1
|
Indira M, Surendranath Reddy EC, Kamala Prasad V, Satyanarayana Swamy V, Kakarla RR, Venkata Krishna Reddy M, Attiri P, Vasu Govardhana Reddy P, Aminabhavi TM. Environmentally friendly and efficient TBHP-mediated catalytic reaction for the synthesis of substituted benzimidazole-2-ones: In-silico approach to pharmaceutical applications. ENVIRONMENTAL RESEARCH 2024; 252:118760. [PMID: 38522741 DOI: 10.1016/j.envres.2024.118760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
A novel method was used to synthesize benzimidazole-2-ones from the corresponding benzimidazolium salts. These salts were subsequently reacted with potassium tertiary butoxide (KOtBu), followed by oxidation using tertiary butyl hydrogen peroxide (TBHP) at room temperature in tetrahydrofuran (THF) to obtain the desired products in 1 h with excellent yields. After optimizing the reaction conditions, the study focused on preparing benzimidazole-2-ones with diverse substituents at N1 and N3 positions, including benzyl, 2',4',6'-trimethyl benzyl groups, and long-chain aliphatic substituents (hexyl, octyl, decyl, and dodecyl). The compounds were characterized by 1H and 13C NMR spectra, of which compound 2a is supported by single crystal XRD. Benzimidazole-2-one compounds exhibited promising anti-inflammatory and anti-cancer properties. The inhibition of mitochondrial Heat Shock Protein 60 (HSP60) of title compounds was also explored. Computational simulations were employed to assess anti-cancer properties of 19 benzimidazole-2-one derivatives (potential drugs). In-silico docking studies demonstrated promising binding interactions with HSP60, and these results were supported by molecular dynamics simulations. Notably, molecules 2b and 2d exhibited high affinity for HSP60 protein, highlighting their potential efficacy. The developed ligands were viable for the treatment of hepatocellular carcinoma (HCC). The findings provide valuable initial evidence supporting the efficacy of benzimidazole-2-ones as HSP60 inhibitors and lay the foundation for subsequent studies, including in-vitro assays.
Collapse
Affiliation(s)
- Meeniga Indira
- Department of Chemistry, Yogi Vemana University, Vemana Puram, Ganganapalle, Kadapa, 516005, Andhra Pradesh, India
| | - E C Surendranath Reddy
- Department of Biotechnology, Yogi Vemana University, Vemana Puram, Ganganapalle, Kadapa, 516005, Andhra Pradesh, India
| | | | - Vyshnava Satyanarayana Swamy
- Denisco Chemicals Pvt Ltd, D-24 Phase-1, Jeedimetla, Hyderabad, 500855, Telangana, India; Department of Biotechnology, University College of Sciences, Sri Krishnadevaraya University, Anantapuramu, 515003, Andhra Pradesh, India
| | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | | | - Pankaj Attiri
- Center of Plasma Nano-interface Engineering, Kyushu University, West Building 2, 744, Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | | | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248 007, India; Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Hong D, Lee K. Polymorphic structures of 3-phenyl-1 H-1,3-benzo-diazol-2(3 H)-one. Acta Crystallogr E Crystallogr Commun 2023; 79:534-537. [PMID: 37288468 PMCID: PMC10242737 DOI: 10.1107/s2056989023003961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
The polymorphic structures (I and II) of 3-phenyl-1H-1,3-benzo-diazol-2(3H)-one, C13H10N2O, acquired from pentane diffusion into the solution in THF, are reported. The structures show negligible differences in bond distances and angles, but the C-N-C-C torsion angles between the backbone and the phenyl substituent, 123.02 (15)° for I and 137.18 (11)° for II, are different. Compound I features a stronger C=O⋯H-N hydrogen bond than that in II, while the structure of II exhibits a stronger π-π inter-action than in I, as confirmed by the shorter inter-centroid distance [3.3257 (8) Å in II in comparison to 3.6862 (7) Å in I]. Overall, the supra-molecular inter-actions of I and II are distinct, presumably originating from the variation in the dihedral angle.
Collapse
Affiliation(s)
- Dabeen Hong
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
| | - Kyounghoon Lee
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
| |
Collapse
|
3
|
Liu J, Zuo S, Huang J, Zhang F, Zuo A. Synthesis of unsymmetrical 1,3-substituted-1,3-dihydro-benzimidazolones via copper-catalyzed C–N coupling under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although photoinduced copper catalysis for carbon–nitrogen (C–N) amine bond formation with alkyl/aryl halides has been developed, the potential of copper photocatalysis for the synthesis of 1,3-substituted benzimidazolones remains mostly unexplored.
Collapse
Affiliation(s)
- Jianjun Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Shengli Zuo
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Jieying Huang
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Fan Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100124, China
| | - Ang Zuo
- Department of Pharmaceutical Sciences, College of Pharmacy and UICentre (Drug Discovery at UIC), University of Illinois at Chicago, Chicago, Illinois 60612, USA
- SynChem, Inc., 1400 Chase Avenue, Elk Grove Village, Illinois 60007, USA
| |
Collapse
|
4
|
McGuire R, Verhoeven S, Vass M, Vriend G, de Esch IJP, Lusher SJ, Leurs R, Ridder L, Kooistra AJ, Ritschel T, de Graaf C. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine. J Chem Inf Model 2017; 57:115-121. [PMID: 28125221 PMCID: PMC5342320 DOI: 10.1021/acs.jcim.6b00686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
3D-e-Chem-VM is an open source, freely
available Virtual Machine
(http://3d-e-chem.github.io/3D-e-Chem-VM/) that integrates cheminformatics and bioinformatics tools for the
analysis of protein–ligand interaction data. 3D-e-Chem-VM consists
of software libraries, and database and workflow tools that can analyze
and combine small molecule and protein structural information in a
graphical programming environment. New chemical and biological data
analytics tools and workflows have been developed for the efficient
exploitation of structural and pharmacological protein–ligand
interaction data from proteomewide databases (e.g., ChEMBLdb and PDB),
as well as customized information systems focused on, e.g., G protein-coupled
receptors (GPCRdb) and protein kinases (KLIFS). The integrated structural
cheminformatics research infrastructure compiled in the 3D-e-Chem-VM
enables the design of new approaches in virtual ligand screening (Chemdb4VS),
ligand-based metabolism prediction (SyGMa), and structure-based protein
binding site comparison and bioisosteric replacement for ligand design
(KRIPOdb).
Collapse
Affiliation(s)
- Ross McGuire
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc , 6525 GA Nijmegen, The Netherlands.,BioAxis Research , Pivot Park, 5349 AE Oss, The Netherlands
| | - Stefan Verhoeven
- Netherlands eScience Center , 1098 XG Amsterdam, The Netherlands
| | - Márton Vass
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , 1081 HZ Amsterdam, The Netherlands
| | - Gerrit Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc , 6525 GA Nijmegen, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , 1081 HZ Amsterdam, The Netherlands
| | - Scott J Lusher
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc , 6525 GA Nijmegen, The Netherlands.,Netherlands eScience Center , 1098 XG Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , 1081 HZ Amsterdam, The Netherlands
| | - Lars Ridder
- Netherlands eScience Center , 1098 XG Amsterdam, The Netherlands
| | - Albert J Kooistra
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc , 6525 GA Nijmegen, The Netherlands.,Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , 1081 HZ Amsterdam, The Netherlands
| | - Tina Ritschel
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc , 6525 GA Nijmegen, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Andreoli F, Kaid-Slimane R, Coppola F, Farran D, Roussel C, Vanthuyne N. Access to N-Thioalkenyl and N-(o-Thio)aryl-benzimidazol-2-ones by Ring Opening of Thiazolobenzimidazolium and Benzimidazobenzothiazolium Salts and C–O Bond Cleavage of an Alkoxide. J Org Chem 2015; 80:3233-41. [DOI: 10.1021/acs.joc.5b00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Federico Andreoli
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Radia Kaid-Slimane
- Laboratoire
de synthèse organique appliquée, Département
de Chimie, Faculté des Sciences, Université d’Oran (Es Sénia), B.P. 1524, El M’naouer
Oran, Algérie
| | - Fabien Coppola
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Daniel Farran
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Christian Roussel
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| |
Collapse
|
6
|
Efficient domino synthesis of benzimidazole derivatives: copper catalysis versus transition metal-free conditions. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Synthesis and bioevaluation of pyrazole-benzimidazolone hybrids as novel human 4-Hydroxyphenylpyruvate dioxygenase inhibitors. Eur J Med Chem 2015; 92:427-38. [DOI: 10.1016/j.ejmech.2015.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 11/19/2022]
|
8
|
Okada O, Yamashita H, Takedomi K, Ono S, Sunada S, Kubodera H. Prediction of the binding affinity of compounds with diverse scaffolds by MP-CAFEE. Biophys Chem 2013; 180-181:119-26. [PMID: 23938954 DOI: 10.1016/j.bpc.2013.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022]
Abstract
Accurate methods to predict the binding affinities of compounds for target molecules are powerful tools in structure-based drug design (SBDD). A recently developed method called massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) successfully predicted the binding affinities of compounds with relatively similar scaffolds. We investigate the applicability of MP-CAFEE for predicting the affinity of compounds having more diverse scaffolds for the target p38α, a mitogen-activated protein kinase. The calculated and experimental binding affinities correlate well, showing that MP-CAFEE can accurately rank the compounds with diverse scaffolds. We propose a method to determine the optimal number of sampling runs with respect to a predefined level of accuracy, which is established according to the stage in the SBDD process being considered. The optimal number of sampling runs for two key stages-lead identification and lead optimization-is estimated to be five and eight or more, respectively, in our model system using Cochrans sample size formula.
Collapse
Affiliation(s)
- Okimasa Okada
- Medicinal Chemistry Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, Toda, Saitama 335-8505, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Meanwell NA. Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J Med Chem 2011; 54:2529-91. [DOI: 10.1021/jm1013693] [Citation(s) in RCA: 1876] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nicholas A. Meanwell
- Department of Medicinal Chemistry, Bristol-Myers Squibb Pharmaceutical Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
10
|
Cubero FJ, Trautwein C. Oxidative Stress and Liver Injury. MOLECULAR PATHOLOGY LIBRARY 2011:427-435. [DOI: 10.1007/978-1-4419-7107-4_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
11
|
Armen RS, Chen J, Brooks CL. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics. J Chem Theory Comput 2009; 5:2909-2923. [PMID: 20160879 DOI: 10.1021/ct900262t] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.
Collapse
Affiliation(s)
- Roger S Armen
- Department of Chemistry, 930 N. University Ave, University of Michigan, Ann Arbor, MI 48109
| | | | | |
Collapse
|
12
|
Potemkin VA, Pogrebnoy AA, Grishina MA. Technique for energy decomposition in the study of "receptor-ligand" complexes. J Chem Inf Model 2009; 49:1389-406. [PMID: 19473000 DOI: 10.1021/ci800405n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new methodology to describe the interactions in "receptor-ligand" complexes is presented. The methodology is based on a combination of the 3D/4D QSAR BiS/MC and CoCon algorithms. The first algorithm performs the restricted docking of compounds to receptor pockets. The second determines the relationships between the bioactivity and the parameters of interactions in the "receptor-ligand" complexes, including a new formalism for estimating hydrogen bond energies.
Collapse
Affiliation(s)
- Vladimir A Potemkin
- Chelyabinsk State Medical Academy, Pharmaceutical Chemistry, Chelyabinsk, Russian Federation 454048
| | | | | |
Collapse
|
13
|
Lavoie JP, Thompson D, Hamilton E, Debrue M, David F, Hickey G. Effects of a MAPK p38 inhibitor on lung function and airway inflammation in equine recurrent airway obstruction. Equine Vet J 2009; 40:577-83. [PMID: 19031513 DOI: 10.2746/042516408x284646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY It has been suggested that many of the beneficial effects of corticosteroids are mediated through mitogen-activated protein kinase (MAPK) p38 inhibition. OBJECTIVE To investigate the efficacy of the MAPK p38 inhibitor compound MRL-EQ1 to either prevent (Phase 1) or treat (Phase 2) recurrent airway obstruction (RAO) in horses. METHODS MRL-EQ1 was administered i.v. at a dosage of 0.75-1.5 mg/kg bwt q. 12 h. In Phase 1, susceptible horses in clinical remission were divided into 2 groups (n = 5/group), based on historical values of respiratory mechanics. All horses were entered in the study in pairs (one control, one treated horse) and exposed to the same environmental challenge (stabling, mouldy hay and dusty conditions). The treatment group received MRL-EQ1 for 14 days while the control horses were untreated during the same period. In Phase 2, affected horses were ranked by severity of respiratory dysfunction and split randomly into either dexamethasone or MRL-EQ1 treatment groups (n = 5/group). Bronchoalveolar lavage fluid, respiratory mechanic measurements, MRL-EQ1 plasma concentration and tumour necrosis factor (TNF) whole blood activity were evaluated sequentially. RESULTS In Phase 1, MRL-EQ1 did not prevent the occurrence of clinical signs and pulmonary inflammation. However, treatment was associated with a reduction in severity and a delay in the onset of signs and a reduction in pulmonary neutrophilia. In Phase 2, plasma concentrations achieved resulted in ex vivo suppression of lipopolysaccharide-induced TNF production in equine blood. MRL-EQ1 did not improve airway inflammation or lung function and was associated in a dose dependent manner with behavioural (depression, excitability) and blood changes (neutrophilia, increased serum muscle enzyme concentrations). CONCLUSIONS Inhibition of p38 in the horse was partially effective in reducing clinical signs and airway inflammation when administered prior to, but not during clinical exacerbation in RAO. POTENTIAL RELEVANCE Inhibitors of p38 MAPK with a better toxicity profile may be effective in the prevention or treatment of RAO.
Collapse
Affiliation(s)
- J P Lavoie
- Faculté de médecine vétérinaire, Université de Montréal, C.P 5000, Saint-Hyacinthe, Quebec J2S 7C6, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Schett G, Zwerina J, Firestein G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis 2008; 67:909-16. [PMID: 17827184 PMCID: PMC2754165 DOI: 10.1136/ard.2007.074278] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory processes are based on a sustained and tightly regulated communication network among different cells types. This network comprises extracellular mediators such as cytokines, chemokines and matrix-degrading proteases, which orchestrate the participation of cells in the chronic inflammatory process. The mirrors of this outside communication world are intracellular transcription factor pathways, which shuttle information about inflammatory stimuli to the cell nucleus. This review examines the function of one key signal transduction pathway of inflammation--the p38 mitogen-activated protein kinases (p38MAPK). The signalling pathway is considered as crucial for the induction and maintenance of chronic inflammation, and its components thus emerge as interesting molecular targets of small molecule inhibitors for controlling inflammation. This review not only summarises the current knowledge of activation, regulation and function of the p38MAPK pathway but also examines the role of this pathway in clinical disease. It gives an overview of current evidence of p38MAPK activation in inflammatory arthritis and elaborates the key molecular determinants which contribute to p38MAPK activation in joint disease.
Collapse
Affiliation(s)
- G Schett
- Department of Internal Medicine III, University of Erlangen, D-91054 Erlangen, Germany.
| | | | | |
Collapse
|
15
|
Shashi Nayana MR, Sekhar YN, Siva Kumari N, Mahmood SK, Ravikumar M. CoMFA and docking studies on triazolopyridine oxazole derivatives as p38 MAP kinase inhibitors. Eur J Med Chem 2008; 43:1261-9. [PMID: 17825954 DOI: 10.1016/j.ejmech.2007.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 11/25/2022]
Abstract
With the objective to design new chemical entities with enhanced inhibitory potencies against p38 MAP alpha kinase, the 3D-QSAR and Comparative Molecular Field Analysis (CoMFA) studies were carried out on triazolopyridine oxazole compounds as inhibitors of these kinase is presented here. The developed model gave q(2) value of 0.707 and r(2) value of 0.942 for CoMFA. The high leave-one-out (LOO) cross-validated correlation coefficient q(2) reveals that the model is a useful tool for the prediction of test set of 19 compounds that were not included in the training set of 55 compounds. The results not only lead to better understanding of structural requirements of p38 alpha inhibitors but also can help in the design of new potent inhibitors. The binding mode of the compounds at the active site of p38 MAP alpha kinase was explored using Glide docking program and hydrogen-bonding interactions were observed between the inhibitors and the target. The details of amino acid interactions of the active site are discussed briefly and correlated with the contour plots.
Collapse
Affiliation(s)
- M Ravi Shashi Nayana
- Bioinformatics Division, Environmental Microbiology Lab, Department of Botany, Osmania University, Hyderabad 500 007, A.P., India
| | | | | | | | | |
Collapse
|
16
|
Sarma R, Sinha S, Ravikumar M, Kishore Kumar M, Mahmood SK. Pharmacophore modeling of diverse classes of p38 MAP kinase inhibitors. Eur J Med Chem 2008; 43:2870-6. [PMID: 18406015 DOI: 10.1016/j.ejmech.2008.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/03/2008] [Accepted: 02/07/2008] [Indexed: 01/01/2023]
Abstract
Mitogen-activated protein (MAP) p38 kinase is a serine-threonine protein kinase and its inhibitors are useful in the treatment of inflammatory diseases. Pharmacophore models were developed using HypoGen program of Catalyst with diverse classes of p38 MAP kinase inhibitors. The best pharmacophore hypothesis (Hypo1) with hydrogen-bond acceptor (HBA), hydrophobic (HY), hydrogen-bond donor (HBD), and ring aromatic (RA) as features has correlation coefficient of 0.959, root mean square deviation (RMSD) of 1.069 and configuration cost of 14.536. The model was validated using test set containing 119 compounds and had high correlation coefficient of 0.851. The results demonstrate that results obtained in this study can be considered to be useful and reliable tools in identifying structurally diverse compounds with desired biological activity.
Collapse
Affiliation(s)
- Rituparna Sarma
- Biocampus, GVK Biosciences Pvt. Ltd. S-1, Phase-1, Technocrats Industrial Estate, Balanagar, Hyderabad 500 037, A.P., India.
| | | | | | | | | |
Collapse
|
17
|
Benzothiazole based inhibitors of p38alpha MAP kinase. Bioorg Med Chem Lett 2008; 18:1874-9. [PMID: 18296051 DOI: 10.1016/j.bmcl.2008.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 11/20/2022]
Abstract
Rational design, synthesis, and SAR studies of a novel class of benzothiazole based inhibitors of p38alpha MAP kinase are described. The issue of metabolic instability associated with vicinal phenyl, benzo[d]thiazol-6-yl oxazoles/imidazoles was addressed by the replacement of the central oxazole or imidazole ring with an aminopyrazole system. The proposed binding mode of this new class of p38alpha inhibitors was confirmed by X-ray crystallographic studies of a representative inhibitor (6a) bound to the p38alpha enzyme.
Collapse
|
18
|
Edraki N, Hemmateenejad B, Miri R, Khoshneviszade M. QSAR Study of Phenoxypyrimidine Derivatives as Potent Inhibitors of p38 Kinase Using different Chemometric Tools. Chem Biol Drug Des 2007; 70:530-9. [DOI: 10.1111/j.1747-0285.2007.00597.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Rearrangement of spiro-benzimidazolines: preparation of N-alkenyl- and N-alkyl-benzimidazol-2-ones. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.06.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bellina F, Cauteruccio S, Rossi R. Synthesis and biological activity of vicinal diaryl-substituted 1H-imidazoles. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.02.075] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
McClure KF, Letavic MA, Kalgutkar AS, Gabel CA, Audoly L, Barberia JT, Braganza JF, Carter D, Carty TJ, Cortina SR, Dombroski MA, Donahue KM, Elliott NC, Gibbons CP, Jordan CK, Kuperman AV, Labasi JM, Laliberte RE, McCoy JM, Naiman BM, Nelson KL, Nguyen HT, Peese KM, Sweeney FJ, Taylor TJ, Trebino CE, Abramov YA, Laird ER, Volberg WA, Zhou J, Bach J, Lombardo F. Structure–activity relationships of triazolopyridine oxazole p38 inhibitors: Identification of candidates for clinical development. Bioorg Med Chem Lett 2006; 16:4339-44. [PMID: 16759861 DOI: 10.1016/j.bmcl.2006.05.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 12/21/2022]
Abstract
The synthesis, structure-activity relationship, in vivo activity, and metabolic profile for a series of triazolopyridine-oxazole based p38 inhibitors are described. The deficiencies of the lead structure in the series, CP-808844, were overcome by changes to the C4 aryl group and the triazole side-chain culminating in the identification of several potential clinical candidates.
Collapse
Affiliation(s)
- Kim F McClure
- Pfizer Global Research and Development, Groton Laboratories, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Limbeck M, Wamhoff H, Rölle T, Griebenow N. Palladium-catalyzed α-arylation of ketones on solid support: scope and limitations. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.02.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Kalgutkar AS, Hatch HL, Kosea F, Nguyen HT, Choo EF, McClure KF, Taylor TJ, Henne KR, Kuperman AV, Dombroski MA, Letavic MA. Preclinical pharmacokinetics and metabolism of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine, a novel and selective p38α inhibitor: identification of an active metabolite in preclinical species and human liver microsomes. Biopharm Drug Dispos 2006; 27:371-86. [PMID: 16944451 DOI: 10.1002/bdd.520] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The disposition of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine (1), a potent and selective inhibitor of mitogen activated protein (MAP) kinase p38alpha, was characterized in several animal species in support of its selection for preclinical safety studies and potential clinical development. 1 demonstrated generally favorable pharmacokinetic properties in all species examined. Following intravenous (i.v.) administration, 1 exhibited low volumes of distribution at steady state (Vd(ss)) ranging from 0.4-1.3 l/kg (2.4-26 l/m(2)) in the rat, dog and monkey. Systemic plasma clearance was low in cynomolgus monkeys (6.00 ml/min/kg, 72.0 ml/min/m(2)) and Sprague-Dawley rats (7.65+/-1.08 ml/min/kg, 45.9+/-6.48 ml/min/m(2) in male rats and 3.15+/-0.27 ml/min/kg, 18.9+/-1.62 ml/min/m(2) in female rats) and moderate in beagle dogs (12.3+/-5.1 ml/min/kg, 246+/-102 ml/min/m(2)) resulting in plasma half-lives ranging from 1 to 5 h in preclinical species. Moderate to high bioavailability of 1 was observed in rats (30-65%), dogs (87%) and monkeys (40%) after oral (p.o.) dosing consistent with the in vitro absorption profile of 1 in the Caco-2 permeability assay. In rats, the oral pharmacokinetics were dose dependent over the dose range studied (5, 50 and 100 mg/kg). The principal route of clearance of 1 in rat, dog, monkey and human liver microsomes and in vivo in preclinical species involved oxidative metabolism mediated by cytochrome P450 enzymes. The major metabolic fate of 1 in preclinical species and humans involved hydroxylation on the isopropyl group to yield the tertiary alcohol metabolite 2. In human liver microsomes, this transformation was catalysed by CYP3A4 as judged from reaction phenotyping analysis using isozyme-specific inhibitors and recombinant CYP enzymes. Metabolite 2 was also shown to possess inhibitory potency against p38alpha in a variety of in vitro assays. 1 as well as the active metabolite 2 were moderately to highly bound to plasma proteins (f(u) approximately 0.1-0.33) in rat, mouse, dog, monkey and human. 1 as well as the active metabolite 2 did not exhibit competitive inhibition of the five major cytochrome P450 enzymes namely CYP1A2, 2C9, 2C19, 2D6 and 3A4 (IC(50)>50 microM). Overall, these results indicate that the absorption, distribution, metabolism and excretion (ADME) profile of 1 is relatively consistent across preclinical species and predict potentially favorable pharmacokinetic properties in humans, supporting its selection for toxicity/safety assessment studies and possible investigations in humans as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Amit S Kalgutkar
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McClure KF, Abramov YA, Laird ER, Barberia JT, Cai W, Carty TJ, Cortina SR, Danley DE, Dipesa AJ, Donahue KM, Dombroski MA, Elliott NC, Gabel CA, Han S, Hynes TR, Lemotte PK, Mansour MN, Marr ES, Letavic MA, Pandit J, Ripin DB, Sweeney FJ, Tan D, Tao Y. Theoretical and Experimental Design of Atypical Kinase Inhibitors: Application to p38 MAP Kinase. J Med Chem 2005; 48:5728-37. [PMID: 16134941 DOI: 10.1021/jm050346q] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mimics of the benzimidazolone nucleus found in inhibitors of p38 kinase are proposed, and their theoretical potential as bioisosteres is described. A set of calculated descriptors relevant to the anticipated binding interaction for the fragments 1-methyl-1H-benzotriazole 5, 3-methyl-benzo[d]isoxazole 3, and 3-methyl-[1,2,4]triazolo[4,3-a]pyridine 4, pyridine 1, and 1,3-dimethyl-1,3-dihydro-benzoimidazol-2-one 2 are reported. The design considerations and synthesis of p38 inhibitors based on these H-bond acceptor fragments is detailed. Comparative evaluation of the pyridine-, benzimidazolone-, benzotriazole-, and triazolopyridine-based inhibitors shows the triazoles 20 and 25 to be significantly more potent experimentally than the benzimidazolone after which they were modeled. An X-ray crystal structure of 25 bound to the active site shows that the triazole group serves as the H-bond acceptor but unexpectedly as a dual acceptor, inducing movement of the crossover connection of p38alpha. The computed descriptors for the hydrophobic and pi-pi interaction capacities were the most useful in ranking potency.
Collapse
Affiliation(s)
- Kim F McClure
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|