestrogens and androgens) and, therefore, represents an extremely attractive molecular target for the development of hormone-dependent cancer therapies. The inhibition of STS may effectively reduce the availability of active hormones for cancer cells, causing a positive therapeutic effect. Herein, we report examples of novel STS inhibitors based on steroidal and nonsteroidal cores that contain various functional groups (e.g. sulphamate and phosphorus moieties) and halogen atoms, which may potentially be used in therapies for hormone-dependent cancers. The presented work also includes examples of multitargeting agents with STS inhibitory activities. Furthermore, the fundamental discoveries in the development of the most promising drug candidates exhibiting STS inhibitory activities are highlighted.
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Witold Kozak
- Department of Physical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
5
|
Sulfamates in drug design and discovery: Pre-clinical and clinical investigations. Eur J Med Chem 2019; 179:257-271. [PMID: 31255926 DOI: 10.1016/j.ejmech.2019.06.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
In the present article, we reviewed the sulfamate-containing compounds reported as bioactive molecules. The possible molecular targets of sulfamate derivatives include steroid sulfatase enzyme, carbonic anhydrases, acyl transferase, and others. Sulfamate derivatives can help treat hormone-dependent tumors including breast, prostate, and endometrial cancers, Binge eating disorder, migraine, glaucoma, weight loss, and epilepsy. Sulfamate derivatives can act also as calcium sensing receptor agonists and can aid in osteoporosis. Furthermore, acyl sulfamate derivatives can act as antibacterial agents against Gram-positive bacteria. A recent study revealed a new side effect of topiramate, a sulfamate-containing compound, which is sialolithiasis. The structural and biological characteristics of the reviewed compounds are presented in detail.
Collapse
|
6
|
Kaise A, Endo Y, Ohta K. Anti-cancer activity of m-carborane-containing trimethoxyphenyl derivatives through tubulin polymerization inhibition. Bioorg Med Chem 2019; 27:1139-1144. [PMID: 30773422 DOI: 10.1016/j.bmc.2019.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 11/30/2022]
Abstract
m-Carborane-containing compound 1a was identified as a cell growth inhibitor from a random screening of a boron compound library. As 1a is a mixture of diastereomers due to the presence of two chiral carbons, we designed achiral derivatives 2-4 and studied the structure-activity relationships of the methoxy groups on the benzene ring. 3,4,5-Trimethoxybenzyl derivative 2a and 3,4,5-trimethoxybenzoyl derivative 3a showed more potent anti-cancer activity against the human breast cancer cell line MDA-MB-453 than lead compound 1a. Compound 3a inhibited tubulin polymerization in a dose-dependent manner.
Collapse
Affiliation(s)
- Asako Kaise
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Kiminori Ohta
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
7
|
New organotin(IV) chlorides derived from N-(2-hydroxyphenyl)aryloxy sulfamates. Synthesis, characterization and DSC investigation. J CHEM SCI 2019. [DOI: 10.1007/s12039-018-1586-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Al-Kazaale N, Tran PT, Haidari F, Solum EJ, Liekens S, Vervaeke P, Sylte I, Cheng JJ, Vik A, Hansen TV. Synthesis, molecular modeling and biological evaluation of potent analogs of 2-methoxyestradiol. Steroids 2018; 136:47-55. [PMID: 29772242 DOI: 10.1016/j.steroids.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The endogenous steroid 2-methoxyestradiol (1) has attracted a great interest as a lead compound towards the development of new anti-cancer drugs. Herein, the synthesis, molecular modeling, anti-proliferative and anti-angiogenic effects of ten 2-ethyl and four 2-methoxy analogs of estradiol are reported. The ethyl group was introduced to the steroid A-ring using a novel Friedel-Crafts alkylation protocol. Several analogs displayed potent anti-proliferative activity with IC50-values in the submicromolar range towards the CEM human leukemia cancer cell line. As such, all of these compounds proved to be more active than the lead compound 2-methoxyestradiol (1) in these cells. The six most cytostatic analogs were also tested as anti-angiogenic agents using an in vitro tube formation assay. The IC50-values were determined to be in the range of 0.1 μM ± 0.03 and 1.1 μM ± 0.2. These six compounds were also modest inhibitors against tubulin polymerization with the most potent inhibitor was 14b (IC50 = 2.1 ± 0.1 μM). Binding studies using N,N'-ethylene-bis(iodoacetamide) revealed that neither14a or 14b binds to the colchicine binding site in the tubulin protein, in contrast to 2-methoxyestradiol (1). These observations were supported by molecular modeling studies. Results from a MDA-MB-231 cell cycle assay showed that both 10e and 14b gave accumulation in the G2/M phase resulting in induction of apoptosis. The results presented herein shows that the novel analogs reported exhibit their anticancer effects via several modes of action.
Collapse
Affiliation(s)
- Nora Al-Kazaale
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Phuong T Tran
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Farhad Haidari
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Eirik Johansson Solum
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway; Faculty of Health Sciences, Nord University, 7801 Namsos, Norway
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, Postbus 1043, B-3000 Leuven, Belgium
| | - Peter Vervaeke
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, Postbus 1043, B-3000 Leuven, Belgium
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jing-Jy Cheng
- National Research Institute of Chinese Medicine, 155-1 Li-Nung Street, Section 2, Shih-Pai, Taipei, Taiwan; Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan
| | - Anders Vik
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
9
|
Shen Y, Zheng K, Dontha R, Pan Y, Liu J, Duttwyler S. Efficient access to amides of the carborane carboxylic acid [1-(COOH)–CB11H11]−. RSC Adv 2018; 8:22447-22451. [PMID: 35539747 PMCID: PMC9081092 DOI: 10.1039/c8ra03067g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
The preparation of the carborane acid chloride [1-(COCl)–CB11H11]− from the carboxylic acid [1-(COOH)–CB11H11]− is reported. This acid chloride exhibits remarkable inertness towards moisture and can be stored under ambient conditions for several months. Reaction with amines affords secondary and tertiary carborane amides [1-(CONR1R2)–CB11H11]− in moderate to high yields under mild conditions. Two of the amide products were characterized by X-ray crystallography in addition to spectroscopic analysis. Preliminary studies show that the amides can be reduced to the corresponding amines and that the acid chloride has the potential to serve as a starting material for carborane ester formation. The preparation of the carborane acid chloride [1-(COCl)–CB11H11]− from the carboxylic acid [1-(COOH)–CB11H11]− and subsequent amide formation are reported.![]()
Collapse
Affiliation(s)
- Yunjun Shen
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P.R. China
| | - Kai Zheng
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P.R. China
| | - Rakesh Dontha
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P.R. China
| | - Yani Pan
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P.R. China
| | - Jiyong Liu
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P.R. China
| | - Simon Duttwyler
- Department of Chemistry
- Zhejiang University
- 310027 Hangzhou
- P.R. China
| |
Collapse
|