1
|
Liu F, Zhou T, Zhang S, Li Y, Chen Y, Miao Z, Wang X, Yang G, Li Q, Zhang L, Liu Y. Cathepsin B: The dawn of tumor therapy. Eur J Med Chem 2024; 269:116329. [PMID: 38508117 DOI: 10.1016/j.ejmech.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.
Collapse
Affiliation(s)
- Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Experimental & Training Teaching Centers, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
2
|
Li S, Cao Y, Jiang L, Liu J. Synthesis of Diaryl Tellurides with Sodium Aryltellurites under Mild Conditions. Chem Asian J 2024; 19:e202300993. [PMID: 38438327 DOI: 10.1002/asia.202300993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
A highly efficient new protocol has been developed for the formation of C-Te bonds, leading to both symmetrical and unsymmetrical diaryl tellurides. This protocol utilizes sodium aryltellurites (4), which can be easily prepared from low-cost aryltelluride trichlorides and NaOH. The synthesis involves the use of 4 and arylazo sulfones as starting materials in the presence of (MeO)2P(O)H. A variety of diaryl tellurides are obtained in moderate to good yields using this method. Importantly, this innovative protocol eliminates the need for traditional, highly toxic aryltellurolating reagents such as diaryl ditellurides and elemental tellurium. This study will bring new vitality to the synthesis of tellurides.
Collapse
Affiliation(s)
- Shan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
- Shazhou Professional Institute of Technology, Zhangjiagang, Jiangsu, 215600, China
| | - Yuan Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Lvqi Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology., 200 Xiao Ling Wei Street, Nanjing, 210094, China
| |
Collapse
|
3
|
Chang XP, Wang JL, Peng LY, Cen XJ, Yin BW, Xie BB. Mechanistic photophysics of tellurium-substituted cytosine: Electronic structure calculations and nonadiabatic dynamics simulations. Photochem Photobiol 2024; 100:339-354. [PMID: 37435854 DOI: 10.1111/php.13835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Previously, the MS-CASPT2 method was performed to study the static and qualitative photophysics of tellurium-substituted cytosine (TeC). To get quantitative information, we used our recently developed QTMF-FSSH dynamics method to simulate the excited-state decay of TeC. The CASSCF method was adopted to reduce the calculation costs, which was confirmed to provide reliable structures and energies as those of MS-CASPT2. A detailed structural analysis showed that only 5% trajectories will hop to the lower triplet or singlet state via the twisted (S2 /S1 /T2 )T intersection, while 67% trajectories will choose the planar intersections of (S2 /S1 /T3 /T2 /T1 )P and (S2 /S1 /T2 /T1 )P but subsequently become twisted in other electronic states. By contrast, ~28% trajectories will maintain in a plane throughout dynamics. Electronic population revealed that the S2 population will ultrafast transfer to the lower triplet or singlet state. Later, the TeC system will populate in the spin-mixed electronic states composed of S1 , T1 and T2 . At the end of 300 fs, most trajectories (~74%) will decay to the ground state and only 17.4% will survive in the triplet states. Our dynamics simulation verified that tellurium substitution will enhance the intersystem crossings, but the very short triplet lifetime (ca. 125 fs) will make TeC a less effective photosensitizer.
Collapse
Affiliation(s)
- Xue-Ping Chang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Jie-Lei Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xu-Jiang Cen
- Ningbo Zhongtian Engineering Co., Ltd., Ningbo, China
| | - Bo-Wen Yin
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
4
|
Tripathi A, Khan A, Kiran P, Shetty H, Srivastava R. Screening of AS101 analog, organotellurolate (IV) compound 2 for its in vitro biocompatibility, anticancer, and antibacterial activities. Amino Acids 2023:10.1007/s00726-023-03280-7. [PMID: 37227510 DOI: 10.1007/s00726-023-03280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Organotellurium compounds are being well researched as potential candidates for their functional roles in therapeutic and clinical biology. Here, we report the in vitro anticancer and antibacterial activities of an AS101 analog, cyclic zwitterionic organotellurolate (IV) compound 2 [Te-{CH2CH(NH3+)COO}(Cl)3]. Different concentrations of compound 2 were exposed to fibroblast L929 and breast cancer MCF-7 cell lines to study its effect on cell viability. The fibroblast cells with good viability confirmed the biocompatibility, and compound 2 also was less hemolytic on RBCs. A cytotoxic effect on MCF-7 breast cancer cell line investigated compound 2 to be anti-cancerous with IC50 value of 2.86 ± 0.02 µg/mL. The apoptosis was confirmed through the cell cycle phase arrest of the organotellurolate (IV) compound 2. Examination of the antibacterial potency compound 2 was done based on the agar disk diffusion, minimum inhibitory concentration, and time-dependent assay for the Gram-positive Bacillus subtilis and Gram-negative Pseudomonas putida. For both bacterial strains, tests were performed with the concentration range of 3.9-500 μg/mL, and the minimum inhibition concentration value was found to be 125 μg/mL. The time-dependent assay suggested the bactericidal activity of organotellurolate (IV) compound, 2 against the bacterial strains.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Harsha Shetty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
5
|
Ali A Aldawood S, Das A, Banik BK. Tellurium-induced cyclization of olefinic compounds. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this article, we discuss about the importance of Tellurium (Te) in organic synthesis. Tellurium-induced cyclization of alkenyl compounds, as well as alkynyl compounds, are considered for the study. The developments in this area are incorporated in great detail. The mechanism of the reactions does not follow any straightforward process. This study opens up the possibility of stereocontrolled synthesis of complex natural products.
Collapse
Affiliation(s)
- Sara Ali A Aldawood
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Banerjee B, Sharma A, Kaur G, Priya A, Kaur M, Singh A. Latest developments on the synthesis of bioactive organotellurium scaffolds. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review deals with the latest developments on the synthesis of biologically promising organotellurim scaffolds reported during last two decades.
Collapse
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Aditi Sharma
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Gurpreet Kaur
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Anu Priya
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Manmeet Kaur
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| | - Arvind Singh
- Department of Chemistry , Akal University , TalwandiSabo , Bathinda , Punjab 151302 , India
| |
Collapse
|
7
|
Synthesis of Tellurium Oxide (TeO 2) Nanorods and Nanoflakes and Evaluation of Its Efficacy Against Leishmania major In Vitro and In Vivo. Acta Parasitol 2022; 67:143-152. [PMID: 34173967 DOI: 10.1007/s11686-021-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Today, the use of natural products and nanostructures has increased. Given the reports on beneficial effects of various organotellurane compounds on types of visceral leishmaniasis, we decided to investigate the effect of TeO2 NPs on Leishmania major (L. major). Tellurium can cause cell apoptosis in cancer cells without activating the caspase-pathway. METHODS TeO2 NPs at first synthesized and the structure was checked by XRD, SEM and EDS tests. The cytotoxic effect of TeO2 NPs against L. major promastigotes, amastigotes and macrophages was assessed by MTT test or counting. The possible apoptosis of L. major by TeO2 NPs was evaluated by flow cytometry test. For in vivo assay, the lesions of infected BALB/c mice with L. major promastigotes were treated with TeO2 NPs, then the lesion size and survival rate were evaluated. RESULTS The synthesis of TeO2 with tetragonal structure was confirmed by XRD. The combination of nanorods and nanoflakes and the presence of Te were proven by SEM and EDS, respectively. According the effects of nanoparticle on promastigotes and amastigotes, the IC50 values of TeO2 after 72 h of incubation were 15.13 and 52.22 µg/ml, respectively. TeO2 NPs induced apoptosis in about 41% of promastigotes. The ulcer greatly healed and survival rate was higher in treated mice compared to those in control group. CONCLUSION Based on the data, favorable anti-leishmanial properties were observed by using TeO2 NPs. TeO2 NPs have cytotoxic impacts on L. major promastigotes and amastigotes in vitro and in vivo and may be regarded as a therapy option.
Collapse
|
8
|
Tripathi A, Deka R, Butcher RJ, Turner DR, Deacon GB, Singh HB. Exploring the reactivity of L-tellurocystine, Te-protected tellurocysteine conjugates and diorganodiselenides towards hydrogen peroxide: synthesis and molecular structure analysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj00997h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a series of novel organotellurium species and diorganoselenones is reported.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Rajesh Deka
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, D. C. 20059, USA
| | - David R. Turner
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Glen B. Deacon
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Maganhi SH, Caracelli I, Zukerman-Schpector J, Cunha RL, Veja-Teijido MA, Tiekink ER. Crystal structures and docking studies in cathepsin S of bioactive 1,3‐diphenyl‐4‐(trichloro‐λ4‐tellanyl)but‐2‐en‐1‐one derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Souza JPA, Menezes LRA, Garcia FP, Scariot DB, Bandeira PT, Bespalhok MB, Giese SOK, Hughes DL, Nakamura CV, Barison A, Oliveira ARM, Campos RB, Piovan L. Synthesis, Mechanism Elucidation and Biological Insights of Tellurium(IV)-Containing Heterocycles. Chemistry 2021; 27:14427-14437. [PMID: 34406689 DOI: 10.1002/chem.202102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Inspired by the synthetic and biological potential of organotellurium substances, a series of five- and six-membered ring organotelluranes containing a Te-O bond were synthesized and characterized. Theoretical calculations elucidated the mechanism for the oxidation-cyclization processes involved in the formation of the heterocycles, consistent with chlorine transfer to hydroxy telluride, followed by a cyclization step with simultaneous formation of the new Te-O bond and deprotonation of the OH group. Moreover, theoretical calculations also indicated anti-diastereoisomers to be major products for two chirality center-containing compounds. Antileishmanial assays against Leishmania amazonensis promastigotes disclosed 1,2λ4 -oxatellurane LQ50 (IC50 =4.1±1.0; SI=12), 1,2λ4 -oxatellurolane LQ04 (IC50 =7.0±1.3; SI=7) and 1,2λ4 -benzoxatellurole LQ56 (IC50 =5.7±0.3; SI=6) as more powerful and more selective compounds than the reference, being up to four times more active. A stability study supported by 125 Te NMR analyses showed that these heterocycles do not suffer structural modifications in aqueous-organic media or at temperatures up to 65 °C.
Collapse
Affiliation(s)
- João Pedro A Souza
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Leociley R A Menezes
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Francielle P Garcia
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Débora B Scariot
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Pamela T Bandeira
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Mateus B Bespalhok
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Siddhartha O K Giese
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Celso V Nakamura
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Andersson Barison
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Alfredo R M Oliveira
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Renan B Campos
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná, Curitiba, PR, 81.280-340, Brazil
| | - Leandro Piovan
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| |
Collapse
|
11
|
Viana Nunes AM, das Chagas Pereira de Andrade F, Filgueiras LA, de Carvalho Maia OA, Cunha RLOR, Rodezno SVA, Maia Filho ALM, de Amorim Carvalho FA, Braz DC, Mendes AN. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103470. [PMID: 32814174 DOI: 10.1016/j.etap.2020.103470] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Tellurium compounds have been described as potential leishmanicides, bearing promising leishmanicidal and antimalarial effects. Therefore, the present study investigated the pharmacological potential of the organotellurane compound RF07 through preADMET parameters, such as absorption, distribution, metabolism and excretion. After studying the pharmacokinetic properties of RF07, studies were carried out on dogs naturally infected with visceral leishmaniasis after the administration of RF07, in order to assess pathophysiological parameters. Thus, dogs were divided into 4 groups with administration of daily intraperitoneal injections for 3 weeks (containing RF07 or placebo). During the trial, hematological parameters, renal and hepatic toxicity were evaluated. Serum urea, creatinine, alkaline phosphatase, transaminases (GOT and GPT), as well as hemogram results, were evaluated before the first administration and during the second and third weeks after the start of the treatment. In dogs with VL, RF07 improved liver damage, regulated GPT levels and significantly decreased leukocyte count, promoting its regularization. These phenomena occurred at the end of the third week of treatment. The administration of RF07 promoted a significant decrease in the average levels of GOT and GPT after the third week of treatment and did not significantly alter the hematological parameters. The application of RF07 in the treatment of visceral leishmaniasis suggests that it is an alternative to the disease, since the reversal of clinical signs in dogs with VL requires the use of 0.6 mg/kg.
Collapse
Affiliation(s)
| | | | - Lívia Alves Filgueiras
- Departament of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Rodrigo L O R Cunha
- Laboratory of Chemical Biology, Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Sindy V A Rodezno
- Laboratory of Chemical Biology, Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
12
|
Al-Asadi RH. Synthesis and Molecular Structure Study of New Organotellurium and Organomercury Compounds Based on 4-Bromonaphthalen-1-amine. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Irfan M, Rehman R, Razali MR, Shafiq-Ur-Rehman, Ateeq-Ur-Rehman, Iqbal MA. Organotellurium compounds: an overview of synthetic methodologies. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
In wake of emerging applications of organotellurium compounds in biological and material science avenues, the current review describes their key synthetic methodologies while focusing the synthesis of organotellurium compounds through five ligand-to-metal linkages including carbon; carbon-oxygen; carbon-nitrogen; carbon-metal; carbon-sulfur to tellurium. In all of these linkages whether tellurium links with ligands through a complicated or simple pathways, it is often governed through electrophilic substitution reactions. The present study encompasses these major synthetic routes so as to acquire comprehensive understanding of synthetic organotellurium compounds.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Rabia Rehman
- Institute of Chemistry , University of the Punjab , Lahore - 54590 , Pakistan
| | - Mohd. R. Razali
- School of Chemical Sciences , Universiti Sains Malaysia , 11800-USM , Penang , Malaysia
| | - Shafiq-Ur-Rehman
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Ateeq-Ur-Rehman
- Department of Physics , University of Agriculture , Faisalabad - 38040 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad - 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture , Faisalabad - 38040 , Pakistan
| |
Collapse
|
14
|
Al-Asadi RH, Mohammed MK, Dhaef HK. Mercuration and Telluration of 2-Fluoro-5-nitroaniline: Synthesis, Antibacterial, and Computational Study. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220040222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Aryltellurium Trihalides in the Synthesis of Heterocyclic Compounds (Microreview). Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02688-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Sato RH, Kosaka PM, Omori ÁT, Ferreira EA, Petri DFS, Malvar Ó, Domínguez CM, Pini V, Ahumada Ó, Tamayo J, Calleja M, Cunha RLOR, Fiorito PA. Development of a methodology for reversible chemical modification of silicon surfaces with application in nanomechanical biosensors. Biosens Bioelectron 2019; 137:287-293. [PMID: 31125818 DOI: 10.1016/j.bios.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 10/26/2022]
Abstract
Hypervalent tellurium compounds have a particular reactivity towards thiol compounds which are related to their biological properties. In this work, this property was assembled to tellurium-functionalized surfaces. These compounds were used as linkers in the immobilization process of thiolated biomolecules (such as DNA) on microcantilever surfaces. The telluride derivatives acted as reversible binding agents due to their redox properties, providing the regeneration of microcantilever surfaces and allowing their reuse for further biomolecules immobilizations, recycling the functional surface. Initially, we started from the synthesis of 4-((3-((4-methoxyphenyl) tellanyl) phenyl) amino)-4-oxobutanoic acid, a new compound, which was immobilized on a silicon surface. In nanomechanical systems, the detection involved a hybridization study of thiolated DNA sequences. Fluorescence microscopy technique was used to confirm the immobilization and removal of the telluride-DNA system and provided revealing results about the potentiality of applying redox properties to chalcogen derivatives at surfaces.
Collapse
Affiliation(s)
- Roseli H Sato
- CCNH, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Avenida dos Estados, 5001, 09210-580, Santo André, São Paulo, Brazil
| | - Priscila M Kosaka
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Álvaro T Omori
- CCNH, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Avenida dos Estados, 5001, 09210-580, Santo André, São Paulo, Brazil
| | - Edgard A Ferreira
- Escola de Engenharia, Universidade Presbiteriana Mackenzie, 01302-907, São Paulo, SP, Brazil
| | - Denise F S Petri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, P.O. Box 26077, São Paulo, SP, 05513-970, Brazil
| | - Óscar Malvar
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Carmen M Domínguez
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Valerio Pini
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Óscar Ahumada
- Mecwins S.A, Plaza de la Encina 10-11, Núcleo 5, 2 B, 28760, Tres Cantos, Madrid, Spain
| | - Javier Tamayo
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Montserrat Calleja
- Instituto Micro y Nanotecnología (IMN-CNM), CSIC, Isaac Newton 8 (PTM), Tres Cantos, Madrid, Spain
| | - Rodrigo L O R Cunha
- CCNH, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Avenida dos Estados, 5001, 09210-580, Santo André, São Paulo, Brazil
| | - Pablo A Fiorito
- Centro de Investigaciones y Transferencia Villa María (CIT VM - CONICET), Instituto de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Av. Arturo Jauretche 1555, Villa María, C.P, 5900, Córdoba, Argentina.
| |
Collapse
|
17
|
Paschoalin T, Martens AA, Omori ÁT, Pereira FV, Juliano L, Travassos LR, Machado-Santelli GM, Cunha RLOR. Antitumor effect of chiral organotelluranes elicited in a murine melanoma model. Bioorg Med Chem 2019; 27:2537-2545. [PMID: 30962115 DOI: 10.1016/j.bmc.2019.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Protease roles in cancer progression have been demonstrated and their inhibitors display antitumor effects. Cathepsins are lysosomal cysteine proteases that have increased expression in tumor cells, and tellurium compounds were described as potent cysteine protease inhibitors and also assayed in several animal models. In this work, the two enantiomeric forms of 1-[Butyl(dichloro)-λ4-tellanyl]-2-[1S-methoxyethyl]benzene (organotelluranes RF-13R and RF-13S) were evaluated as inhibitors of cathepsins B and L, showing significant enantiodiscrimination. We observed their cytotoxic effects on a murine melanoma model, effectively inhibiting tumor progression in vivo. The enantiomers were able to inhibit melanoma cell viability, migration and invasion in vitro. Besides, RF-13S and RF-13R were able to inhibit endothelial cell angiogenesis using a tube formation assay in vitro, in a stereodependent manner. These organotelluranes affected cell morphology, showing disassembling of the actin cytoskeleton. These results suggest organotelluranes as potential antitumor agents, acting directly on tumor cell proliferation, migration and invasion, and on endothelial cells, disrupting angiogenesis, showing low toxicity and high efficiency. Taken together our results suggest that this class of compounds should be further studied to reveal their potential as antitumoral agents.
Collapse
Affiliation(s)
- Thaysa Paschoalin
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Adam A Martens
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Álvaro T Omori
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Felipe V Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Departamento de Microbiologia, Imunologia e Parasitologia, Unidade de Oncologia Experimental (UNONEX), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Glaucia M Machado-Santelli
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
18
|
D'Arcy K, Doyle AP, Kavanagh K, Ronconi L, Fresch B, Montagner D. Stability of antibacterial Te(IV) compounds: A combined experimental and computational study. J Inorg Biochem 2019; 198:110719. [PMID: 31174178 DOI: 10.1016/j.jinorgbio.2019.110719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
Abstract
Inorganic Te(IV) compounds are important cysteine protease inhibitors and antimicrobial agents; AS-101 [ammonium trichloro (dioxoethylene-O,O')tellurate] is the first compound of a family with formula NH4[C2H4Cl3O2Te], where a Te(IV) centre is bound to a chelate ethylene glycol, and showed several protective therapeutic applications. This compound is lacking in stability performance and is subjected to hydrolysis reaction with displacement of the diol ligand. In this paper, we report the stability trend of a series of analogues complexes of AS-101 with generic formula NH4[(RC2H3O2)Cl3Te], where R is an alkyl group with different chain length and different electronic properties, in order to find a correlation between structure and stability in aqueous-physiological conditions. The stability was studied in solution via multinuclear NMR spectroscopy (1H, 13C, 125Te) and computationally at the Density Functional Theory level with an explicit micro solvation model. The combined experimental and theoretical work highlights the essential role of the solvating environment and provides mechanistic insights into the complex decomposition reaction. Antimicrobial activity of the compounds was assessed against different bacterial strains.
Collapse
Affiliation(s)
- Kenneth D'Arcy
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | | | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Luca Ronconi
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | - Barbara Fresch
- Department of Chemical Science, University of Padova, Italy.
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland.
| |
Collapse
|
19
|
Rehman A, Noreen A, Aftab S, Shakoori A. Antiproliferative effect of oxidative stress induced by tellurite in breast carcinoma cells. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_5_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
21
|
Teixeira ML, Menezes LRA, Barison A, de Oliveira ARM, Piovan L. Investigation of Chemical Stability of Dihalogenated Organotelluranes in Organic-Aqueous Media: The Protagonism of Water. J Org Chem 2018; 83:7341-7346. [PMID: 29373033 DOI: 10.1021/acs.joc.7b02971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biological activity of tellurium compounds is closely related to the tellurium oxidation state or some of their structural features. Hypervalent dihalogenated organotelluranes 1-[butyl(dichloro)-λ4-tellanyl]-2-(methoxymethyl)benzene (1a) and 1-[butyl(dibromide)-λ4-tellanyl]-2-(methoxymethyl)benzene (1b) have been described as inhibitors of proteases (cysteine and threonine) and tyrosine phosphatases. However, poor attention has been given to their physicochemical properties. Here, a detailed investigation of the stability in water of these organotelluranes is reported using 125Te NMR analysis. Dihalogenated organotelluranes 1a and 1b were both stable in DMSO- d6 (from 25 to 75 °C), demonstrating their thermal stability. However, the addition of a phosphate buffer solution (pH 2-8) to 1a or 1b resulted in an immediate conversion to a new Te species, assumed to be the corresponding telluroxide. Similar behavior was observed in pure water, demonstrating the low chemical stability of these dihalogenated species in the presence of water. These results allow concluding that previous biological activity reported for dihalogenated organotelluranes 1a and 1b could be attributed to the corresponding derivatives from the reaction with water. In the same way as for AS-101, we demonstrated that organotelluranes 1a and 1b are not stable in aqueous solution. It suggests a proactive role of these organotelluranes in previously reported biological activity.
Collapse
Affiliation(s)
- Mariana L Teixeira
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| | - Leociley R A Menezes
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| | - Andersson Barison
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| | - Alfredo R M de Oliveira
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| | - Leandro Piovan
- Department of Chemistry , Universidade Federal do Paraná , Avenida Coronel Francisco Heráclito dos Santos, 100 - Jardim das Américas , Curitiba , Paraná 81531980 , Brazil
| |
Collapse
|
22
|
The immunomodulatory tellurium compound ammonium trichloro (dioxoethylene-O,O') tellurate reduces anxiety-like behavior and corticosterone levels of submissive mice. Behav Pharmacol 2018; 28:458-465. [PMID: 28590303 DOI: 10.1097/fbp.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a synthetic organotellurium compound with potent immunomodulatory and neuroprotective properties shown to inhibit the function of integrin αvβ3, a presynaptic cell-surface-adhesion receptor. As partial deletion of αvβ3 downregulated reuptake of serotonin by the serotonin transporter, we hypothesized that AS101 may influence pathways regulating anxiety. AS101 was tested in the modulation of anxiety-like behavior using the selectively bred Submissive (Sub) mouse strain that develop anxiety-like behavior in response to an i.p. injection. Mice were treated daily with AS101 (i.p., 125 or 200 μg/kg) or vehicle for 3 weeks, after which their anxiety-like behavior was measured in the elevated plus maze. Animals were then culled for the measurement of serum corticosterone levels by ELISA and hippocampal expression of brain-derived neurotrophic factor (BDNF) by RT-PCR. Chronic administration of AS101 significantly reduced anxiety-like behavior of Sub mice in the elevated plus maze, according to both time spent and entries to open arms, relative to vehicle-treated controls. AS101 also markedly reduced serum corticosterone levels of the treated mice and increased their hippocampal BDNF expression. Anxiolytic-like effects of AS101 may be attributed to the modulation of the regulatory influence integrin of αvβ3 upon the serotonin transporter, suggesting a multifaceted mechanism by which AS101 buffers the hypothalamic-pituitary-adrenal axis response to injection stress, enabling recovery of hippocampal BDNF expression and anxiety-like behavior in Sub mice. Further studies should advance the potential of AS101 in the context of anxiety-related disorders.
Collapse
|
23
|
Caracelli I, Maganhi SH, de Oliveira Cardoso J, Cunha RL, Vega-Teijido MA, Zukerman-Schpector J, Tiekink ER. Crystallographic and docking (Cathepsins B, K, L and S) studies on bioactive halotelluroxetanes. Z KRIST-CRYST MATER 2017. [DOI: 10.1515/zkri-2017-2079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The molecular structures of the halotelluroxetanes p-MeOC6H4Te(X)[C(=C(H)X′)C(CH2)nO], X=X′=Cl and n=6 (1) and X=Cl, X′=Br and n=5 (4), show similar binuclear aggregates sustained by {· · ·Te–O}2 cores comprising covalent Te–O and secondary Te· · ·O interactions. The resulting C2ClO2(lone-pair) sets define pseudo-octahedral geometries. In each structure, C–X· · ·π(arene) interactions lead to supramolecular layers. Literature studies have shown these and related compounds (i.e. 2: X=X′=Cl and n=5; 3: X=X′=Br and n=5) to inhibit Cathepsins B, K, L and S to varying extents. Molecular docking calculations have been conducted on ligands (i.e. cations derived by removal of the tellurium-bound X atoms) 1′–3′ (note 3′=4′) enabling correlations between affinity for sub-sites and inhibition. The common feature of all docked complexes was the formation of a Te–S covalent bond with cysteine residues, the relative stability of the ligands with an E-configuration and the formation of a C–O· · ·π interaction with the phenyl ring; for 1′ the Te–S covalent bond was weak, a result correlating with its low inhibition profile. At the next level differences are apparent, especially with respect to the interactions formed by the organic-ligand-bound halides. While these atoms do not form specific interactions in Cathepsins B and K, in Cathepsin L, these halides are involved in C–O· · ·X halogen bonds.
Collapse
Affiliation(s)
- Ignez Caracelli
- BioMat, Departamento de Física , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Stella H. Maganhi
- BioMat, Programa de Pós-graduação em Biotecnologia , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Josiane de Oliveira Cardoso
- BioMat, Departamento de Física , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Rodrigo L.O.R. Cunha
- Center of Natural Sciences and Humanities, Federal University of ABC , Santo André, São Paulo 09210-180 , Brazil
| | - Mauricio Angel Vega-Teijido
- Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular , Departamento de Química , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Julio Zukerman-Schpector
- Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular , Departamento de Química , Universidade Federal de São Carlos , C.P. 676 , São Carlos, SP, 13565-905 , Brazil
| | - Edward R.T. Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology , Sunway University , 47500 Bandar Sunway , Selangor Darul Ehsan , Malaysia
| |
Collapse
|
24
|
Princival C, Archilha MVLR, Dos Santos AA, Franco M, Braga AAC, Rodrigues-Oliveira AF, Correra TC, Cunha RLOR, Comasseto JV. Stability Study of Hypervalent Tellurium Compounds in Aqueous Solutions. ACS OMEGA 2017; 2:4431-4439. [PMID: 31457735 PMCID: PMC6641895 DOI: 10.1021/acsomega.7b00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 06/10/2023]
Abstract
Hypervalent tellurium compounds (telluranes) are promising therapeutical agents with negligible toxicities for some diseases in animal models. The C-Te bond of organotellurium compounds is commonly considered unstable, disfavoring their applicability in biological studies. In this study, the stability of a set of telluranes composed of an inorganic derivative and noncharged and charged organic derivatives was monitored in aqueous media with 1H, 13C, and 125Te NMR spectroscopy and high-resolution mass spectrometry. Organic telluranes were found to be remarkably resistant and stable to hydrolysis, whereas the inorganic tellurane AS101 is totally converted to the hydrolysis product, trichlorooxytellurate, [TeOCl 3 ]-, which was also observed in the hydrolysis of TeCl 4 . The noteworthy stability of organotelluranes in aqueous media makes them prone to further structure-activity relationship studies and to be considered for broad biological investigations.
Collapse
Affiliation(s)
| | | | | | - Maurício
P. Franco
- Instituto
de Química, Universidade de São
Paulo, São
Paulo, SP 05508-020, Brazil
| | - Ataualpa A. C. Braga
- Instituto
de Química, Universidade de São
Paulo, São
Paulo, SP 05508-020, Brazil
| | | | - Thiago C. Correra
- Instituto
de Química, Universidade de São
Paulo, São
Paulo, SP 05508-020, Brazil
| | - Rodrigo L. O. R. Cunha
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo André, SP 09210-580, Brazil
| | - João V. Comasseto
- Instituto
de Química, Universidade de São
Paulo, São
Paulo, SP 05508-020, Brazil
- Instituto
de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP 04021-001, Brazil
| |
Collapse
|
25
|
Zukerman-Schpector J, Cunha R, Omori ÁT, Sousa Madureira L, Tiekink ERT. 1-Butyl-1-chloro-3-methyl-3 H-2,1λ 4-benzoxa-tellurole: crystal structure and Hirshfeld analysis. Acta Crystallogr E Crystallogr Commun 2017; 73:564-568. [PMID: 28435722 PMCID: PMC5382623 DOI: 10.1107/s2056989017003887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 11/10/2022]
Abstract
Two independent mol-ecules comprise the asymmetric unit in the title benzoxatellurole compound, C12H17ClOTe. The mol-ecules, with the same chirality at the methine C atom, are connected into a loosely associated dimer by Te⋯O inter-actions, leading to a {⋯Te-O}2 core. The resultant C2ClO2 donor set approximates a square pyramid with the lone pair of electrons projected to occupy a position trans to the n-butyl substituent. Inter-estingly, the TeIV atoms exhibit opposite chirality. The major difference between the independent mol-ecules relates to the conformation of the five-membered chelate rings, which is an envelope with the O atom being the flap, in one mol-ecule and is twisted about the O-C(methine) bond in the other. No directional inter-molecular inter-actions are noted in the mol-ecular packing beyond the aforementioned Te⋯O secondary bonding. The analysis of the Hirshfeld surface reveals the dominance of H⋯H contacts, i.e. contributing about 70% to the overall surface, and clearly differentiates the immediate crystalline environments of the two independent mol-ecules in terms of both H⋯H and H⋯Cl/Cl⋯H contacts.
Collapse
Affiliation(s)
| | - Rodrigo Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. Dos Estados 5001, Bairro Bangu, CEP 09210-580 Santo André, SP, Brazil
| | - Álvaro T. Omori
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. Dos Estados 5001, Bairro Bangu, CEP 09210-580 Santo André, SP, Brazil
| | - Lucas Sousa Madureira
- Departmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Edward R. T. Tiekink
- Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
26
|
Misra S, Chauhan AK, Srivastava RC, Butcher RJ, Duthie A. Electrophilic addition/substitution of an alkynyl methyl ketone with tellurium tetrahalides: A novel synthetic approach to telluracyclopentenones. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Alswaidan IA, Sooknah K, Rhyman L, Parlak C, Ndinteh DT, Elzagheid MI, Ramasami P. 2,4-Ditellurouracil and its 5-fluoro derivative: Theoretical investigations of structural, energetics and ADME parameters. Comput Biol Chem 2017; 68:56-63. [PMID: 28236747 DOI: 10.1016/j.compbiolchem.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/17/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022]
Abstract
2,4-Ditellurouracil exhibits keto-enol tautomerism via different pathways resulting in seven tautomers. These pathways were studied in the gas phase using density functional theory method. The functionals used were BLYP, B3LYP and BHLYP and the basis sets were 6-311++G(d,p) for all atoms except that LanL2DZ ECP was used for tellurium atom only. The results indicate that the diketo form is more stable as observed for uracil and its sulfur and selenium analogues. The effect of introducing fluorine at position 5 was also investigated and the energy difference between the diketo and dienol forms is reduced. 2,4-Ditellurouracil and its 5-fluoro analogue are expected to exist exclusively as the diketo form due to the high interconversion energy barrier. We extended the investigation to predict ADME parameters of the most stable diketo and dienol tautomers in view of understanding their biological properties. This research enlightens keto-enol tautomerism of 2,4-ditellurouracil and its 5-fluoro derivative with additional insights to biological functions.
Collapse
Affiliation(s)
- Ibrahim A Alswaidan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kritish Sooknah
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Lydia Rhyman
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa; Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
| | - Cemal Parlak
- Department of Physics, Science Faculty, Ege University, Bornova, Izmir, 35100, Turkey
| | - Derek T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Mohamed I Elzagheid
- Department of Chemical and Process Engineering, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa; Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa.
| |
Collapse
|
28
|
Silberman A, Albeck M, Sredni B, Albeck A. Ligand-Substitution Reactions of the Tellurium Compound AS-101 in Physiological Aqueous and Alcoholic Solutions. Inorg Chem 2016; 55:10847-10850. [PMID: 27726342 DOI: 10.1021/acs.inorgchem.6b02138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since its first crystallization, the aqueous structure of the tellurium-containing experimental drug AS-101 has never been studied. We show that, under the aqueous conditions in which it is administered, AS-101 is subjected to an immediate ligand-substitution reaction with water, yielding a stable hydrolyzed oxide anion product that is identified, for the first time, to be TeOCl3-. Studying the structure of AS-101 in propylene glycol (PG), an alcoholic solvent often used for the topical and oral administration of AS-101, revealed the same phenomenon of ligand-substitution reaction between the alcoholic ligands. Upon exposure to water, the PG-substituted product is also hydrolyzed to the same tellurium(IV) oxide form, TeOCl3-.
Collapse
Affiliation(s)
- Alon Silberman
- Department of Chemistry and ‡C.A.I.R. Institute, The Safdiè Center for AIDS and Immunology Research, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Michael Albeck
- Department of Chemistry and ‡C.A.I.R. Institute, The Safdiè Center for AIDS and Immunology Research, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Benjamin Sredni
- Department of Chemistry and ‡C.A.I.R. Institute, The Safdiè Center for AIDS and Immunology Research, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Amnon Albeck
- Department of Chemistry and ‡C.A.I.R. Institute, The Safdiè Center for AIDS and Immunology Research, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
29
|
Jeon KH, Lee E, Jun KY, Eom JE, Kwak SY, Na Y, Kwon Y. Neuroprotective effect of synthetic chalcone derivatives as competitive dual inhibitors against μ-calpain and cathepsin B through the downregulation of tau phosphorylation and insoluble Aβ peptide formation. Eur J Med Chem 2016; 121:433-444. [PMID: 27318120 DOI: 10.1016/j.ejmech.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
A series of chalcone derivatives were synthesized and evaluated for their μ-calpain and cathepsin B inhibitory activities. Among the tested chalcone derivatives, two compounds, 7 and 11, showed potent inhibitory activities against μ-calpain and cathepsin B and were selected for further evaluation. Compounds 7 and 11 showed enzyme inhibitory activities at the cellular level and displayed neuroprotective effects against oxidative stress-induced apoptosis in SH-SY5Y cells, a human neuroblastoma cell line. Moreover, compounds 7 and 11 reduced p25 formation, tau phosphorylation and insoluble Aβ peptide formation. Enzyme kinetic experiments and docking studies revealed that compounds 7 and 11 competitively inhibited both μ-calpain and cathepsin B enzymes.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Eunyoung Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Ji-Eun Eom
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Soo Yeon Kwak
- College of Pharmacy, Cha University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, Cha University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
30
|
Silberman A, Kalechman Y, Hirsch S, Erlich Z, Sredni B, Albeck A. The Anticancer Activity of Organotelluranes: Potential Role in Integrin Inactivation. Chembiochem 2016; 17:918-27. [PMID: 26991356 DOI: 10.1002/cbic.201500614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/08/2022]
Abstract
Organic Te(IV) compounds (organotelluranes) differing in their labile ligands exhibited anti-integrin activities in vitro and anti-metastatic properties in vivo. They underwent ligand substitution with l-cysteine, as a thiol model compound. Unlike inorganic Te(IV) compounds, the organotelluranes did not form a stable complex with cysteine, but rather immediately oxidized it. The organotelluranes inhibited integrin functions, such as adhesion, migration, and metalloproteinase secretion mediation in B16F10 murine melanoma cells. In comparison, a reduced derivative with no labile ligand inhibited adhesion of B16F10 cells to a significantly lower extent, thus pointing to the importance of the labile ligands of the Te(IV) atom. One of the organotelluranes inhibited circulating cancer cells in vivo, possibly by integrin inhibition. Our results extend the current knowledge on the reactivity and mechanism of organotelluranes with different labile ligands and highlight their clinical potential.
Collapse
Affiliation(s)
- Alon Silberman
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.,C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.,Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yona Kalechman
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shira Hirsch
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ziv Erlich
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Benjamin Sredni
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
31
|
Vij P, Hardej D. Alterations in antioxidant/oxidant gene expression and proteins following treatment of transformed and normal colon cells with tellurium compounds. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:216-224. [PMID: 27017383 DOI: 10.1016/j.etap.2016.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
The current study evaluated the potential of TeCl4 and DPDT to accumulate within cells and cause oxidative stress. HO-1, antioxidant gene expression and protein alterations were studied.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Diane Hardej
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
32
|
Kut M, Onysko M, Lendel V. Heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-d]pyrimidin-4-one with p-alkoxyphenyltellurium trichloride. HETEROCYCL COMMUN 2016. [DOI: 10.1515/hc-2016-0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractElectrophilic heterocyclization of 5,6-disubstituted 3-alkenyl-2-thioxothieno[2,3-
Collapse
|
33
|
Yokomizo CH, Pessoto FS, Prieto T, Cunha RLOR, Nantes IL. Effects of Trichlorotelluro-dypnones on Mitochondrial Bioenergetics and Their Relationship to the Reactivity with Protein Thiols. Chem Res Toxicol 2015; 28:1167-75. [DOI: 10.1021/tx5005166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- César H. Yokomizo
- Departamento
de Biologia Molecular, Universidade Federal de São Paulo, R. Botucatu, 740, São Paulo, SP Brazil
| | - Felipe S. Pessoto
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo
André, SP Brazil
| | - Tatiana Prieto
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo
André, SP Brazil
| | - Rodrigo L. O. R. Cunha
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo
André, SP Brazil
| | - Iseli L. Nantes
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo
André, SP Brazil
| |
Collapse
|
34
|
Involvement of the serotonergic system in the anxiolytic-like effect of 2-phenylethynyl butyltellurium in mice. Behav Brain Res 2015; 277:221-7. [DOI: 10.1016/j.bbr.2014.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/15/2022]
|
35
|
Silva MS, Andrade LH. 77Se and 125Te NMR spectroscopy on a selectivity study of organochalcogenanes with l-amino acids. Org Biomol Chem 2015; 13:5924-9. [DOI: 10.1039/c5ob00373c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organochalcogenanes exhibited a remarkably high selectivity for l-cysteine which was monitored by 77Se and 125Te NMR spectroscopy.
Collapse
Affiliation(s)
- Marcio S. Silva
- Instituto de Química
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | | |
Collapse
|
36
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
37
|
Albert J, D'Andrea L, Granell J, Pla-Vilanova P, Quirante J, Khosa MK, Calvis C, Messeguer R, Badía J, Baldomà L, Font-Bardia M, Calvet T. Cyclopalladated and cycloplatinated benzophenone imines: Antitumor, antibacterial and antioxidant activities, DNA interaction and cathepsin B inhibition. J Inorg Biochem 2014; 140:80-8. [DOI: 10.1016/j.jinorgbio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
38
|
Yang F, Wong KH, Yang Y, Li X, Jiang J, Zheng W, Wu H, Chen T. Purification and in vitro antioxidant activities of tellurium-containing phycobiliproteins from tellurium-enriched Spirulina platensis. Drug Des Devel Ther 2014; 8:1789-800. [PMID: 25336922 PMCID: PMC4199980 DOI: 10.2147/dddt.s62530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tellurium-containing phycocyanin (Te-PC) and allophycocyanin (Te-APC), two organic tellurium (Te) species, were purified from tellurium-enriched Spirulina platensis by a fast protein liquid chromatographic method. It was found that the incorporation of Te into the peptides enhanced the antioxidant activities of both phycobiliproteins. With fractionation by ammonium sulfate precipitation and hydroxylapatite chromatography, Te-PC and Te-APC could be effectively separated with high purity, and Te concentrations were 611.1 and 625.3 μg g(-1) protein in Te-PC and Te-APC, respectively. The subunits in the proteins were identified by using MALDI-TOF-TOF mass spectrometry. Te incorporation enhanced the antioxidant activities of both phycobiliproteins, as examined by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid assay. Moreover, Te-PC and Te-APC showed dose-dependent protection on erythrocytes against the water-soluble free radical initiator 2,2'-azo(2-asmidinopropane)dihydrochloride-induced hemolysis. In the hepatoprotective model, apoptotic cell death and nuclear condensation induced by tert-butyl hydroperoxide in HepG2 cells was significantly attenuated by Te-PC and Te-APC. Taken together, these results suggest that Te-PC and Te-APC are promising Te-containing proteins with application potential for treatment of diseases related to oxidative stress.
Collapse
Affiliation(s)
- Fang Yang
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Yufeng Yang
- Institute of Hydrobiology, College of Life Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Xiaoling Li
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Jie Jiang
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Hualian Wu
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
39
|
Comparsi B, Meinerz DF, Dalla Corte CL, Prestes AS, Stefanello ST, Santos DB, Souza DD, Farina M, Dafre AL, Posser T, Franco JL, Rocha JBT. N-acetylcysteine does not protect behavioral and biochemical toxicological effect after acute exposure of diphenyl ditelluride. Toxicol Mech Methods 2014; 24:529-35. [DOI: 10.3109/15376516.2014.920449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 2014; 6:1355-71. [DOI: 10.4155/fmc.14.73] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine peptidase, with an important role in the development and progression of cancer. It is involved in the degradation of extracellular matrix proteins, a process promoting invasion and metastasis of tumor cells and tumor angiogenesis. Cathepsin B is unique among cathepsins in possessing both carboxypeptidase and endopeptidase activities. While the former is associated with its physiological role, the latter is involved in pathological degradation of the extracellular matrix. Its activities are regulated by different means, the most important being its endogenous inhibitors, the cystatins. In cancer this peptidase/inhibitor balance is altered, leading to harmful cathepsin B activity. The latter can be prevented by exogenous inhibitors. They differ in modes of inhibition, size, structure, binding affinity, selectivity, toxicity and bioavailability. In this article, we review the properties and function of endogenous and exogenous cathepsin B inhibitors and indicate their application as possible anticancer agents.
Collapse
|
41
|
Piovan L, Milani P, Silva MS, Moraes PG, Demasi M, Andrade LH. 20S proteasome as novel biological target for organochalcogenanes. Eur J Med Chem 2014; 73:280-5. [DOI: 10.1016/j.ejmech.2013.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 11/27/2013] [Accepted: 12/08/2013] [Indexed: 01/13/2023]
|
42
|
Ma C, Cheng S, Hu Z, Li Q, Zhang R, Zhang S. Synthesis and characterization of a novel o-tolyltelluronic trimethyltin ester and its cytotoxic assessment in vitro. Dalton Trans 2014; 43:671-9. [DOI: 10.1039/c3dt52326h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Quines CB, Rosa SG, Neto JSS, Zeni G, Nogueira CW. Phenylethynyl-butyltellurium inhibits the sulfhydryl enzyme Na+, K+ -ATPase: an effect dependent on the tellurium atom. Biol Trace Elem Res 2013; 155:261-6. [PMID: 23955422 DOI: 10.1007/s12011-013-9781-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/05/2013] [Indexed: 01/08/2023]
Abstract
Organotellurium compounds are known for their toxicological effects. These effects may be associated with the chemical structure of these compounds and the oxidation state of the tellurium atom. In this context, 2-phenylethynyl-butyltellurium (PEBT) inhibits the activity of the sulfhydryl enzyme, δ-aminolevulinate dehydratase. The present study investigated on the importance of the tellurium atom in the PEBT ability to oxidize mono- and dithiols of low molecular weight and sulfhydryl enzymes in vitro. PEBT, at high micromolar concentrations, oxidized dithiothreitol (DTT) and inhibited cerebral Na(+), K(+)-ATPase activity, but did not alter the lactate dehydrogenase activity. The inhibition of cerebral Na(+), K(+)-ATPase activity was completely restored by DTT. By contrast, 2-phenylethynyl-butyl, a molecule without the tellurium atom, neither oxidized DTT nor altered the Na(+), K(+)-ATPase activity. In conclusion, the tellurium atom of PEBT is crucial for the catalytic oxidation of sulfhydryl groups from thiols of low molecular weight and from Na(+), K(+)-ATPase.
Collapse
Affiliation(s)
- Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP, 97105-900, RS, Brazil
| | | | | | | | | |
Collapse
|
44
|
Kljun J, Bratsos I, Alessio E, Psomas G, Repnik U, Butinar M, Turk B, Turel I. New uses for old drugs: attempts to convert quinolone antibacterials into potential anticancer agents containing ruthenium. Inorg Chem 2013; 52:9039-52. [PMID: 23886077 DOI: 10.1021/ic401220x] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Continuing the study of the physicochemical and biological properties of ruthenium-quinolone adducts, four novel complexes with the general formula [Ru([9]aneS3)(dmso-κS)(quinolonato-κ(2)O,O)](PF6), containing the quinolones levofloxacin (1), nalidixic acid (2), oxolinic acid (3), and cinoxacin (4), were prepared and characterized in solid state as well as in solution. Contrary to their organoruthenium analogues, these complexes are generally relatively stable in aqueous solution as substitution of the dimethylsulfoxide (dmso) ligand is slow and not quantitative, and a minor release of the quinolonato ligand is observed only in the case of 4. The complexes bind to serum proteins displaying relatively high binding constants. DNA binding was studied using UV-vis spectroscopy, cyclic voltammetry, and performing viscosity measurements of CT DNA solutions in the presence of complexes 1-4. These experiments show that the ruthenium complexes interact with DNA via intercalation. Possible electrostatic interactions occur in the case of compound 4, which also shows the most pronounced rate of hydrolysis. Compounds 2 and 4 also exhibit a weak inhibition of cathepsins B and S, which are involved in the progression of a number of diseases, including cancer. Furthermore, complex 2 displayed moderate cytotoxicity when tested on the HeLa cell line.
Collapse
Affiliation(s)
- Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Meinerz DF, Comparsi B, Allebrandt J, Mariano DOC, Dos Santos DB, Zemolin APP, Farina M, Dafre LA, Rocha JBT, Posser T, Franco JL. Sub-acute administration of (S)-dimethyl 2-(3-(phenyltellanyl) propanamido) succinate induces toxicity and oxidative stress in mice: unexpected effects of N-acetylcysteine. SPRINGERPLUS 2013; 2:182. [PMID: 23658858 PMCID: PMC3644195 DOI: 10.1186/2193-1801-2-182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/16/2013] [Indexed: 12/21/2022]
Abstract
The organic tellurium compound (S)-dimethyl 2-(3-(phenyltellanyl) propanamide) succinate (TeAsp) exhibits thiol-peroxidase activity that could potentially offer protection against oxidative stress. However, data from the literature show that tellurium is a toxic agent to rodents. In order to mitigate such toxicity, N-acetylcysteine (NAC) was administered in parallel with TeAsp during 10 days. Mice were separated into four groups receiving daily injections of (A) vehicle (PBS 2.5 ml/kg, i.p. and DMSO 1 ml/kg, s.c.), (B) NAC (100 mg/kg, i.p. and DMSO s.c.), (C) PBS i.p. and TeAsp (92.5 μmol/kg, s.c), or (D) NAC plus TeAsp. TeAsp treatment started on the fourth day. Vehicle or NAC-treated animals showed an increase in body weight whereas TeAsp caused a significant reduction. Contrary to expected, NAC co-administration potentiated the toxic effect of TeAsp, causing a decrease in body weight. Vehicle, NAC or TeAsp did not affect the exploratory and motor activity in the open-field test at the end of the treatment, while the combination of NAC and TeAsp produced a significant decrease in these parameters. No DNA damage or alterations in cell viability were observed in leukocytes of treated animals. Treatments produced no or minor effects on the activities of antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase, whereas the activity of the thioredoxin reductase was decreased in the brain and increased the liver of the animals in the groups receiving TeAsp or TeAsp plus NAC. In conclusion, the toxicity of TeAsp was potentiated by NAC and oxidative stress appears to play a central role in this process.
Collapse
Affiliation(s)
- Daiane F Meinerz
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS CEP 97105-900 Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pimentel IAS, Paladi CDS, Katz S, Júdice WADS, Cunha RLOR, Barbiéri CL. In vitro and in vivo activity of an organic tellurium compound on Leishmania (Leishmania) chagasi. PLoS One 2012; 7:e48780. [PMID: 23144968 PMCID: PMC3492430 DOI: 10.1371/journal.pone.0048780] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/01/2012] [Indexed: 01/05/2023] Open
Abstract
Tellurium compounds have shown several biological properties and recently the leishmanicidal effect of one organotellurane was demonstrated. These findings led us to test the effect of the organotellurium compound RF07 on Leishmania (Leishmania) chagasi, the agent of visceral leishmaniasis in Latin America. In vitro assays were performed in L. (L.) chagasi-infected bone marrow derived macrophages treated with different concentrations of RF07. In in vivo experiments Golden hamsters were infected with L. (L.) chagasi and injected intraperitoneally with RF07 whereas control animals received either Glucantime or PBS. The effect of RF07 on cathepsin B activity of L. (L.) chagasi amastigotes was assayed spectrofluorometrically using fluorogenic substrates. The main findings were: 1) RF07 showed significant leishmanicidal activity against intracellular parasites at submicromolar concentrations (IC50 of 529.7±26.5 nM), and the drug displayed 10-fold less toxicity to macrophages (CC50 of 5,426±272.8 nM); 2) kinetics assays showed an increasing leishmanicidal action of RF07 at longer periods of treatment; 3) one month after intraperitoneal injection of RF07 L. (L.) chagasi-infected hamsters showed a reduction of 99.6% of parasite burden when compared to controls that received PBS; 4) RF07 inhibited the cathepsin B activity of L. (L.) chagasi amastigotes. The present results demonstrated that the tellurium compound RF07 is able to destroy L. (L.) chagasi in vitro and in vivo at concentrations that are non toxic to the host. We believe these findings support further study of the potential of RF07 as a possible alternative for the chemotherapy of visceral leishmaniasis.
Collapse
Affiliation(s)
- Isabella Aparecida Salerno Pimentel
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Carolina de Siqueira Paladi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Wagner Alves de Souza Júdice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Rodrigo L. O. R. Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Clara Lúcia Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
47
|
Hudej R, Kljun J, Kandioller W, Repnik U, Turk B, Hartinger CG, Keppler BK, Miklavčič D, Turel I. Synthesis and Biological Evaluation of the Thionated Antibacterial Agent Nalidixic Acid and Its Organoruthenium(II) Complex. Organometallics 2012. [DOI: 10.1021/om300424w] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rosana Hudej
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva
c. 5, SI-1000 Ljubljana, Slovenia
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška
c. 25, SI-1000 Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva
c. 5, SI-1000 Ljubljana, Slovenia
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, University of Vienna, Währinger
Straße 42, A-1090 Vienna, Austria
| | - Urška Repnik
- Jozef Stefan Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva
c. 5, SI-1000 Ljubljana, Slovenia
- Jozef Stefan Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia
- CIPKEBIP Centre of Excellence, Jamova c. 39, SI-1000 Ljubljana, Slovenia
| | - Christian G. Hartinger
- Institute of Inorganic Chemistry, University of Vienna, Währinger
Straße 42, A-1090 Vienna, Austria
- School of Chemical Sciences, The University of Auckland, Private
Bag 92019, Auckland 1142, New Zealand
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währinger
Straße 42, A-1090 Vienna, Austria
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška
c. 25, SI-1000 Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva
c. 5, SI-1000 Ljubljana, Slovenia
- EN→Fist Centre of Excellence, Dunajska
c. 156, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
48
|
Freitas JCR, Palmeira DJ, Oliveira RA, Menezes PH, Silva RO. Differentiation and assignment of vinyl telluride regioisomers by (1) H-(125) Te gHMBC. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50:481-487. [PMID: 22628089 DOI: 10.1002/mrc.3826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/25/2012] [Accepted: 03/12/2012] [Indexed: 02/05/2023]
Abstract
Complete (1) H, (13) C, and (125) Te NMR spectral data for some vinyl tellurides are described. The (1) H-(125) Te gHMBC experiment was used for the complete chemical shift assignment and structure elucidation of a mixture of regioisomers. The assignment ((125) Te NMR) and coupling constants (J(H,H) ) for all regioisomers are described for the first time.
Collapse
Affiliation(s)
- Juliano C R Freitas
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
49
|
Caracelli I, Vega-Teijido M, Zukerman-Schpector J, Cezari MH, Lopes JG, Juliano L, Santos PS, Comasseto JV, Cunha RL, Tiekink ER. A tellurium-based cathepsin B inhibitor: Molecular structure, modelling, molecular docking and biological evaluation. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Souza ACG, Acker CI, Gai BM, Neto JSDS, Nogueira CW. 2-Phenylethynyl-butyltellurium improves memory in mice. Neurochem Int 2012; 60:409-14. [DOI: 10.1016/j.neuint.2012.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/19/2011] [Accepted: 01/11/2012] [Indexed: 01/10/2023]
|