1
|
Zhou Z, Sun Y, Pang J, Long YQ. Advances in the Delivery, Activation and Therapeutics Applications of Bioorthogonal Prodrugs. Med Res Rev 2025; 45:887-908. [PMID: 39692238 DOI: 10.1002/med.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Traditional prodrug strategies have been leveraged to overcome many inherent drawbacks of active native drugs in the drug research and development. However, endogenous stimuli such as specific microenvironment or enzymes are relied on to achieve the prodrug activation, resulting in unintended drug release and systemic toxicity. Alternatively, bioorthogonal cleavage reaction-enabled bioorthogonal prodrugs activation via exogenous triggers has emerged as a valuable approach, featuring spatiotemporally controlled drug release. Such bioorthogonal prodrug strategies would ensure targeted drug delivery and/or in situ generation, further circumventing systemic toxicity or premature elimination of active drugs. In recent years, metal-free bioorthogonal cleavage reactions with fast kinetics have boomed in the bioorthogonal prodrug design. Meanwhile, transition-metal-catalyzed and photocatalytic deprotection reactions have also been developed to trigger prodrug activation in biological systems. Besides traditional small molecule prodrugs, gasotransmitters have been successfully delivered to specific organelles or cells via bioorthogonal reactions, and nanosystems have been devised into bioorthogonal triggers as well. Herein, we present an overview of the latest advances in these bioorthogonally-uncaged prodrugs, focused on the delivery, activation and therapeutics applications.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yuanjun Sun
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Jing Pang
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Ya-Qiu Long
- Department of Medicinal Chemistry, Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Gupta A, Hassan MA, Ndugire W, Park J, Noor S, Nagaraj H, Chakraborty S, Rotello VM. Light-Triggered Bioorthogonal Nanozyme Hydrogels for Prodrug Activation and Treatment of Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40275431 DOI: 10.1021/acsami.5c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Bioorthogonal nanozymes offer in situ activation of pro-dyes and prodrugs using abiotic chemical transformations. Bacterial infections, especially biofilm-associated infections, are extremely difficult to treat due to obstacles such as poor antibiotic penetration and the rising threat of antibiotic resistance. Spatiotemporal control of bioorthogonal catalysis provides a strategy for "on-demand" generation of therapeutics, effectively localizing therapeutic action and minimizing side effects. Here, we present the fabrication of visible-light-responsive alginate hydrogel beads embedded with bioorthogonal polyzymes (PZs). Exposure to a 405 nm light induces the reduction of Fe(III) to Fe(II), triggering the dissolution of the PZ-gel beads with concomitant release and activation of the polyzyme. This approach enabled the selective activation of a prodrug of Linezolid, a last-in-line antibiotic for Gram-positive bacterial infections, enabling the targeted eradication of multidrug-resistantStaphylococcus aureus biofilms. Overall, the use of alginate biomaterial along with noninvasive visible light offers a nontoxic platform for spatiotemporal release of antibiotics through bioorthogonal activation.
Collapse
Affiliation(s)
- Aarohi Gupta
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - William Ndugire
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Sadaf Noor
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Soham Chakraborty
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Chen Y, Clay N, Phan N, Lothrop E, Culkins C, Robinson B, Stubblefield A, Ferguson A, Kimmel BR. Molecular Matchmakers: Bioconjugation Techniques Enhance Prodrug Potency for Immunotherapy. Mol Pharm 2025; 22:58-80. [PMID: 39570179 DOI: 10.1021/acs.molpharmaceut.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cancer patients suffer greatly from the severe off-target side effects of small molecule drugs, chemotherapy, and radiotherapy─therapies that offer little protection following remission. Engineered immunotherapies─including cytokines, immune checkpoint blockade, monoclonal antibodies, and CAR-T cells─provide better targeting and future tumor growth prevention. Still, issues such as ineffective activation, immunogenicity, and off-target effects remain primary concerns. "Prodrug" therapies─classified as therapies administered as inactive and then selectively activated to control the time and area of release─hold significant promise in overcoming these concerns. Bioconjugation techniques (e.g., natural linker conjugation, bioorthogonal reactions, and noncanonical amino acid incorporation) enable the rapid and homogeneous synthesis of prodrugs and offer selective loading of immunotherapeutic agents to carrier molecules and protecting groups to prevent off-target effects after administration. Several prodrug activation mechanisms have been highlighted for cancer therapeutics, including endogenous activation by hypoxic or acidic conditions common in tumors, exogenous activation by targeted bioorthogonal cleavage, or stimuli-responsive light activation, and dual-stimuli activation, which adds specificity by combining these mechanisms. This review will explore modern prodrug conjugation and activation options, focusing on how these strategies can enhance immunotherapy responses and improve patient outcomes. We will also discuss the implications of computational methodology for therapy design and recommend procedures to determine how and where to conjugate carrier systems and "prodrug" groups onto therapeutic agents to enhance the safety and control of these delivery platforms.
Collapse
Affiliation(s)
- Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Natalie Clay
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ariana Stubblefield
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alani Ferguson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Schubert N, Southwell JW, Vázquez-Hernández M, Wortmann S, Schloeglmann S, Duhme-Klair AK, Nuernberger P, Bandow JE, Metzler-Nolte N. Fluorescent probes for investigating the internalisation and action of bioorthogonal ruthenium catalysts within Gram-positive bacteria. RSC Chem Biol 2024:d4cb00187g. [PMID: 39421717 PMCID: PMC11477652 DOI: 10.1039/d4cb00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bioorthogonal reactions are extremely useful for the chemical modification of biomolecules, and are already well studied in mammalian cells. In contrast, very little attention has been given to the feasibility of such reactions in bacteria. Herein we report modified coumarin dyes for monitoring the internalisation and activity of bioorthogonal catalysts in the Gram-positive bacterial species Bacillus subtilis. Two fluorophores based on 7-aminocoumarin were synthesised and characterised to establish their luminescence properties. The introduction of an allyl carbamate (R2N-COOR') group onto the nitrogen atom of two 7-aminocoumarin derivatives with different solubility led to decreased fluorescence emission intensities and remarkable blue-shifts of the emission maxima. Importantly, this allyl carbamate group could be uncaged by the bioorthogonal, organometallic ruthenium catalyst investigated in this work, to yield the fluorescent product under biologically-relevant conditions. The internalisation of this catalyst was confirmed and quantified by ICP-OES analysis. Investigation of the bacterial cytoplasm and extracellular fractions separately, following incubation of the bacteria with the two caged dyes, facilitated their localisation, as well as that of their uncaged form by catalyst addition. In fact, significant differences were observed, as only the more lipophilic dye was located inside the cells and importantly remained there, seemingly avoiding efflux mechanisms. However, the uncaged form of this dye is not retained, and was found predominantly in the extracellular space. Finally, a range of siderophore-conjugated derivatives of the catalyst were investigated for the same transformations. Even though uptake was observed, albeit less significant than for the non-conjugated version, the fact that similar intracellular reaction rates were observed regardless of the iron content of the medium supports the notion that their uptake is independent of the iron transporters utilised by Gram-positive Bacillus subtilis cells.
Collapse
Affiliation(s)
- Nicole Schubert
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - James W Southwell
- Department of Chemistry, University of York, Heslington York YO10 5DD UK
| | - Melissa Vázquez-Hernández
- Faculty of Biology and Biotechnology, Applied Microbiology, Ruhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Svenja Wortmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Sylvia Schloeglmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | | | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Julia E Bandow
- Faculty of Biology and Biotechnology, Applied Microbiology, Ruhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
5
|
Li Z, Jiang T, Yuan X, Li B, Wu C, Li Y, Huang Y, Xie X, Pan W, Ping Y. Controlled bioorthogonal activation of Bromodomain-containing protein 4 degrader by co-delivery of PROTAC and Pd-catalyst for tumor-specific therapy. J Control Release 2024; 374:441-453. [PMID: 39179113 DOI: 10.1016/j.jconrel.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The precise and safe treatment of bioorthogonal prodrug system is hindered by separate administration of prodrug and its activator, which often results in poor therapeutic effects and severe side effects. To address above issues, we herein construct a single bioorthogonal-activated co-delivery system for simultaneous PROTAC prodrug (proPROTAC) delivery and controlled, site-specific activation for tumor-specific treatment. In this co-delivery system (termed AuPLs), prodrug (proPROTAC) and water-soluble Pd-catalyst are first encapsulated by gold nanocubes (AuNCs), which are further coated with a layer of phase-change material (lauric acid/stearic acid, LA/SA). Below 39 °C, the solid state of LA/SA prevents the activation of Pd-mediated bioorthogonal reaction due to the solidification of Pd-catalyst and proPROTAC. Nevertheless, once over 42 °C, the phase change of LA/SA into liquid state, enabled by the photothermal effect of AuNCs, triggers the simultaneous release of proPROTAC and Pd-catalyst and initiates the in situ bioorthogonal reaction for proPROTAC activation. In the tumor-bearing mouse models, the systemic administration of AuPLs results in the accumulation in tumor region, where the photothermal effect activates and controls the tumor-specific bioorthogonal reaction to degrade BRD4 protein, leading to anti-tumor effects with minimized side effects. Overall, the co-delivery proPROTAC and Pd-catalyst and controlled activation by photothermal effects provide a precise way for biorthogonal-based anticancer prodrugs.
Collapse
Affiliation(s)
- Zhiyao Li
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Taibai Jiang
- Guiyang Healthcare Vocational University, Guiyang 550081, PR China
| | - Xu Yuan
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Chongzhi Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yecheng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Xin Xie
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Weidong Pan
- School of Basic Medicine/State Key Laboratory of Functions and Applications of Medicinal Plants/Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550025, PR China; School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
6
|
Blanco C, Ramos Castellanos R, Fogg DE. Anionic Olefin Metathesis Catalysts Enable Modification of Unprotected Biomolecules in Water. ACS Catal 2024; 14:11147-11152. [PMID: 39114091 PMCID: PMC11301623 DOI: 10.1021/acscatal.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Stability problems have limited the uptake of cationic olefin metathesis catalysts in chemical biology. Described herein are anionic catalysts that improve water-solubility, robustness, and compatibility with biomolecules such as DNA. A sulfonate tag is installed on the cyclic (alkyl)(amino) carbene (CAAC) ligand platform, chosen for resistance to degradation by nucleophiles, base, water, and β-elimination. Hoveyda-Grubbs catalysts bearing the sulfonated CAAC ligands deliver record productivity in metathesis of unprotected carbohydrates and nucleosides at neutral pH. Decomposed catalyst has negligible impact on metathesis selectivity, whereas N-heterocyclic carbene (NHC) catalysts degrade rapidly in water and cause extensive C=C migration.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Richard Ramos Castellanos
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
7
|
van de L'Isle M, Croke S, Valero T, Unciti‐Broceta A. Development of Biocompatible Cu(I)-Microdevices for Bioorthogonal Uncaging and Click Reactions. Chemistry 2024; 30:e202400611. [PMID: 38512657 PMCID: PMC11497292 DOI: 10.1002/chem.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Transition-metal-catalyzed bioorthogonal reactions emerged a decade ago as a novel strategy to implement spatiotemporal control over enzymatic functions and pharmacological interventions. The use of this methodology in experimental therapy is driven by the ambition of improving the tolerability and PK properties of clinically-used therapeutic agents. The preclinical potential of bioorthogonal catalysis has been validated in vitro and in vivo with the in situ generation of a broad range of drugs, including cytotoxic agents, anti-inflammatory drugs and anxiolytics. In this article, we report our investigations towards the preparation of solid-supported Cu(I)-microdevices and their application in bioorthogonal uncaging and click reactions. A range of ligand-functionalized polymeric devices and off-on Cu(I)-sensitive sensors were developed and tested under conditions compatible with life. Last, we present a preliminary exploration of their use for the synthesis of PROTACs through CuAAC assembly of two heterofunctional mating units.
Collapse
Affiliation(s)
- Melissa van de L'Isle
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| | - Stephen Croke
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| | - Teresa Valero
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of Chemistry applied to Biomedicine and the EnvironmentFaculty of PharmacyUniversity of GranadaCampus de Cartuja s/n18071GranadaSpain
- GENYOCentre for Genomics and Oncological ResearchPfizer/University of Granada/Andalusian Regional GovernmentAvda. Ilustración 11418016GranadaSpain
- Instituto de Investigación Biosanitaria ibs.GRANADAGranadaSpain
| | - Asier Unciti‐Broceta
- Edinburgh Cancer ResearchInstitute of Genetics & CancerUniversity of EdinburghCrewe Road SouthEdinburghEH4 2XRUK
| |
Collapse
|
8
|
Sathyan A, Archontakis E, Spiering AJH, Albertazzi L, Palmans ARA. Effect of Particle Heterogeneity in Catalytic Copper-Containing Single-Chain Polymeric Nanoparticles Revealed by Single-Particle Kinetics. Molecules 2024; 29:1850. [PMID: 38675670 PMCID: PMC11054931 DOI: 10.3390/molecules29081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Single-chain polymeric nanoparticles (SCPNs) have been extensively explored as a synthetic alternative to enzymes for catalytic applications. However, the inherent structural heterogeneity of SCPNs, arising from the dispersity of the polymer backbone and stochastic incorporation of different monomers as well as catalytic moieties, is expected to lead to variations in catalytic activity between individual particles. To understand the effect of structural heterogeneities on the catalytic performance of SCPNs, techniques are required that permit researchers to directly monitor SCPN activity at the single-polymer level. In this study, we introduce the use of single-molecule fluorescence microscopy to study the kinetics of Cu(I)-containing SCPNs towards depropargylation reactions. We developed Cu(I)-containing SCPNs that exhibit fast kinetics towards depropargylation and Cu-catalyzed azide-alkyne click reactions, making them suitable for single-particle kinetic studies. SCPNs were then immobilized on the surface of glass coverslips and the catalytic reactions were monitored at a single-particle level using total internal reflection fluorescence (TIRF) microscopy. Our studies revealed the interparticle turnover dispersity for Cu(I)-catalyzed depropargylations. In the future, our approach can be extended to different polymer designs which can give insights into the intrinsic heterogeneity of SCPN catalysis and can further aid in the rational development of SCPN-based catalysts.
Collapse
Affiliation(s)
- Anjana Sathyan
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (A.S.); (A.J.H.S.)
| | - Emmanouil Archontakis
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (E.A.); (L.A.)
| | - A. J. H. Spiering
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (A.S.); (A.J.H.S.)
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (E.A.); (L.A.)
| | - Anja R. A. Palmans
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (A.S.); (A.J.H.S.)
| |
Collapse
|
9
|
Amorim AC, Burke AJ. What is the future of click chemistry in drug discovery and development? Expert Opin Drug Discov 2024; 19:267-280. [PMID: 38214914 DOI: 10.1080/17460441.2024.2302151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The concept of click chemistry was introduced in 2001 as an effective, efficient, and sustainable approach to making functional groups harnessing the thermodynamic properties of a set of known chemical reactions that are based on nature. Some of the most common examples include reactions that produce 1,2,3-triazoles, which have been used with great success in drug discovery and development, and in chemical biology. The reactions unite two molecules quickly and irreversibly, and the reactions can be performed inside living cells, without harming the cell. AREAS COVERED The main focus of this perspective is the future of click chemistry in drug discovery and development, exemplified by novel click chemistry approaches and other aspects of the drug development enterprise, like SPAAC and analogous techniques, PROTACs, as well as diversity-oriented click chemistry. EXPERT OPINION Drug discovery and development has benefited enormously from the amazing advances that have been made in the field of click chemistry since 2001. The methods most likely to have the most future applications include metal-catalyzed azide-alkyne cycloadditions giving 1,2,3-triazoles, SPAAC for medical diagnostics and vaccine development, other congeners, Sulfur-Fluoride Exchange (SuFEx) and Diversity-Oriented Clicking (DOC), a concept with diverse molecular methodology with the potential for obtaining extensive molecular diversity.
Collapse
Affiliation(s)
- Ana C Amorim
- Chemistry Department, Coimbra Chemistry Centre, Institute of Molecular Sciences, Coimbra, Portugal
| | - Anthony J Burke
- Chemistry Department, Coimbra Chemistry Centre, Institute of Molecular Sciences, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- LAQV-REQUIMTE, Institute for Research and Advanced Studies, Universidade de Évora, Évora, Portugal
- Center for Neurosciences and Cellular Biology (CNC), Polo I, Universidade de Coimbra Rua Larga Faculdade de Medicina, Coimbra, Portugal
| |
Collapse
|
10
|
Huang R, Hirschbiegel CM, Lehot V, Liu L, Cicek YA, Rotello VM. Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300943. [PMID: 37042795 PMCID: PMC11234510 DOI: 10.1002/adma.202300943] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The incorporation of transition metal catalysts (TMCs) into nanoscaffolds generates nanocatalysts that replicate key aspects of enzymatic behavior. The TMCs can access bioorthogonal chemistry unavailable to living systems. These bioorthogonal nanozymes can be employed as in situ "factories" for generating bioactive molecules where needed. The generation of effective bioorthogonal nanozymes requires co-engineering of the TMC and the nanometric scaffold. This review presents an overview of recent advances in the field of bioorthogonal nanozymes, focusing on modular design aspects of both nanomaterial and catalyst and how they synergistically work together for in situ uncaging of imaging and therapeutic agents.
Collapse
Affiliation(s)
- Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Victor Lehot
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Deng L, Sathyan A, Adam C, Unciti-Broceta A, Sebastian V, Palmans ARA. Enhanced Efficiency of Pd(0)-Based Single Chain Polymeric Nanoparticles for in Vitro Prodrug Activation by Modulating the Polymer's Microstructure. NANO LETTERS 2024; 24:2242-2249. [PMID: 38346395 PMCID: PMC10885199 DOI: 10.1021/acs.nanolett.3c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bioorthogonal catalysis employing transition metal catalysts is a promising strategy for the in situ synthesis of imaging and therapeutic agents in biological environments. The transition metal Pd has been widely used as a bioorthogonal catalyst, but bare Pd poses challenges in water solubility and catalyst stability in cellular environments. In this work, Pd(0) loaded amphiphilic polymeric nanoparticles are applied to shield Pd in the presence of living cells for the in situ generation of a fluorescent dye and anticancer drugs. Pd(0) loaded polymeric nanoparticles prepared by the reduction of the corresponding Pd(II)-polymeric nanoparticles are highly active in the deprotection of pro-rhodamine dye and anticancer prodrugs, giving significant fluorescence enhancement and toxigenic effects, respectively, in HepG2 cells. In addition, we show that the microstructure of the polymeric nanoparticles for scaffolding Pd plays a critical role in tuning the catalytic efficiency, with the use of the ligand triphenylphosphine as a key factor for improving the catalyst stability in biological environments.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anjana Sathyan
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Catherine Adam
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Víctor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Department of Chemical and Environmental Engineering, Universidad de Zaragoza, Campus Rio Ebro, 50018 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Zhang X, Liu Y, Jiang M, Mas-Rosario JA, Fedeli S, Cao-Milan R, Liu L, Winters KJ, Hirschbiegel CM, Nabawy A, Huang R, Farkas ME, Rotello VM. Polarization of macrophages to an anti-cancer phenotype through in situ uncaging of a TLR 7/8 agonist using bioorthogonal nanozymes. Chem Sci 2024; 15:2486-2494. [PMID: 38362405 PMCID: PMC10866364 DOI: 10.1039/d3sc06431j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 02/17/2024] Open
Abstract
Macrophages are plastic cells of the immune system that can be broadly classified as having pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotypes. M2-like macrophages are often associated with cancers and can promote cancer growth and create an immune-suppressive tumor microenvironment. Repolarizing macrophages from M2-like to M1-like phenotype provides a crucial strategy for anticancer immunotherapy. Imiquimod is an FDA-approved small molecule that can polarize macrophages by activating toll-like receptor 7/8 (TLR 7/8) located inside lysosomes. However, the non-specific inflammation that results from the drug has limited its systemic application. To overcome this issue, we report the use of gold nanoparticle-based bioorthogonal nanozymes for the conversion of an inactive, imiquimod-based prodrug to an active compound for macrophage re-education from anti- to pro-inflammatory phenotypes. The nanozymes were delivered to macrophages through endocytosis, where they uncaged pro-imiquimod in situ. The generation of imiquimod resulted in the expression of pro-inflammatory cytokines. The re-educated M1-like macrophages feature enhanced phagocytosis of cancer cells, leading to efficient macrophage-based tumor cell killing.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Javier A Mas-Rosario
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Roberto Cao-Milan
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Kyle J Winters
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | | | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Michelle E Farkas
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst 230 Stockbridge Road Amherst Massachusetts 01003 USA
| |
Collapse
|
13
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
14
|
Fu Q, Shen S, Sun P, Gu Z, Bai Y, Wang X, Liu Z. Bioorthogonal chemistry for prodrug activation in vivo. Chem Soc Rev 2023; 52:7737-7772. [PMID: 37905601 DOI: 10.1039/d2cs00889k] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Prodrugs have emerged as a major strategy for addressing clinical challenges by improving drug pharmacokinetics, reducing toxicity, and enhancing treatment efficacy. The emergence of new bioorthogonal chemistry has greatly facilitated the development of prodrug strategies, enabling their activation through chemical and physical stimuli. This "on-demand" activation using bioorthogonal chemistry has revolutionized the research and development of prodrugs. Consequently, prodrug activation has garnered significant attention and emerged as an exciting field of translational research. This review summarizes the latest advancements in prodrug activation by utilizing bioorthogonal chemistry and mainly focuses on the activation of small-molecule prodrugs and antibody-drug conjugates. In addition, this review also discusses the opportunities and challenges of translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhi Gu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yifei Bai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
15
|
Wegner T, Dombovski A, Gesing K, Köhrer A, Elinkmann M, Karst U, Glorius F, Jose J. Combining lipid-mimicking-enabled transition metal and enzyme-mediated catalysis at the cell surface of E. coli. Chem Sci 2023; 14:11896-11906. [PMID: 37920346 PMCID: PMC10619624 DOI: 10.1039/d3sc02960c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
Being an essential multifunctional platform and interface to the extracellular environment, the cell membrane constitutes a valuable target for the modification and manipulation of cells and cellular behavior, as well as for the implementation of artificial, new-to-nature functionality. While bacterial cell surface functionalization via expression and presentation of recombinant proteins has extensively been applied, the corresponding application of functionalizable lipid mimetics has only rarely been reported. Herein, we describe an approach to equip E. coli cells with a lipid-mimicking, readily membrane-integrating imidazolium salt and a corresponding NHC-palladium complex that allows for flexible bacterial membrane surface functionalization and enables E. coli cells to perform cleavage of propargyl ethers present in the surrounding cell medium. We show that this approach can be combined with already established on-surface functionalization, such as bacterial surface display of enzymes, i.e. laccases, leading to a new type of cascade reaction. Overall, we envision the herein presented proof-of-concept studies to lay the foundation for a multifunctional toolbox that allows flexible and broadly applicable functionalization of bacterial membranes.
Collapse
Affiliation(s)
- Tristan Wegner
- University of Münster, Institute of Organic Chemistry Münster Germany
| | - Alexander Dombovski
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry Münster Germany
| | - Katrin Gesing
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry Münster Germany
| | - Alexander Köhrer
- University of Münster, Institute of Inorganic and Analytical Chemistry Münster Germany
| | - Matthias Elinkmann
- University of Münster, Institute of Inorganic and Analytical Chemistry Münster Germany
| | - Uwe Karst
- University of Münster, Institute of Inorganic and Analytical Chemistry Münster Germany
| | - Frank Glorius
- University of Münster, Institute of Organic Chemistry Münster Germany
| | - Joachim Jose
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry Münster Germany
| |
Collapse
|
16
|
Keum C, Hirschbiegel CM, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical applications. NANO CONVERGENCE 2023; 10:42. [PMID: 37695365 PMCID: PMC10495311 DOI: 10.1186/s40580-023-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.
Collapse
Affiliation(s)
- Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soham Chakraborty
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
17
|
Gutiérrez-González A, Marcos-Atanes D, Cool LG, López F, Mascareñas JL. Ruthenium-catalyzed intermolecular alkene-alkyne couplings in biologically relevant media. Chem Sci 2023; 14:6408-6413. [PMID: 37325130 PMCID: PMC10266458 DOI: 10.1039/d3sc01254a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Cationic cyclopentadienyl Ru(ii) catalysts can efficiently promote mild intermolecular alkyne-alkene couplings in aqueous media, even in the presence of different biomolecular components, and in complex media like DMEM. The method can also be used for the derivatization of amino acids and peptides, therefore proposing a new way to label biomolecules with external tags. This C-C bond-forming reaction, based on simple alkene and alkyne reactants, can now be added to the toolbox of bioorthogonal reactions promoted by transition metal catalysts.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Daniel Marcos-Atanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Leonard G Cool
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia (MBG), Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
18
|
Petri YD, Gutierrez CS, Raines RT. Chemoselective Caging of Carboxyl Groups for On-Demand Protein Activation with Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215614. [PMID: 36964973 PMCID: PMC10243506 DOI: 10.1002/anie.202215614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Tools for on-demand protein activation enable impactful gain-of-function studies in biological settings. Thus far, however, proteins have been chemically caged at primarily Lys, Tyr, and Sec, typically through the genetic encoding of unnatural amino acids. Herein, we report that the preferential reactivity of diazo compounds with protonated acids can be used to expand this toolbox to solvent-accessible carboxyl groups with an elevated pKa value. As a model protein, we employed lysozyme (Lyz), which has an active-site Glu35 residue with a pKa value of 6.2. A diazo compound with a bioorthogonal self-immolative handle esterified Glu35 selectively, inactivating Lyz. The hydrolytic activity of the caged Lyz on bacterial cell walls was restored with two small-molecule triggers. The decaging was more efficient by small molecules than by esterases. This simple chemical strategy was also applied to a hemeprotein and an aspartyl protease, setting the stage for broad applicability.
Collapse
Affiliation(s)
- Yana D. Petri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Clair S. Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
19
|
Zhang X, Liu Y, Doungchawee J, Castellanos-García LJ, Sikora KN, Jeon T, Goswami R, Fedeli S, Gupta A, Huang R, Hirschbiegel CM, Cao-Milán R, Majhi PKD, Cicek YA, Liu L, Jerry DJ, Vachet RW, Rotello VM. Bioorthogonal nanozymes for breast cancer imaging and therapy. J Control Release 2023; 357:31-39. [PMID: 36948419 PMCID: PMC10164715 DOI: 10.1016/j.jconrel.2023.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Bioorthogonal catalysis via transition metal catalysts (TMCs) enables the generation of therapeutics locally through chemical reactions not accessible by biological systems. This localization can enhance the efficacy of anticancer treatment while minimizing off-target effects. The encapsulation of TMCs into nanomaterials generates "nanozymes" to activate imaging and therapeutic agents. Here, we report the use of cationic bioorthogonal nanozymes to create localized "drug factories" for cancer therapy in vivo. These nanozymes remained present at the tumor site at least seven days after a single injection due to the interactions between cationic surface ligands and negatively charged cell membranes and tissue components. The prodrug was then administered systemically, and the nanozymes continuously converted the non-toxic molecules into active drugs locally. This strategy substantially reduced the tumor growth in an aggressive breast cancer model, with significantly reduced liver damage compared to traditional chemotherapy.
Collapse
Affiliation(s)
- Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yuanchang Liu
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jeerapat Doungchawee
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | - Kristen N Sikora
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, MA 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | - Roberto Cao-Milán
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Prabin K D Majhi
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Liang Liu
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - D Joseph Jerry
- Department of Veterinary and Animal Science, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
20
|
Hirschbiegel CM, Zhang X, Huang R, Cicek YA, Fedeli S, Rotello VM. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv Drug Deliv Rev 2023; 195:114730. [PMID: 36791809 PMCID: PMC10170407 DOI: 10.1016/j.addr.2023.114730] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.
Collapse
Affiliation(s)
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
21
|
Chasteen JL, Padilla-Coley S, Li DH, Smith BD. Palladium responsive liposomes for triggered release of aqueous contents. Bioorg Med Chem Lett 2023; 84:129215. [PMID: 36870622 PMCID: PMC10023436 DOI: 10.1016/j.bmcl.2023.129215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Palladium (Pd) is a promising metal catalyst for novel bioorthogonal chemistry and prodrug activation. This report describes the first example of palladium responsive liposomes. The key molecule is a new caged phospholipid called Alloc-PE that forms stable liposomes (large unilamellar vesicles, ∼220 nm diameter). Liposome treatment with PdCl2 removes the chemical cage, liberates membrane destabilizing dioleoylphosphoethanolamine (DOPE), and triggers liposome leakage of encapsulated aqueous contents. The results indicate a path towards liposomal drug delivery technologies that exploit transition metal triggered leakage.
Collapse
Affiliation(s)
- Jordan L Chasteen
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
22
|
Sathyan A, Deng L, Loman T, Palmans AR. Bio-orthogonal catalysis in complex media: Consequences of using polymeric scaffold materials on catalyst stability and activity. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
23
|
Madec H, Figueiredo F, Cariou K, Roland S, Sollogoub M, Gasser G. Metal complexes for catalytic and photocatalytic reactions in living cells and organisms. Chem Sci 2023; 14:409-442. [PMID: 36741514 PMCID: PMC9848159 DOI: 10.1039/d2sc05672k] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
The development of organometallic catalysis has greatly expanded the synthetic chemist toolbox compared to only exploiting "classical" organic chemistry. Although more widely used in organic solvents, metal-based catalysts have also emerged as efficient tools for developing organic transformations in water, thus paving the way for further development of bio-compatible reactions. However, performing metal-catalysed reactions within living cells or organisms induces additional constraints to the design of reactions and catalysts. In particular, metal complexes must exhibit good efficiency in complex aqueous media at low concentrations, good cell specificity, good cellular uptake and low toxicity. In this review, we focus on the presentation of discrete metal complexes that catalyse or photocatalyse reactions within living cells or living organisms. We describe the different reaction designs that have proved to be successful under these conditions, which involve very few metals (Ir, Pd, Ru, Pt, Cu, Au, and Fe) and range from in cellulo deprotection/decaging/activation of fluorophores, drugs, proteins and DNA to in cellulo synthesis of active molecules, and protein and organelle labelling. We also present developments in bio-compatible photo-activatable catalysts, which represent a very recent emerging area of research and some prospects in the field.
Collapse
Affiliation(s)
- Hugo Madec
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Francisca Figueiredo
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Kevin Cariou
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Sylvain Roland
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Gilles Gasser
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| |
Collapse
|
24
|
Zhang Z, Fan K. Bioorthogonal nanozymes: an emerging strategy for disease therapy. NANOSCALE 2022; 15:41-62. [PMID: 36512377 DOI: 10.1039/d2nr05920g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transition metal catalysts (TMCs), capable of performing bioorthogonal reactions, have been engineered to trigger the formation of bioactive molecules in a controlled manner for biomedical applications. However, the widespread use of TMCs based biorthogonal reactions in vivo is still largely limited owing to their toxicity, poor stability, and insufficient targeting properties. The emergence of nanozymes (nanomaterials with enzyme-like activity), especially bioorthogonal nanozymes that combine the bioorthogonal catalytic activity of TMCs, the physicochemical properties of nanomaterials, and the enzymatic properties of classical nanozymes potentially provide opportunities to address these challenges. Thus, they can be used as multifunctional catalytic platforms for disease treatment and will be far-reaching. In this review, we first briefly recall the classical TMC-based bioorthogonal reactions. Furthermore, this review highlights the diverse strategies for manufacturing bioorthogonal nanozymes and their potential for therapeutic applications, with the goal of facilitating bioorthogonal catalysis in the clinic. Finally, we present challenges and the prospects of bioorthogonal nanozymes in bioorthogonal chemistry.
Collapse
Affiliation(s)
- Zheao Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
25
|
Suehiro F, Fujii S, Nishimura T. Bioorthogonal micellar nanoreactors for prodrug cancer therapy using an inverse-electron-demand Diels-Alder reaction. Chem Commun (Camb) 2022; 58:7026-7029. [PMID: 35642953 DOI: 10.1039/d2cc02121h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Block copolymer micelles functionalized with tetrazine groups can act as nanoreactors to activate a trans-cyclooctene-functionalized prodrug for releasing anticancer drugs via a bioorthogonal inverse-electron-demand Diels-Alder (IEDDA) reaction. In addition, the IEDDA reaction can be accelerated in the micellar nanoreactor system compared to the free tetrazine system. Moreover, In vivo prodrug activation in a mouse tumor model led to the inhibition of tumor growth without significant systemic toxicity. These results demonstrated their potential for applications as bioorthogonal micellar nanoreactors for cancer chemotherapy.
Collapse
Affiliation(s)
- Fumi Suehiro
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan.
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
26
|
Sakamoto Y, Suehiro F, Akiba I, Nishimura T. Supramolecular Shear-Thinning Glycopeptide Hydrogels for Injectable Enzyme Prodrug Therapy Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5883-5890. [PMID: 35471982 DOI: 10.1021/acs.langmuir.2c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transplantable catalytic reactors have attracted considerable attention as therapeutic biomedical materials. However, existing transplantable reactors such as biocatalytic films are limited by their invasiveness. Here, we report the fabrication of biocatalytic supramolecular hydrogels via self-assembly of amphiphilic glycopeptides. We show that the hydrogels have shear-thinning properties, demonstrating their potential to be administered using a syringe. Enzymes can be loaded into the hydrogels by simply adding enzyme solution, and the enzyme-loaded hydrogels can transform a prodrug into an anticancer drug that inhibits tumor cell growth. This study demonstrates the potential of these biocatalytic hydrogels as injectable therapeutic reactors for enzyme prodrug therapy.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Fumi Suehiro
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Isamu Akiba
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
27
|
|
28
|
Liu W, Watson EE, Winssinger N. Photocatalysis in Chemical Biology: Extending the Scope of Optochemical Control and Towards New Frontiers in Semisynthetic Bioconjugates and Biocatalysis. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Weilong Liu
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| |
Collapse
|