1
|
Manninen H, Durandin N, Hopia A, Vuorimaa-Laukkanen E, Laaksonen T. Taste compound – Nanocellulose interaction assessment by fluorescence indicator displacement assay. Food Chem 2020; 318:126511. [DOI: 10.1016/j.foodchem.2020.126511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 02/01/2023]
|
2
|
Jain S, Maini J, Narang A, Maiti S, Brahmachari V. The regulatory function of dIno80 correlates with its DNA binding activity. Gene 2020; 732:144368. [PMID: 31954859 DOI: 10.1016/j.gene.2020.144368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/06/2023]
Abstract
The INO80 complex, including the Ino80 protein, forms a highly conserved canonical complex that remodels chromatin in the context of multiple cellular functions. The Drosophila homologue, dIno80, is involved in homeotic gene regulation during development as a canonical Pho-dIno80 complex. Previously, we found that dIno80 regulates homeotic genes by interacting with epigenetic regulators, such as polycomb and trithorax, suggesting the occurrence of non-canonical Ino80 complexes. Here using spectroscopic methods and gel retardation assays, we identified a set of consensus DNA sequences that DNA binding domain of dIno80 (DBINO) interacts with having differential affinity and high specificity. Testing these sequences in reporter assays, showed that this interaction can positively regulate transcription. These results suggest that, dIno80 has a sequence preference for interaction with DNA leading to transcriptional changes.
Collapse
Affiliation(s)
- Shruti Jain
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | - Jayant Maini
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Ankita Narang
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110025, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
3
|
Zhang J, Shukla V, Boger DL. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J Org Chem 2019; 84:9397-9445. [PMID: 31062977 DOI: 10.1021/acs.joc.9b00834] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A summary of the investigation and applications of the inverse electron demand Diels-Alder reaction is provided that have been conducted in our laboratory over a period that now spans more than 35 years. The work, which continues to provide solutions to complex synthetic challenges, is presented in the context of more than 70 natural product total syntheses in which the reactions served as a key strategic step in the approach. The studies include the development and use of the cycloaddition reactions of heterocyclic azadienes (1,2,4,5-tetrazines; 1,2,4-, 1,3,5-, and 1,2,3-triazines; 1,2-diazines; and 1,3,4-oxadiazoles), 1-aza-1,3-butadienes, α-pyrones, and cyclopropenone ketals. Their applications illustrate the power of the methodology, often provided concise and nonobvious total syntheses of the targeted natural products, typically were extended to the synthesis of analogues that contain deep-seated structural changes in more comprehensive studies to explore or optimize their biological properties, and highlight a wealth of opportunities not yet tapped.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vyom Shukla
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
4
|
Heinrich B, Bouazoune K, Wojcik M, Bakowsky U, Vázquez O. ortho-Fluoroazobenzene derivatives as DNA intercalators for photocontrol of DNA and nucleosome binding by visible light. Org Biomol Chem 2019; 17:1827-1833. [PMID: 30604825 DOI: 10.1039/c8ob02343c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a high-affinity photoswitchable DNA binder, which displays different nucleosome-binding capacities upon visible-light irradiation. Both photochemical and DNA-recognition properties were examined by UV-Vis, HPLC, CD spectroscopy, NMR, FID assays, EMSA and DLS. Our probe sets the basis for developing new optoepigenetic tools for conditional modulation of nucleosomal DNA accessibility.
Collapse
Affiliation(s)
- Benedikt Heinrich
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany.
| | | | | | | | | |
Collapse
|
5
|
Goh WL, Lee MY, Lim TX, Chua JS, Brenner S, Ghadessy FJ, Teo YN. A novel molecular rotor facilitates detection of p53-DNA interactions using the Fluorescent Intercalator Displacement Assay. Sci Rep 2018; 8:12946. [PMID: 30154420 PMCID: PMC6113202 DOI: 10.1038/s41598-018-31197-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 01/04/2023] Open
Abstract
We have investigated the use of fluorescent molecular rotors as probes for detection of p53 binding to DNA. These are a class of fluorophores that undergo twisted intramolecular charge transfer (TICT). They are non-fluorescent in a freely rotating conformation and experience a fluorescence increase when restricted in the planar conformation. We hypothesized that intercalation of a molecular rotor between DNA base pairs would result in a fluorescence turn-on signal. Upon displacement by a DNA binding protein, measurable loss of signal would facilitate use of the molecular rotor in the fluorescent intercalator displacement (FID) assay. A panel of probes was interrogated using the well-established p53 model system across various DNA response elements. A novel, readily synthesizable molecular rotor incorporating an acridine orange DNA intercalating group (AO-R) outperformed other conventional dyes in the FID assay. It enabled relative measurement of p53 sequence-specific DNA interactions and study of the dominant-negative effects of cancer-associated p53 mutants. In a further application, AO-R also proved useful for staining apoptotic cells in live zebrafish embryos.
Collapse
Affiliation(s)
- Walter L Goh
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Min Yen Lee
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Ting Xiang Lim
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Joy S Chua
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Sydney Brenner
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Farid J Ghadessy
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.
| | - Yin Nah Teo
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
6
|
Wolfe AL, Duncan KK, Lajiness JP, Zhu K, Duerfeldt AS, Boger DL. A fundamental relationship between hydrophobic properties and biological activity for the duocarmycin class of DNA-alkylating antitumor drugs: hydrophobic-binding-driven bonding. J Med Chem 2013; 56:6845-57. [PMID: 23944748 DOI: 10.1021/jm400665c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two systematic series of increasingly hydrophilic derivatives of duocarmycin SA that feature the incorporation of ethylene glycol units (n = 1-5) into the methoxy substituents of the trimethoxyindole subunit are described. These derivatives exhibit progressively increasing water solubility along with progressive decreases in cell growth inhibitory activity and DNA alkylation efficiency with the incremental ethylene glycol unit incorporations. Linear relationships of cLogP with -log IC50 for cell growth inhibition and -log AE (AE = cell-free DNA alkylation efficiency) were observed, with the cLogP values spanning the productive range of 2.5-0.49 and the -log IC50 values spanning the range of 11.2-6.4, representing IC50 values that vary by a factor of 10(5) (0.008 to 370 nM). The results quantify the fundamental role played by the hydrophobic character of the compound in the expression of the biological activity of members in this class (driving the intrinsically reversible DNA alkylation reaction) and define the stunning magnitude of its effect.
Collapse
Affiliation(s)
- Amanda L Wolfe
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
7
|
Vaijayanthi T, Bando T, Pandian GN, Sugiyama H. Progress and prospects of pyrrole-imidazole polyamide-fluorophore conjugates as sequence-selective DNA probes. Chembiochem 2012; 13:2170-85. [PMID: 23023993 DOI: 10.1002/cbic.201200451] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Indexed: 12/24/2022]
Abstract
Recently, the versatility of N-methylpyrrole (Py)-N-methylimidazole (Im) polyamide conjugates, which have been developed from the DNA-binding antibiotics distamycin A and netropsin, has been shown. These synthetic small molecules can permeate cells to bind with duplex DNA in a sequence-specific manner, and hence can influence gene expression in vivo. Accordingly, several reports demonstrating the sequence specificity and biological activity of Py-Im polyamides have accumulated. However, the benefits of Py-Im polyamides, in particular those conjugated with fluorophores, has been overlooked. Moreover, clear directions for the employment of these attractive artificial small molecules have not yet been shown. Here, we present a detailed overview of the current and prospective applications of Py-Im polyamide-fluorophore conjugates, including sequence-specific recognition with fluorescence emission properties, and their potential roles in biological imaging.
Collapse
Affiliation(s)
- Thangavel Vaijayanthi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa oiwakecho, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
8
|
Shirazi RS, Ewert KK, Leal C, Majzoub RN, Bouxsein NF, Safinya CR. Synthesis and characterization of degradable multivalent cationic lipids with disulfide-bond spacers for gene delivery. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:2156-66. [PMID: 21640069 PMCID: PMC3129426 DOI: 10.1016/j.bbamem.2011.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/04/2011] [Accepted: 04/12/2011] [Indexed: 11/25/2022]
Abstract
Gene therapy provides powerful new approaches to curing a large variety of diseases, which are being explored in ongoing worldwide clinical trials. To overcome the limitations of viral gene delivery systems, synthetic nonviral vectors such as cationic liposomes (CLs) are desirable. However, improvements of their efficiency at reduced toxicity and a better understanding of their mechanism of action are required. We present the efficient synthesis of a series of degradable multivalent cationic lipids (CMVLn, n=2 to 5) containing a disulfide bond spacer between headgroup and lipophilic tails. This spacer is designed to be cleaved in the reducing milieu of the cytoplasm and thus decrease lipid toxicity. Small angle X-ray scattering demonstrates that the initially formed lamellar phase of CMVLn-DNA complexes completely disappears when reducing agents such as DTT or the biologically relevant reducing peptide glutathione are added to mimic the intracellular milieu. The CMVLs (n=3 to 5) exhibit reduced cytotoxicity and transfect mammalian cells with efficiencies comparable to those of highly efficient non-degradable analogs and benchmark commercial reagents such as Lipofectamine 2000. Thus, our results demonstrate that degradable disulfide spacers may be used to reduce the cytotoxicity of synthetic nonviral gene delivery carriers without compromising their transfection efficiency.
Collapse
Affiliation(s)
- Rahau S Shirazi
- Chemistry and Biochemistry Department, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhang J, Umemoto S, Nakatani K. Fluorescent Indicator Displacement Assay for Ligand−RNA Interactions. J Am Chem Soc 2010; 132:3660-1. [DOI: 10.1021/ja100089u] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinhua Zhang
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki 567-0047, Japan
| | - Shiori Umemoto
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki 567-0047, Japan
| |
Collapse
|
10
|
Stover JS, Shi J, Jin W, Vogt PK, Boger DL. Discovery of inhibitors of aberrant gene transcription from Libraries of DNA binding molecules: inhibition of LEF-1-mediated gene transcription and oncogenic transformation. J Am Chem Soc 2009; 131:3342-8. [PMID: 19216569 PMCID: PMC2787879 DOI: 10.1021/ja809083d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The screening of a >9000 compound library of synthetic DNA binding molecules for selective binding to the consensus sequence of the transcription factor LEF-1 followed by assessment of the candidate compounds in a series of assays that characterized functional activity (disruption of DNA-LEF-1 binding) at the intended target and site (inhibition of intracellular LEF-1-mediated gene transcription) resulting in a desired phenotypic cellular change (inhibit LEF-1-driven cell transformation) provided two lead compounds: lefmycin-1 and lefmycin-2. The sequence of screens defining the approach assures that activity in the final functional assay may be directly related to the inhibition of gene transcription and DNA binding properties of the identified molecules. Central to the implementation of this generalized approach to the discovery of DNA binding small molecule inhibitors of gene transcription was (1) the use of a technically nondemanding fluorescent intercalator displacement (FID) assay for initial assessment of the DNA binding affinity and selectivity of a library of compounds for any sequence of interest, and (2) the technology used to prepare a sufficiently large library of DNA binding compounds.
Collapse
Affiliation(s)
- James S. Stover
- Departments of Chemistry, Molecular and Experimental Medicine, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Jin Shi
- Departments of Chemistry, Molecular and Experimental Medicine, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Wei Jin
- Departments of Chemistry, Molecular and Experimental Medicine, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Peter K. Vogt
- Departments of Chemistry, Molecular and Experimental Medicine, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Dale L. Boger
- Departments of Chemistry, Molecular and Experimental Medicine, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
11
|
Tse WC, Boger DL. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.5. [PMID: 18428943 DOI: 10.1002/0471142700.nc0805s20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A protocol for a fluorescent intercalator displacement (FID) assay useful for establishing DNA binding selectivity, affinity, stoichiometry, and binding site size, and for distinguishing modes of DNA binding is presented.
Collapse
|
12
|
|
13
|
Monchaud D, Allain C, Teulade-Fichou MP. Development of a fluorescent intercalator displacement assay (G4-FID) for establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg Med Chem Lett 2006; 16:4842-5. [PMID: 16837195 DOI: 10.1016/j.bmcl.2006.06.067] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/16/2006] [Accepted: 06/17/2006] [Indexed: 10/24/2022]
Abstract
A fluorescent intercalator displacement assay (G4-FID) has been designed based on the displacement of thiazole orange (TO) positioned onto a quadruplex-forming oligonucleotide by putative ligands. This technique was validated by the use of a set of representative and fully characterized G-quadruplex binders (ranging from pyridodicarboxamide to macrocyclic ligands). To further extend its applicability, a comparative version has been developed which allows a rapid and viable determination of quadruplex- over duplex-selectivity.
Collapse
Affiliation(s)
- David Monchaud
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR285, 75005 Paris, France
| | | | | |
Collapse
|
14
|
Ewert KK, Evans HM, Bouxsein NF, Safinya CR. Dendritic Cationic Lipids with Highly Charged Headgroups for Efficient Gene Delivery. Bioconjug Chem 2006; 17:877-88. [PMID: 16848393 DOI: 10.1021/bc050310c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene therapy is expected to lead to powerful new approaches for curing many diseases, a potential that is currently explored in worldwide clinical trials. Nonviral DNA delivery systems are desirable to overcome the inherent problems of viral vectors, but their current efficiency requires improvement and the understanding of their mechanism of action is incomplete. We have synthesized new multivalent cationic lipids with highly charged dendritic headgroups to probe the structure-transfection efficiency relationships of cationic liposome (CL)-DNA complexes, a prevalent nonviral vector. The lipid headgroups are constructed from ornithine cores and ornithine or carboxyspermine endgroups. The dendritic lipids were prepared on a gram scale, using a synthetic scheme that permits facile variation of the lipid building blocks headgroup, spacer, and hydrophobic moiety. They carry four to sixteen positive charges in their headgroups. Complexes of DNA with mixtures of the dendritic lipids and neutral 1,2-dioleoyl-sn-glycero phosphatidylcholine (DOPC) exhibit novel structures at high contents of the highly charged lipids, while the well-known lamellar phase is formed at high contents of DOPC. DNA complexes of the new dendritic lipids efficiently transfect mammalian cells in culture without cytotoxicity and, in contrast to lamellar complexes, maintain high transfection efficiency over a broad range of composition.
Collapse
Affiliation(s)
- Kai K Ewert
- Department of Materials, University of California, Santa Barbara, California 93106, USA.
| | | | | | | |
Collapse
|
15
|
Lewis MA, Long EC. Fluorescent intercalator displacement analyses of DNA binding by the peptide-derived natural products netropsin, actinomycin, and bleomycin. Bioorg Med Chem 2006; 14:3481-90. [PMID: 16439138 DOI: 10.1016/j.bmc.2006.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/04/2006] [Accepted: 01/04/2006] [Indexed: 11/17/2022]
Abstract
The response of the high-throughput fluorescent intercalator displacement (HT-FID) assay reported recently by Boger et al. to peptide-based DNA binding intercalators and metal complexes was examined through the study of actinomycin and Co(III).bleomycin-B2. Along with a validation of netropsin that illustrated the good laboratory-to-laboratory reproducibility of the assay, our examination of actinomycin revealed results for a four base pair cassette library of DNA hairpins that paralleled the known DNA site-selectivity of this agent and also indicated the involvement of the flanking sequences of the hairpin oligonucleotide. In addition, for Co(III).bleomycin-B2 the established cleavage site-selectivity for 5'-GT and 5'-GC sites was correlated to drug-DNA association in this binding-only assay; our results also suggest a tetranucleotide site-selectivity for metallobleomycin involving cross-strand, 'back-to-back' 5'-GT and 5'-GC sites such as 5'-ACGT and 5'-ACGC.
Collapse
Affiliation(s)
- Mark A Lewis
- Department of Chemistry and Chemical Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
16
|
Ahmad A, Evans HM, Ewert K, George CX, Samuel CE, Safinya CR. New multivalent cationic lipids reveal bell curve for transfection efficiency versus membrane charge density: lipid-DNA complexes for gene delivery. J Gene Med 2005; 7:739-48. [PMID: 15685706 DOI: 10.1002/jgm.717] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Gene carriers based on lipids or polymers-rather than on engineered viruses-constitute the latest technique for delivering genes into cells for gene therapy. Cationic liposome-DNA (CL-DNA) complexes have emerged as leading nonviral vectors in worldwide gene therapy clinical trials. To arrive at therapeutic dosages, however, their efficiency requires substantial further improvement. METHODS Newly synthesized multivalent lipids (MVLs) enable control of headgroup charge and size. Complexes comprised of MVLs and DNA have been characterized by X-ray diffraction and ethidium bromide displacement assays. Their transfection efficiency (TE) in L-cells was measured with a luciferase assay. RESULTS Plots of TE versus the membrane charge density (sigmaM, average charge/unit area of membrane) for the MVLs and monovalent 2,3-dioleyloxypropyltrimethylammonium chloride (DOTAP) merge onto a universal, bell-shaped curve. This bell curve leads to the identification of three distinct regimes, related to interactions between complexes and cells: at low sigmaM, TE increases with increasing sigmaM; at intermediate sigmaM, TE exhibits saturated behavior; and unexpectedly, at high sigmaM, TE decreases with increasing sigmaM. CONCLUSIONS Complexes with low sigmaM remain trapped in the endosome. In the high sigmaM regime, accessible for the first time with the new MVLs, complexes escape by overcoming a kinetic barrier to fusion with the endosomal membrane (activated fusion), yet they exhibit a reduced level of efficiency, presumably due to the inability of the DNA to dissociate from the highly charged membranes in the cytosol. The intermediate, optimal regime reflects a compromise between the opposing demands on sigmaM for endosomal escape and dissociation in the cytosol.
Collapse
Affiliation(s)
- Ayesha Ahmad
- Departments of Materials, Physics, and Molecular, Cellular and Development Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-5121, USA
| | | | | | | | | | | |
Collapse
|