1
|
Rodriguez M, Xu H, Hernandez A, Ingraham J, Canizales J, Arce FT, Camp SM, Briggs S, Ooi A, Burke JM, Song JH, Garcia JGN. NEDD4 E3 ligase-catalyzed NAMPT ubiquitination and autophagy activation are essential for pyroptosis-independent NAMPT secretion in human monocytes. Cell Commun Signal 2025; 23:157. [PMID: 40159488 PMCID: PMC11956250 DOI: 10.1186/s12964-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
NAMPT is an important intracellular metabolic enzyme (iNAMPT) regulating the NAD+ salvage pathway. However, increased cellular stress (infection, inflammation, hypoxia) promotes the secretion of extracellular NAMPT (eNAMPT), a TLR4 ligand and damage-associated molecular pattern protein (DAMP) that directly drives amplification of innate immune-mediated inflammatory, fibrotic, and neoplastic responses to influence disease severity. We sought to examine the mechanisms underlying pyroptotic eNAMPT release from human monocytic THP-1 cells, evoked by Nigericin, and non-pyroptotic eNAMPT secretion elicited by lipopolysaccharide (LPS). Our data indicate eNAMPT secretion/release requires NLRP3 inflammasome activation with substantial attenuation by either NLRP3 inhibition (MCC-950) or targeted genetic deletion of key inflammasome components, including NLRP3, caspase-1, or gasdermin D (GSDMD). Pyroptosis-associated eNAMPT release involved cleavage of the pore-forming GSDMD protein resulting in plasma membrane rupture (PMR) whereas non-pyroptotic LPS-induced eNAMPT secretion involved neither GSDMD cleavage nor PMR, verified utilizing non-cleavable GSDMD mutant constructs. LPS-induced eNAMPT secretion, however, was highly dependent upon NAMPT ubiquitination catalyzed by a complex containing the NEDD4 E3 ligase, Hsp90 (a selective chaperone), and intact GSDMD verified by enzymatic inhibition or silencing of NEDD4, GSDMD, or Hsp90. NAMPT ubiquitination and secretion involves autophagy activation as super-resolution microscopy analyses demonstrate NAMPT co-localization with autophagosome marker LC3B and eNAMPT secretion was significantly reduced by targeted ATG5 and ATG7 inhibition, critical components of the autophagy E3-like complex. These studies provide key insights into eNAMPT secretion that may accelerate the development of therapeutic strategies that address unmet therapeutic needs in inflammatory, fibrotic and neoplastic disorders.
Collapse
Affiliation(s)
- Marisela Rodriguez
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Haifei Xu
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Annie Hernandez
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Julia Ingraham
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jason Canizales
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Fernando Teran Arce
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sara M Camp
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Skyler Briggs
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Aikseng Ooi
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
| | - James M Burke
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Jin H Song
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA
| | - Joe G N Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, 33458, USA.
- Department of Molecular Medicine, University of Florida Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
2
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
3
|
Xie SC, Tai CW, Morton CJ, Ma L, Huang SC, Wittlin S, Du Y, Hu Y, Dogovski C, Salimimarand M, Griffin R, England D, de la Cruz E, Deni I, Yeo T, Burkhard AY, Striepen J, Schindler KA, Crespo B, Gamo FJ, Khandokar Y, Hutton CA, Rabie T, Birkholtz LM, Famodimu MT, Delves MJ, Bolsher J, Koolen KMJ, van der Laak R, Aguiar ACC, Pereira DB, Guido RVC, Creek DJ, Fidock DA, Dick LR, Brand SL, Gould AE, Langston S, Griffin MDW, Tilley L. A potent and selective reaction hijacking inhibitor of Plasmodium falciparum tyrosine tRNA synthetase exhibits single dose oral efficacy in vivo. PLoS Pathog 2024; 20:e1012429. [PMID: 39652589 DOI: 10.1371/journal.ppat.1012429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/26/2024] [Accepted: 10/31/2024] [Indexed: 12/28/2024] Open
Abstract
The Plasmodium falciparum cytoplasmic tyrosine tRNA synthetase (PfTyrRS) is an attractive drug target that is susceptible to reaction-hijacking by AMP-mimicking nucleoside sulfamates. We previously identified an exemplar pyrazolopyrimidine ribose sulfamate, ML901, as a potent reaction hijacking inhibitor of PfTyrRS. Here we examined the stage specificity of action of ML901, showing very good activity against the schizont stage, but lower trophozoite stage activity. We explored a series of ML901 analogues and identified ML471, which exhibits improved potency against trophozoites and enhanced selectivity against a human cell line. Additionally, it has no inhibitory activity against human ubiquitin-activating enzyme (UAE) in vitro. ML471 exhibits low nanomolar activity against asexual blood stage P. falciparum and potent activity against liver stage parasites, gametocytes and transmissible gametes. It is fast-acting and exhibits a long in vivo half-life. ML471 is well-tolerated and shows single dose oral efficacy in the SCID mouse model of P. falciparum malaria. We confirm that ML471 is a reaction hijacking inhibitor that is converted into a tight binding Tyr-ML471 conjugate by the PfTyrRS enzyme. A crystal structure of the PfTyrRS/ Tyr-ML471 complex offers insights into improved potency, while molecular docking into UAE provides a rationale for improved selectivity.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chia-Wei Tai
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig J Morton
- Biomedical Manufacturing Program, CSIRO, Clayton South, Victoria, Australia
| | - Liting Ma
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Shih-Chung Huang
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yongbo Hu
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mina Salimimarand
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Griffin
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Dylan England
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Elisa de la Cruz
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Ioanna Deni
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Anna Y Burkhard
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Josefine Striepen
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Kyra A Schindler
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
| | - Benigno Crespo
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | | | - Craig A Hutton
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tayla Rabie
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Mufuliat T Famodimu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | - Anna C C Aguiar
- Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Dhelio B Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Darren J Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Lawrence R Dick
- Seofon Consulting, Natick, Massachusetts, United States of America
| | | | - Alexandra E Gould
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Steven Langston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
5
|
Zhang W, Chen L, Liu J, Chen B, Shi H, Chen H, Qi H, Wu Z, Mao X, Wang X, Huang Y, Li J, Yu Z, Zhong M, Wang T, Li Q. Inhibition of autophagy-related protein 7 enhances anti-tumor immune response and improves efficacy of immune checkpoint blockade in microsatellite instability colorectal cancer. J Exp Clin Cancer Res 2024; 43:114. [PMID: 38627815 PMCID: PMC11020677 DOI: 10.1186/s13046-024-03023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The efficacy of anti-PD-1 therapy is primarily hindered by the limited T-cell immune response rate and immune evasion capacity of tumor cells. Autophagy-related protein 7 (ATG7) plays an important role in autophagy and it has been linked to cancer. However, the role of ATG7 in the effect of immune checkpoint blockade (ICB) treatment on high microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) CRC is still poorly understood. METHODS In this study, patients from the cancer genome altas (TCGA) COAD/READ cohorts were used to investigate the biological mechanism driving ATG7 development. Several assays were conducted including the colony formation, cell viability, qRT-PCR, western blot, immunofluorescence, flow cytometry, ELISA, immunohistochemistry staining and in vivo tumorigenicity tests. RESULTS We found that ATG7 plays a crucial role in MSI-H CRC. Its knockdown decreased tumor growth and caused an infiltration of CD8+ T effector cells in vivo. ATG7 inhibition restored surface major histocompatibility complex I (MHC-I) levels, causing improved antigen presentation and anti-tumor T cell response by activating reactive oxygen species (ROS)/NF-κB pathway. Meanwhile, ATG7 inhibition also suppressed cholesterol accumulation and augmentation of anti-tumor immune responses. Combining ATG7 inhibition and statins improved the therapeutic benefit of anti-PD-1 in MSI-H CRC. Importantly, CRC patients with high expression of both ATG7 and recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) experienced worse prognosis compared to those with low ATG7 and HMGCR expression. CONCLUSIONS Inhibition of ATG7 leads to upregulation of MHC-I expression, augments immune response and suppresses cholesterol accumulation. These findings demonstrate that ATG7 inhibition has therapeutic potential and application of statins can increase the sensitivity to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Bicui Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Huanying Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Zimei Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Xiang Mao
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Jiyifan Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Zheng Yu
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
6
|
Guhe V, Singh S. Targeting peptide based therapeutics: Integrated computational and experimental studies of autophagic regulation in host-parasite interaction. ChemMedChem 2024; 19:e202300679. [PMID: 38317307 DOI: 10.1002/cmdc.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Cutaneous leishmaniasis caused by the intracellular parasite Leishmania major, exhibits significant public health challenge worldwide. With limited treatment options available, the identification of novel therapeutic targets is of paramount importance. Present study manifested the crucial role of ATG8 protein as a potential target in combating L. major infection. Using machine learning algorithms, we identified non-conserved motifs within the ATG8 in L. major. Subsequently, a peptide library was generated based on these motifs, and three peptides were selected for further investigation through molecular docking and molecular dynamics simulations. Surface Plasmon Resonance (SPR) experiments confirmed the direct interaction between ATG8 and the identified peptides. Remarkably, these peptides demonstrated the ability to cross the parasite membrane and exert profound effects on L. major. Peptide treatment significantly impacted parasite survival, inducing alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, indicating their involvement in autophagy regulation within L. major. In vitro studies revealed that the selected peptides effectively decreased the parasite load within the infected host cells. Encouragingly, in vivo experiments corroborated these findings, demonstrating a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II, a known autophagy marker within the host cells. Collectively, our findings highlight the efficacy of these novel peptides in targeting L. major ATG8 and disrupting parasite survival, wherein P2 is showing prominent effect on L. major as compared to P1. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis.
Collapse
Affiliation(s)
- Vrushali Guhe
- Systems Medicine Lab, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India Phone
| | - Shailza Singh
- Systems Medicine Lab, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India Phone
| |
Collapse
|
7
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
8
|
Mamrosh JL, Sherman DJ, Cohen JR, Johnston JA, Joubert MK, Li J, Lipford JR, Lomenick B, Moradian A, Prabhu S, Sweredoski MJ, Vander Lugt B, Verma R, Deshaies RJ. Quantitative measurement of the requirement of diverse protein degradation pathways in MHC class I peptide presentation. SCIENCE ADVANCES 2023; 9:eade7890. [PMID: 37352349 PMCID: PMC10289651 DOI: 10.1126/sciadv.ade7890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Peptides from degradation of intracellular proteins are continuously displayed by major histocompatibility complex (MHC) class I. To better understand origins of these peptides, we performed a comprehensive census of the class I peptide repertoire in the presence and absence of ubiquitin-proteasome system (UPS) activity upon developing optimized methodology to enrich for and quantify these peptides. Whereas most class I peptides are dependent on the UPS for their generation, a surprising 30%, enriched in peptides of mitochondrial origin, appears independent of the UPS. A further ~10% of peptides were found to be dependent on the proteasome but independent of ubiquitination for their generation. Notably, clinically achievable partial inhibition of the proteasome resulted in display of atypical peptides. Our results suggest that generation of MHC class I•peptide complexes is more complex than previously recognized, with UPS-dependent and UPS-independent components; paradoxically, alternative protein degradation pathways also generate class I peptides when canonical pathways are impaired.
Collapse
Affiliation(s)
- Jennifer L. Mamrosh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - David J. Sherman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Joseph R. Cohen
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | | | - Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | | | - Brett Lomenick
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Michael J. Sweredoski
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Rati Verma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| | - Raymond J. Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Amgen Research, Thousand Oaks, CA 91320, USA
| |
Collapse
|
9
|
Cui J, Ogasawara Y, Kurata I, Matoba K, Fujioka Y, Noda NN, Shibasaki M, Watanabe T. Targeting the ATG5-ATG16L1 Protein–Protein Interaction with a Hydrocarbon-Stapled Peptide Derived from ATG16L1 for Autophagy Inhibition. J Am Chem Soc 2022; 144:17671-17679. [DOI: 10.1021/jacs.2c07648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jin Cui
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Yuta Ogasawara
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Ikuko Kurata
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Yuko Fujioka
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Nobuo N. Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Takumi Watanabe
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-14-23 Kamiosaki Shinagawa-ku, Tokyo, 141-0021, Japan
| |
Collapse
|
10
|
Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen H. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm (Beijing) 2022; 3:e150. [PMID: 35845350 PMCID: PMC9271889 DOI: 10.1002/mco2.150] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionally conserved catabolic process in which cytosolic contents, such as aggregated proteins, dysfunctional organelle, or invading pathogens, are sequestered by the double-membrane structure termed autophagosome and delivered to lysosome for degradation. Over the past two decades, autophagy has been extensively studied, from the molecular mechanisms, biological functions, implications in various human diseases, to development of autophagy-related therapeutics. This review will focus on the latest development of autophagy research, covering molecular mechanisms in control of autophagosome biogenesis and autophagosome-lysosome fusion, and the upstream regulatory pathways including the AMPK and MTORC1 pathways. We will also provide a systematic discussion on the implication of autophagy in various human diseases, including cancer, neurodegenerative disorders (Alzheimer disease, Parkinson disease, Huntington's disease, and Amyotrophic lateral sclerosis), metabolic diseases (obesity and diabetes), viral infection especially SARS-Cov-2 and COVID-19, cardiovascular diseases (cardiac ischemia/reperfusion and cardiomyopathy), and aging. Finally, we will also summarize the development of pharmacological agents that have therapeutic potential for clinical applications via targeting the autophagy pathway. It is believed that decades of hard work on autophagy research is eventually to bring real and tangible benefits for improvement of human health and control of human diseases.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yin Shi
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn ResearchSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboZhejiangChina
| | - Han‐Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
11
|
Autophagy-Associated Immunogenic Modulation and Its Applications in Cancer Therapy. Cells 2022; 11:cells11152324. [PMID: 35954167 PMCID: PMC9367255 DOI: 10.3390/cells11152324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy, a lysosome-mediated cellular degradation pathway, recycles intracellular components to maintain metabolic balance and survival. Autophagy plays an important role in tumor immunotherapy as a “double-edged sword” that can both promote and inhibit tumor progression. Autophagy acts on innate and adaptive immunity and interacts with immune cells to modulate tumor immunotherapy. The discovery of autophagy inducers and autophagy inhibitors also provides new insights for clinical anti-tumor therapy. However, there are also difficulties in the application of autophagy-related regulators, such as low bioavailability and the lack of efficient selectivity. This review focuses on autophagy-related immunogenic regulation and its application in cancer therapy.
Collapse
|
12
|
Xie SC, Metcalfe RD, Dunn E, Morton CJ, Huang SC, Puhalovich T, Du Y, Wittlin S, Nie S, Luth MR, Ma L, Kim MS, Pasaje CFA, Kumpornsin K, Giannangelo C, Houghton FJ, Churchyard A, Famodimu MT, Barry DC, Gillett DL, Dey S, Kosasih CC, Newman W, Niles JC, Lee MC, Baum J, Ottilie S, Winzeler EA, Creek DJ, Williamson N, Parker MW, Brand SL, Langston SP, Dick LR, Griffin MD, Gould AE, Tilley L. Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science 2022; 376:1074-1079. [PMID: 35653481 PMCID: PMC7613620 DOI: 10.1126/science.abn0611] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5'-monophosphate-mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid-sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5'-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite Plasmodium falciparum, namely tyrosine RS (PfYRS). ML901 exerts whole-life-cycle-killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901.
Collapse
Affiliation(s)
- Stanley C. Xie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riley D. Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elyse Dunn
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Shih-Chung Huang
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Tanya Puhalovich
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yawei Du
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland,University of Basel, 4003 Basel, Switzerland
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Liting Ma
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Mi-Sook Kim
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | | | - Krittikorn Kumpornsin
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Fiona J. Houghton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Daniel C. Barry
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David L. Gillett
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Clara C. Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - William Newman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Marcus C.S. Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia,St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Stephen L. Brand
- Medicines for Malaria Venture, PO Box 1826, 20, Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Steven P. Langston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Lawrence R. Dick
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia,Seofon Consulting, 30 Tucker Street, Natick, Massachusetts 01760, USA
| | - Michael D.W. Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alexandra E. Gould
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA,For correspondence. Alexandra E. Gould, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA, (Chemistry) and Leann Tilley, Department of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia. (Biology)
| | - Leann Tilley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia,For correspondence. Alexandra E. Gould, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA, (Chemistry) and Leann Tilley, Department of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia. (Biology)
| |
Collapse
|
13
|
Desireddi JR, Rao MM, Murahari KK, Nimmareddy RR, Mothe T, Lingala AK, Maiti B, Manchal R. Study of the β-oxygen effect in the Barton–McCombie reaction for the total synthesis of (4R,5R)-4-hydroxy-γ-decalactone (Japanese orange fly lactone): a carbohydrate based approach. RSC Adv 2022; 12:25520-25527. [PMID: 36199353 PMCID: PMC9449999 DOI: 10.1039/d2ra04531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient and facile synthesis of Japanese orange fly lactone (1) was achieved from a commercially available d-glucose by investigating the Barton–McCombie reaction with furanose anomeric isomers (12α, β) with an overall yield of 12.6%. During the course of this synthesis, the β-oxygen effect was discovered in the deoxygenation step at the C-3 position using the Barton–McCombie reaction, where the substrate allows the effect to operate in one of the isomers but not in the other. Under the same reaction conditions, xanthate derived from the β-furanose isomer affords a high yield of deoxygenated product, whereas the α-isomer produces a very low yield. The key transformations used were Wittig olefination, TEMPO mediated oxidation, and Barton–McCombie deoxygenation, resulting in a concise total synthesis of Japanese orange fly lactone (1). Our success will allow for further biological studies of this natural product, as well as opportunities for developing new potentially promising pheromones. The Japanese orange fly lactone was synthesised with a chiral pool approach using commercially available, starting material d-glucose. This synthesis encountered a dominant structurally functioning impact in the Barton–McCombie reaction known as the β-oxygen effect.![]()
Collapse
Affiliation(s)
- Janardana Reddi Desireddi
- Aragen life sciences Private Limited (formerly known as GVK Biosciences Private Limited), Medicinal Chemistry Division, 28A, IDA Nacharam, Hyderabad-500076, Telangana, India
- Department of Chemistry Chaitanya (Deemed to be University), Warangal-506001, Telangana, India
| | - Mora Mallikarjuna Rao
- Accrete Pharmaceuticals Private Limited, Tangadpalli Village, Choutuppal Mandal, Yadadri Bhuvanagiri District-508252, Telangana, India
| | - Kiran Kumar Murahari
- Aragen life sciences Private Limited (formerly known as GVK Biosciences Private Limited), Medicinal Chemistry Division, 28A, IDA Nacharam, Hyderabad-500076, Telangana, India
| | - Rajashekar Reddy Nimmareddy
- Aragen life sciences Private Limited (formerly known as GVK Biosciences Private Limited), Medicinal Chemistry Division, 28A, IDA Nacharam, Hyderabad-500076, Telangana, India
| | - Thirupathi Mothe
- Department of Chemistry Chaitanya (Deemed to be University), Warangal-506001, Telangana, India
| | - Arun Kumar Lingala
- Department of Chemistry Chaitanya (Deemed to be University), Warangal-506001, Telangana, India
| | - Bhimcharan Maiti
- Aragen life sciences Private Limited (formerly known as GVK Biosciences Private Limited), Medicinal Chemistry Division, 28A, IDA Nacharam, Hyderabad-500076, Telangana, India
| | - Ravinder Manchal
- Department of Chemistry Chaitanya (Deemed to be University), Warangal-506001, Telangana, India
| |
Collapse
|
14
|
Tim-1 alleviates lupus nephritis-induced podocyte injury via regulating autophagy. Cent Eur J Immunol 2021; 46:305-313. [PMID: 34764802 PMCID: PMC8574111 DOI: 10.5114/ceji.2021.109827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Lupus nephritis (LN) is a complication of systemic lupus erythematosus (SLE) which seriously threatens the health of people. Tim-1 is known to be associated with the pathogenesis of SLE. However, the role of Tim-1 in LN is still unclear. Aim of the study To explore the expression and the potential regulatory molecular mechanism of Tim-1 in LN-induced podocyte injury. Material and methods An in vivo model of LN was established to detect the expression of Tim-1, inflammatory cytokines and autophagy-related proteins. Podocytes were treated with immunoglobulin G (IgG) to establish the LN in vitro model and then treated with an autophagy inhibitor. RT-qPCR and western blot were performed to investigate the effect of Tim-1 on inflammatory responses as well as autophagy in podocytes. The function of Tim-1 in IgG-induced podocytes was detected by CCK-8 and flow cytometry, respectively. Results Tim-1, L3BII/L3BI ratio and inflammatory cytokines were upregulated in LN mice. Tim-1 notably inhibited IgG-induced inflammatory responses in podocytes via reducing tumor necrosis factor α (TNF-α), interleukin (IL)-6 and IL-1β expression, and it could protect podocytes against LN-induced injury via inducing autophagy. Meanwhile, Tim-1 significantly promoted the proliferation of IgG-induced podocytes via inhibiting apoptosis. The autophagy inhibitor reversed the effect of Tim-1 on inflammatory cytokines and autophagy-related proteins in IgG-treated podocytes. Conclusions Tim-1 protects podocytes against LN-induced injury via mediating autophagy, which might serve as a new target for the treatment of LN.
Collapse
|
15
|
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20:140. [PMID: 34706732 PMCID: PMC8549397 DOI: 10.1186/s12943-021-01423-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is best known for its role in organelle and protein turnover, cell quality control, and metabolism. The autophagic machinery has, however, also adapted to enable protein trafficking and unconventional secretory pathways so that organelles (such as autophagosomes and multivesicular bodies) delivering cargo to lysosomes for degradation can change their mission from fusion with lysosomes to fusion with the plasma membrane, followed by secretion of the cargo from the cell. Some factors with key signalling functions do not enter the conventional secretory pathway but can be secreted in an autophagy-mediated manner.Positive clinical results of some autophagy inhibitors are encouraging. Nevertheless, it is becoming clear that autophagy inhibition, even within the same cancer type, can affect cancer progression differently. Even next-generation inhibitors of autophagy can have significant non-specific effects, such as impacts on endosome-related secretory pathways and secretion of extracellular vesicles (EVs). Many studies suggest that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the effect of autophagy inhibitors on EVs secretion highly important and attractive for anticancer therapy. In this review article, we discuss how different inhibitors of autophagy may influence the secretion of EVs and summarize the non-specific effects of autophagy inhibitors with a focus on endosome-related secretory pathways. Modulation of autophagy significantly impacts not only the quantity of EVs but also their content, which can have a deep impact on the resulting pro-tumourigenic or anticancer effect of autophagy inhibitors used in the antineoplastic treatment of solid cancers.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
16
|
Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, Martinez A, Pless O. Targeting autophagy in disease: established and new strategies. Autophagy 2021; 18:473-495. [PMID: 34241570 PMCID: PMC9037468 DOI: 10.1080/15548627.2021.1936359] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved pathway responsible for clearing cytosolic aggregated proteins, damaged organelles or invading microorganisms. Dysfunctional autophagy leads to pathological accumulation of the cargo, which has been linked to a range of human diseases, including neurodegenerative diseases, infectious and autoimmune diseases and various forms of cancer. Cumulative work in animal models, application of genetic tools and pharmacologically active compounds, has suggested the potential therapeutic value of autophagy modulation in disease, as diverse as Huntington, Salmonella infection, or pancreatic cancer. Autophagy activation versus inhibition strategies are being explored, while the role of autophagy in pathophysiology is being studied in parallel. However, the progress of preclinical and clinical development of autophagy modulators has been greatly hampered by the paucity of selective pharmacological agents and biomarkers to dissect their precise impact on various forms of autophagy and cellular responses. Here, we summarize established and new strategies in autophagy-related drug discovery and indicate a path toward establishing a more efficient discovery of autophagy-selective pharmacological agents. With this knowledge at hand, modern concepts for therapeutic exploitation of autophagy might become more plausible. Abbreviations: ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related gene; AUTAC: autophagy-targeting chimera; CNS: central nervous system; CQ: chloroquine; GABARAP: gamma-aminobutyric acid type A receptor-associated protein; HCQ: hydroxychloroquine; LYTAC: lysosome targeting chimera; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NDD: neurodegenerative disease; PDAC: pancreatic ductal adenocarcinoma; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PROTAC: proteolysis-targeting chimera; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Muhammed Kocak
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | | | | | - Inés Maestro
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain
| | | | - Vladimir Kirkin
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | - Ana Martinez
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Neurodegenerativas (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - Ole Pless
- Fraunhofer ITMP ScreeningPort, Hamburg, Germany
| |
Collapse
|
17
|
Small molecule probes for targeting autophagy. Nat Chem Biol 2021; 17:653-664. [PMID: 34035513 DOI: 10.1038/s41589-021-00768-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
Autophagy is implicated in a wide range of (patho)physiological processes including maintenance of cellular homeostasis, neurodegenerative disorders, aging and cancer. As such, small molecule autophagy modulators are in great demand, both for their ability to act as tools to better understand this essential process and as potential therapeutics. Despite substantial advances in the field, major challenges remain in the development and comprehensive characterization of probes that are specific to autophagy. In this Review, we discuss recent developments in autophagy-modulating small molecules, including the specific challenges faced in the development of activators and inhibitors, and recommend guidelines for their use. Finally, we discuss the potential to hijack the process for targeted protein degradation, an area of great importance in chemical biology and drug discovery.
Collapse
|
18
|
Lim J, Murthy A. Targeting Autophagy to Treat Cancer: Challenges and Opportunities. Front Pharmacol 2020; 11:590344. [PMID: 33381037 PMCID: PMC7768823 DOI: 10.3389/fphar.2020.590344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic process that targets its cargo for lysosomal degradation. In addition to its function in maintaining tissue homeostasis, autophagy is recognized to play a context-dependent role in cancer. Autophagy may inhibit tumor initiation under specific contexts; however, a growing body of evidence supports a pro-tumorigenic role of this pathway in established disease. In this setting, autophagy drives treatment resistance, metabolic changes, and immunosuppression both in a tumor-intrinsic and extrinsic manner. This observation has prompted renewed interest in targeting autophagy for cancer therapy. Novel genetic models have proven especially insightful, revealing unique and overlapping roles of individual autophagy-related genes in tumor progression. Despite identification of pharmacologically actionable nodes in the pathway, fundamental challenges still exist for successful therapeutic inhibition of autophagy. Here we summarize the current understanding of autophagy as a driver of resistance against targeted and immuno-therapies and highlight knowledge gaps that, if addressed, may provide meaningful advances in the treatment of cancer.
Collapse
Affiliation(s)
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|