1
|
Carbajal C, Rodriguez M, Owens F, Stone N, Veeragoni D, Fan RZ, Tieu K, El-Hage N. Therapeutic Efficacy of Small Extracellular Vesicles Loaded with ROCK Inhibitor in Parkinson's Disease. Pharmaceutics 2025; 17:365. [PMID: 40143028 PMCID: PMC11944340 DOI: 10.3390/pharmaceutics17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired muscle function. Studies show defective mitochondrial autophagy (or "mitophagy") links to PD. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are serine/threonine kinases, and their inhibition can enhance neuroprotection in PD by promoting mitophagy. Methods: We examine the effects of ROCK inhibitor SR3677, delivered via macrophage-derived small extracellular vesicles (sEVs) to Parkin Q311X(A) PD mouse models. sEVs with SR3677, administered intranasally, increased mitophagy gene expression, reduced inflammatory factors, and elevated dopamine levels in brain tissues. Results: ROCK2 expression decreased, showing the drug's inhibitory effect. sEV-SR3677 treatment was more effective than treatment with the drug alone, although sham EVs showed lower effects. This suggests that EV-SR3677 not only activates mitochondrial processes but also promotes the degradation of damaged mitochondria through autophagy. Mitochondrial functional assays and oxygen consumption in ex vivo glial cultures revealed that sEV-SR3677 significantly improved mitochondrial respiration compared to that in untreated or SR3677-only treated cells. Conclusion: We demonstrated the efficacy of ROCK2 inhibition on mitochondrial function via sEV-SR3677 in the PD mouse model, necessitating further studies to explore design challenges and mechanisms of sEV-SR3677 as mitochondria-targeted therapy for PD.
Collapse
Affiliation(s)
- Candy Carbajal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Myosotys Rodriguez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Florida Owens
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Nicole Stone
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Dileepkumar Veeragoni
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Rebecca Z. Fan
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Nazira El-Hage
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| |
Collapse
|
2
|
Xu X, Yao L. Recent advances in the development of Rho kinase inhibitors (2015-2021). Med Res Rev 2024; 44:406-421. [PMID: 37265266 DOI: 10.1002/med.21980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Rho-associated coiled-coil kinases (ROCKs) are key downstream effectors of small GTPases. ROCK plays a central role in diverse cellular events with accumulating evidence supporting the concept that ROCK is important in tumor development and progression. Numerous ROCK inhibitors have been investigated for their therapeutic potential in the treatment of cancers. In this article, we review recent research progress on ROCK inhibitors, especially those with potential for the treatment of cancers, reported in the literature from 2015 to 2021. Most ROCK inhibitors show potent in vitro and in vivo antitumor activities and have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Xiangrong Xu
- Yantai University Hospital, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
3
|
Design and synthesis of novel GluN2A NMDAR positive allosteric modulators via scaffold hopping strategy as anti-stroke therapeutic agents. Bioorg Med Chem 2023; 83:117236. [PMID: 36934527 DOI: 10.1016/j.bmc.2023.117236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo . Activation of NR2A-containing NMDA receptors promotes neuronal survival and exerts a neuroprotective action, whereas over activating GluN2B-containing receptor results in excitotoxicity, increasing neuronal apoptosis. Our previous study has identified Npam 43 as a NMDAR positive allosteric modulators. However, the cis-trans isomerization impedes the development of Npam 43 as potential neuroprotective agents. To discover more potent and selective GluN2A NMDAR positive allosteric modulators, 38 derivatives were synthesized and evaluated their neuroprotective effect on glutamate-exposed PC-12 cells. The allosteric activities of compounds were evaluated using calcium imaging approaches. Among them, compound 5c exhibit GluN1/2A selectivity over GluN1/2B and show neuroprotective activity in vitro and in vivo. This study reported a series of GluN1/2A positive allosteric modulators as neuroprotective agents, and provided a potential opportunity to discover new drugs for stroke treatment.
Collapse
|
4
|
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Multitargeting the Action of 5-HT 6 Serotonin Receptor Ligands by Additional Modulation of Kinases in the Search for a New Therapy for Alzheimer's Disease: Can It Work from a Molecular Point of View? Int J Mol Sci 2022; 23:ijms23158768. [PMID: 35955902 PMCID: PMC9368844 DOI: 10.3390/ijms23158768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art that will help in the search for innovative polypharmacology-based therapeutic approaches to fight against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R), due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models; however, research into this treatment has so far not been successfully translated to human patients. Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II) and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature analysis performed herein serves to answer the question of whether the design of these kind of dual agents is possible, and the conclusions turned out to be highly promising.
Collapse
|
6
|
Ladduwahetty T, Lee MR, Maillard MC, Cachope R, Todd D, Barnes M, Beaumont V, Chauhan A, Gallati C, Haughan AF, Kempf G, Luckhurst CA, Matthews K, McAllister G, Mitchell P, Patel H, Rose M, Saville-Stones E, Steinbacher S, Stott AJ, Thatcher E, Tierney J, Urbonas L, Munoz-Sanjuan I, Dominguez C. Identification of a Potent, Selective, and Brain-Penetrant Rho Kinase Inhibitor and its Activity in a Mouse Model of Huntington's Disease. J Med Chem 2022; 65:9819-9845. [PMID: 35816678 DOI: 10.1021/acs.jmedchem.2c00474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor. Identifying a compound that could be dosed orally in mice with selectivity against other AGC kinases, including protein kinase G (PKG), whose inhibition could potentially activate the ROCK pathway, was paramount for the program. We describe the optimization of published ligands to identify a novel series of ROCK inhibitors based on a piperazine core. Morphing of the early series developed in-house by scaffold hopping enabled the identification of a compound exhibiting high potency and desired selectivity and demonstrating a robust pharmacodynamic (PD) effect by the inhibition of ROCK-mediated substrate (MYPT1) phosphorylation after oral dosing.
Collapse
Affiliation(s)
- Tammy Ladduwahetty
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Matthew R Lee
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Michel C Maillard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Roger Cachope
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Daniel Todd
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Michael Barnes
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Alka Chauhan
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Caroline Gallati
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Alan F Haughan
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Georg Kempf
- Proteros Biostructures GmbH, Bunsenstr. 7a, D-82152 Planegg-Martinsried, Germany
| | | | - Kim Matthews
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - George McAllister
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Philip Mitchell
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Hiral Patel
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Mark Rose
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | | | - Stefan Steinbacher
- Proteros Biostructures GmbH, Bunsenstr. 7a, D-82152 Planegg-Martinsried, Germany
| | - Andrew J Stott
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Emma Thatcher
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Jason Tierney
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Liudvikas Urbonas
- Discovery from Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Ignacio Munoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| |
Collapse
|
7
|
Tolomeu HV, Fraga CAM. The Outcomes of Small-Molecule Kinase Inhibitors and the Role of ROCK2 as a Molecular Target for the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:188-205. [PMID: 34414875 DOI: 10.2174/1871527320666210820092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alzheimer's disease is rapidly becoming a major threat to public health, with an increasing number of individuals affected as the world's population ages. In this sense, studies have been carried out aiming at the identification of new small-molecule kinase inhibitors useful for the treatment of Alzheimer's disease. OBJECTIVE In the present study, we investigated the compounds developed as inhibitors of different protein kinases associated with the pathogenesis of Alzheimer's disease. METHODS The applied methodology was the use of the Clarivate Analytics Integrity and ClinicalTrials. com databases. Moreover, we highlight ROCK2 as a promising target despite being little studied for this purpose. A careful structure-activity relationship analysis of the ROCK2 inhibitors was performed to identify important structural features and fragments for the interaction with the kinase active site, aiming to rationally design novel potent and selective inhibitors. RESULTS We were able to notice some structural characteristics that could serve as the basis to better guide the rational design of new ROCK2 inhibitors as well as some more in-depth characteristics regarding the topology of the active site of both isoforms of these enzymes, thereby identifying differences that could lead to planning more selective compounds. CONCLUSION We hope that this work can be useful to update researchers working in this area, enabling the emergence of new ideas and a greater direction of efforts for designing new ROCK2 inhibitors to identify new therapeutic alternatives for Alzheimer's disease.
Collapse
Affiliation(s)
- Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Sun Y, Li Y, Miao Z, Yang R, Zhang Y, Wu M, Lin G, Li L. Discovery of 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one derivatives as a new class of ROCK inhibitors for the treatment of glaucoma. Bioorg Med Chem Lett 2021; 45:128138. [PMID: 34044123 DOI: 10.1016/j.bmcl.2021.128138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
The Rho-associated protein kinases (ROCKs) are associated with the pathology of glaucoma and discovery of ROCK inhibitors has attracted much attention in recent years. Herein, we report a series of 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies led to the discovery of compound 12b, which showed potent activities against ROCK I and ROCK Ⅱ with IC50 values of 93 nM and 3 nM, respectively. 12b also displayed considerable selectivity for ROCKs. The mean IOP-lowering effect of 12b in an ocular normotensive model was 34.3%, and no obvious hyperemia was observed. Overall, this study provides a good starting point for ROCK-targeting drug discovery against glaucoma.
Collapse
Affiliation(s)
- Yumeng Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruicheng Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
9
|
Yin Y, Sun Y, Zhao L, Pan J, Feng Y. Computer-aided discovery of phenylpyrazole based amides as potent S6K1 inhibitors. RSC Med Chem 2020; 11:583-590. [PMID: 33479660 DOI: 10.1039/c9md00537d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomal protein S6 kinase beta-1 (S6K1) is an attractive therapeutic target. In this study, computational analysis of five thiophene urea-based S6K1 inhibitors was performed. Molecular docking showed that the five compounds formed hydrogen bonds with residues Glu173 and Leu175 of S6K1 and hydrophobic interactions with residues Val105, Leu97 and Met225, and these interactions were key elements for the inhibitory potency of the compounds. Binding free energy (ΔG bind) decomposition analysis showed that Leu97, Glu173, Val 105, Leu175, Leu97 and Met225 contribute the most to ΔG bind. Based on the computer results, phenylpyrazole based amides (D1-D3) were designed and synthesized. Biological evaluation revealed that D2 exhibited 15.9 nM S6K1 inhibition, medium microsomal stability and desirable bioavailability.
Collapse
Affiliation(s)
- Yan Yin
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Hai Quan Rd. , Shanghai , 201418 , P. R. China .
| | - Yuxing Sun
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Hai Quan Rd. , Shanghai , 201418 , P. R. China .
| | - Lianhua Zhao
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Hai Quan Rd. , Shanghai , 201418 , P. R. China .
| | - Jinpeng Pan
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Hai Quan Rd. , Shanghai , 201418 , P. R. China .
| | - Yangbo Feng
- Medicinal Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , USA.,Reaction Biology Corporation , Malvern , PA 19355 , USA
| |
Collapse
|
10
|
Scott F, Fala AM, Pennicott LE, Reuillon TD, Massirer KB, Elkins JM, Ward SE. Development of 2-(4-pyridyl)-benzimidazoles as PKN2 chemical tools to probe cancer. Bioorg Med Chem Lett 2020; 30:127040. [PMID: 32085971 PMCID: PMC7078758 DOI: 10.1016/j.bmcl.2020.127040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022]
Abstract
Kinases are signalling proteins which have proven to be successful targets for the treatment of a variety of diseases, predominantly in cancers. However, only a small proportion of kinases (<20%) have been investigated for their therapeutic viability, likely due to the lack of available chemical tools across the kinome. In this work we describe initial efforts in the development of a selective chemical tool for protein kinase N2 (PKN2), a relatively unexplored kinase of interest in several types of cancer. The most successful compound, 5, has a measured IC50 of 0.064 μM against PKN2, with ca. 17-fold selectivity over close homologue, PKN1.
Collapse
Affiliation(s)
- Fiona Scott
- Sussex Drug Discovery Centre, University of Sussex, Sussex House, Falmer, Brighton BN1 9RH, United Kingdom.
| | - Angela M Fala
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil; Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil.
| | - Lewis E Pennicott
- Sussex Drug Discovery Centre, University of Sussex, Sussex House, Falmer, Brighton BN1 9RH, United Kingdom.
| | - Tristan D Reuillon
- Sussex Drug Discovery Centre, University of Sussex, Sussex House, Falmer, Brighton BN1 9RH, United Kingdom.
| | - Katlin B Massirer
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil; Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil.
| | - Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| | - Simon E Ward
- Sussex Drug Discovery Centre, University of Sussex, Sussex House, Falmer, Brighton BN1 9RH, United Kingdom; Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom.
| |
Collapse
|