1
|
Tomabechi Y, Oda Y, Yamamoto K, Yamanoi T. Transglycosylation behavior of Mucor hiemalis endo-β-N-acetylglucosaminidase to β-cyclodextrin derivatives with multivalent glucose moieties for synthesizing cyclodextrin-based oligosaccharide clusters. Carbohydr Res 2025; 548:109352. [PMID: 39705743 DOI: 10.1016/j.carres.2024.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024]
Abstract
We investigated the transglycosylation reaction of two types of oligosaccharide acceptors, i.e., β-cyclodextrin (CD) derivatives 1 and 2 conjugated with multiple glucose (Glc) units, catalyzed by endo-β-N-acetyl-glucosaminidase from Mucor hiemalis (Endo-M) using the oligosaccharide donor sialoglycopeptide (SGP). The acceptor specificity of the enzyme transglycosylation of 1 and 2 having seven Glc moieties within small nanoscale spatial regions on the β-CDs was investigated on the basis of the effect of the molar ratios of SGP to acceptors 1 or 2 with different spatial configurations on the transglycosylation behavior. The formation of the corresponding CD-based oligosaccharide clusters from Endo-M was also evaluated.
Collapse
Affiliation(s)
- Yusuke Tomabechi
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Yoshiki Oda
- Technology Joint Management Office, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.
| | - Kenji Yamamoto
- Wakayama University, Center for Innovative and Joint Research, 930, Sakaedani, Wakayama, 640-8510, Japan
| | - Takashi Yamanoi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
2
|
Kasal P, Jindřich J. Mono-6-Substituted Cyclodextrins-Synthesis and Applications. Molecules 2021; 26:5065. [PMID: 34443653 PMCID: PMC8400779 DOI: 10.3390/molecules26165065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
Cyclodextrins are well known supramolecular hosts used in a wide range of applications. Monosubstitution of native cyclodextrins in the position C-6 of a glucose unit represents the simplest method how to achieve covalent binding of a well-defined host unit into the more complicated systems. These derivatives are relatively easy to prepare; that is why the number of publications describing their preparations exceeds 1400, and the reported synthetic methods are often very similar. Nevertheless, it might be very demanding to decide which of the published methods is the best one for the intended purpose. In the review, we aim to present only the most useful and well-described methods for preparing different types of mono-6-substituted derivatives. We also discuss the common problems encountered during their syntheses and suggest their optimal solutions.
Collapse
Affiliation(s)
| | - Jindřich Jindřich
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic;
| |
Collapse
|
3
|
Enhancing in vitro cytotoxicity of doxorubicin against MCF-7 breast cancer cells in the presence of water-soluble β-cyclodextrin polymer as a nanocarrier agent. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03569-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Mohammed AFA, Higashi T, Motoyama K, Ohyama A, Onodera R, Khaled KA, Sarhan HA, Hussein AK, Arima H. In Vitro and In Vivo Co-delivery of siRNA and Doxorubicin by Folate-PEG-Appended Dendrimer/Glucuronylglucosyl-β-Cyclodextrin Conjugate. AAPS J 2019; 21:54. [PMID: 30993472 DOI: 10.1208/s12248-019-0327-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/01/2019] [Indexed: 01/11/2023] Open
Abstract
We have previously reported the utility of folate-polyethylene glycol-appended dendrimer conjugate with glucuronylglucosyl-β-cyclodextrin (Fol-PEG-GUG-β-CDE) (generation 3) as a tumor-selective carrier for siRNA against polo-like kinase 1 (siPLK1) in vitro. In the present study, we evaluated the potential of Fol-PEG-GUG-β-CDE as a carrier for the low-molecular antitumor drug doxorubicin (DOX). Further, to fabricate advanced antitumor agents, we have prepared a ternary complex of Fol-PEG-GUG-β-CDE/DOX/siPLK1 and evaluated its antitumor activity both in vitro and in vivo. Fol-PEG-GUG-β-CDE released DOX in an acidic pH and enhanced the cellular accumulation and cytotoxic activity of DOX in folate receptor-α (FR-α)-overexpressing KB cells. Importantly, the Fol-PEG-GUG-β-CDE/DOX/siPLK1 ternary complex exhibited higher cytotoxic activity than a binary complex of Fol-PEG-GUG-β-CDE with DOX or siPLK1 in KB cells. In addition, the cytotoxic activity of the ternary complex was reduced by the addition of folic acid, a competitor against FR-α. Furthermore, the ternary complex showed a significant antitumor activity after intravenous administration to the tumor-bearing mice. These results suggest that Fol-PEG-GUG-β-CDE has the potential of a tumor-selective co-delivery carrier for DOX and siPLK1.
Collapse
Affiliation(s)
- Ahmed Fouad Abdelwahab Mohammed
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan.
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Ayumu Ohyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Risako Onodera
- School of Pharmacy, Building Regional Innovation Ecosystems, Kumamoto University, Kumamoto, Japan
| | - Khaled Ali Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Amal Kamal Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:681-7. [DOI: 10.1016/j.msec.2015.12.098] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022]
|
7
|
Yamanoi T, Oda Y, Katsuraya K, Inazu T, Hattori K. Synthesis, structure, and evaluation of a β-cyclodextrin-artificial carbohydrate conjugate for use as a doxorubicin-carrying molecule. Bioorg Med Chem 2015; 24:635-42. [PMID: 26746345 DOI: 10.1016/j.bmc.2015.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
This paper describes the synthesis of a β-cyclodextrin (β-CyD) derivative conjugated with a C,C-glucopyranoside containing a benzene unit. Its doxorubicin-inclusion ability and structure are also discussed. SPR analysis revealed that the β-CyD conjugate had a high inclusion association value of 3.8×10(6)M(-1) for immobilized doxorubicin. NMR structural analysis suggested that its high doxorubicin-inclusion ability was due to the formation of the inclusion complex as a result of the π-π stacking interaction between the benzene ring of the conjugate and the A ring of doxorubicin.
Collapse
Affiliation(s)
- Takashi Yamanoi
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Yoshiki Oda
- Technology Joint Management Office, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Kaname Katsuraya
- Department of Human Ecology, Wayo Women's University, Chiba 272-8533, Japan
| | - Toshiyuki Inazu
- Department of Applied Chemistry, School of Engineering, and Institute of Glycoscience, Tokai University, Kanagawa 259-1292, Japan
| | - Kenjiro Hattori
- R&D Lab, NanoDex Inc., 2-3227 Mita, Kawasaki, Kanagawa 214-0034, Japan
| |
Collapse
|
8
|
Tomabechi Y, Squire MA, Fairbanks AJ. Endo-β-N-Acetylglucosaminidase catalysed glycosylation: tolerance of enzymes to structural variation of the glycosyl amino acid acceptor. Org Biomol Chem 2014; 12:942-55. [DOI: 10.1039/c3ob42104j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Okamatsu A, Motoyama K, Onodera R, Higashi T, Koshigoe T, Shimada Y, Hattori K, Takeuchi T, Arima H. Design and Evaluation of Folate-Appended α-, β-, and γ-Cyclodextrins Having a Caproic Acid as a Tumor Selective Antitumor Drug Carrier in Vitro and in Vivo. Biomacromolecules 2013; 14:4420-8. [DOI: 10.1021/bm401340g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ayaka Okamatsu
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Koshigoe
- Facutly
of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297, Japan
| | - Yasutaka Shimada
- R&D Lab, NanoDex, Inc., 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Kenjiro Hattori
- R&D Lab, NanoDex, Inc., 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Tomoko Takeuchi
- Facutly
of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297, Japan
| | - Hidetoshi Arima
- Graduate
School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
10
|
Swiech O, Dutkiewicz P, Wójciuk K, Chmurski K, Kruszewski M, Bilewicz R. Cyclodextrin Derivatives Conjugated with Aromatic Moieties as pH-responsive Drug Carriers for Anthracycline. J Phys Chem B 2013; 117:13444-50. [DOI: 10.1021/jp4060632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Olga Swiech
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| | - Paula Dutkiewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| | - Karolina Wójciuk
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw, Poland
| | | | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw, Poland
- Institute of Rural Health, Jaczewskiego
2, Lublin, Poland
| | - Renata Bilewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw, Poland
| |
Collapse
|
11
|
Titov DV, Gening ML, Tsvetkov YE, Nifantiev NE. Conjugates of cyclooligosaccharide scaffolds and carbohydrate ligands: Methods for synthesis and the interaction with lectins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:509-46. [DOI: 10.1134/s1068162013050142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Abstract
The synthetic application of endohexosaminidase enzymes (e.g., Endo A, Endo M, Endo D) promises to allow ready access to a wide variety of defined homogeneous glycoproteins and glycopeptides. The use ofN-glycan oligosaccharides that are activated at the reducing terminus as oxazolines allows their high-yielding attachment to almost any amino acid, peptide, or protein that contains a GlcNAc residue as an acceptor. A wide variety of oxazoline donors are readily available, either by total synthesis or by isolation of the corresponding oligosaccharide from natural sources and then conversion to the oxazoline in water. The synthetic potential of the enzymes is particularly augmented by the production of mutant glycosynthases, the use of which allows the synthesis of a wide variety of glycopeptides and glycoproteins bearing defined homogeneousN-glycan structures.
Collapse
|
13
|
Okamatsu A, Motoyama K, Onodera R, Higashi T, Koshigoe T, Shimada Y, Hattori K, Takeuchi T, Arima H. Folate-Appended β-Cyclodextrin as a Promising Tumor Targeting Carrier for Antitumor Drugs in Vitro and in Vivo. Bioconjug Chem 2013; 24:724-33. [DOI: 10.1021/bc400015r] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ayaka Okamatsu
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Koshigoe
- Faculty of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297,
Japan
| | - Yasutaka Shimada
- R&D Lab, NanoDex Inc., 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Kenjiro Hattori
- Faculty of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297,
Japan
- R&D Lab, NanoDex Inc., 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Tomoko Takeuchi
- Faculty of Engineering, Tokyo Polytechnic University, 1583 Iiyama, Atsugi 243-0297,
Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi,
Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
14
|
Martínez Á, Ortiz Mellet C, García Fernández JM. Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate-protein interactions. Chem Soc Rev 2013; 42:4746-73. [PMID: 23340678 DOI: 10.1039/c2cs35424a] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Covalent attachment of biorecognizable sugar ligands in several copies at precise positions of cyclomaltooligosaccharide (cyclodextrin, CD) macrocycles has proven to be an extremely flexible strategy to build multivalent conjugates. The commercial availability of the native CDs in three different sizes, their axial symmetry and the possibility of position- and face-selective functionalization allow a strict control of the valency and spatial orientation of the recognition motifs (glycotopes) in low, medium, high and hyperbranched glycoclusters, including glycodendrimer-CD hybrids. "Click-type" ligation chemistries, including copper(i)-catalyzed azide-alkyne cycloaddition (CuAAC), thiol-ene coupling or thiourea-forming reactions, have been implemented to warrant full homogeneity of the adducts. The incorporation of different glycotopes to investigate multivalent interactions in heterogeneous environments has also been accomplished. Not surprisingly, multivalent CD conjugates have been, and continue to be, major actors in studies directed at deciphering the structural features ruling carbohydrate recognition events. Nanometric glycoassemblies endowed with the capability of adapting the inter-saccharide distances and orientations in the presence of a receptor partner or capable of mimicking the fluidity of biological membranes have been conceived by multitopic inclusion complex formation, rotaxanation or self-assembling. Applications in the fields of sensors, site-specific drug and gene delivery or protein stabilization attest for the maturity of the field.
Collapse
Affiliation(s)
- Álvaro Martínez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Profesor García González 1, E-41012 Sevilla, Spain
| | | | | |
Collapse
|
15
|
Salústio PJ, Pontes P, Conduto C, Sanches I, Carvalho C, Arrais J, Marques HMC. Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS PharmSciTech 2011; 12:1276-92. [PMID: 21948320 DOI: 10.1208/s12249-011-9690-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 09/07/2011] [Indexed: 01/01/2023] Open
Abstract
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability, and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water-soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g., as osmotic pumps) and/or hydrophobic CDs. New controlled delivery systems based on nanotechnology carriers (nanoparticles and conjugates) have also been reviewed.
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
17
|
Wang LX. The Amazing Transglycosylation Activity of Endo-β-N-acetylglucosaminidases. TRENDS GLYCOSCI GLYC 2011; 23:33-52. [PMID: 25309039 DOI: 10.4052/tigg.23.33] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Major advances have been made in exploring the transglycosylation activity of endo-β-N-acetylglucosaminidases (ENGases) for synthetic purpose. The exploration of synthetic sugar oxazolines as donor substrates for the ENGase-catalyzed transglycosylation has expanded the substrate availability and significantly enhanced the overall transglycosylation efficiency. On the other hand, site-directed mutagenesis in combination with activity screening has led to the discovery of the first generation ENGase-based glycosynthases that can use highly active sugar oxazolines as substrates for transglycosylation but lack hydrolytic activity on the ground-state products. ENGases have shown amazing flexibility in transglycosylation and possess much broader substrate specificity than previously thought. Now the ENGase-based chemoenzymatic method has been extended to the synthesis of a range of complex carbohydrates, including homogeneous glycopeptides, glycoproteins carrying well-defined glycans, novel oligosaccharide clusters, unusually glycosylated natural products, and even polysaccharides. This article highlights recent advances related to ENGase-catalyzed transglycosylation with a focus on their synthetic potential.
Collapse
Affiliation(s)
- Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA, Tel: 410-706-4982
| |
Collapse
|
18
|
Fairbanks AJ. Endohexosaminidase catalysed glycosylation with oxazoline donors: The development of robust biocatalytic methods for synthesis of defined homogeneous glycoconjugates. CR CHIM 2011. [DOI: 10.1016/j.crci.2010.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Huang W, Wang D, Yamada M, Wang LX. Chemoenzymatic synthesis and lectin array characterization of a class of N-glycan clusters. J Am Chem Soc 2010; 131:17963-71. [PMID: 19916512 DOI: 10.1021/ja9078539] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
N-Glycans are major components of many glycoproteins. These sugar moieties are frequently involved in important physiological and disease processes via their interactions with a variety of glycan-binding proteins (GBP). Clustering effect is an important feature in many glycan-lectin interactions. We describe in this paper a chemoenzymatic synthesis of novel N-glycan clusters using a tandem endoglycosidase-catalyzed transglycosylation. It was found that the internal beta-1,2-linked GlcNAc moieties in the N-glycan core, once exposed in the nonreducing terminus, was able to serve as acceptors for transglycosylation catalyzed by Endo-A and EndoM-N175A. This efficient chemoenzymatic method allows a quick extension of the sugar chains to form a class of glycan clusters in which sugar residues are all connected by native glycosidic linkages found in natural N-glycans. In addition, a discriminative enzymatic reaction at the two GlcNAc residues could be fulfilled to afford novel hybrid clusters. Lectin microarray studies revealed unusual properties in glyco-epitope expression by this panel of structurally well-defined synthetic N-glycans. These new compounds are likely valuable for functional glycomics studies to unveil new functions of both glycans and carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
20
|
Oda Y, Matsuda S, Yamanoi T, Murota A, Katsuraya K. Identification of the inclusion complexation between phenyl β-d-(13C6)glucopyranoside and α-cyclodextrin using 2D 1H or 13C DOSY spectrum. Supramol Chem 2009. [DOI: 10.1080/10610270802709345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Akihiko Murota
- b Department of Applied Chemistry , School of Science and Technology, Meiji University , Kanagawa, Japan
| | - Kaname Katsuraya
- c Department of Human Ecology , Wayo Women's University , Chiba, Japan
| |
Collapse
|
21
|
Heidecke CD, Parsons TB, Fairbanks AJ. Endohexosaminidase-catalysed glycosylation with oxazoline donors: effects of organic co-solvent and pH on reactions catalysed by Endo A and Endo M. Carbohydr Res 2009; 344:2433-8. [PMID: 19889401 DOI: 10.1016/j.carres.2009.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/07/2009] [Accepted: 09/13/2009] [Indexed: 10/20/2022]
Abstract
The synthetic efficiency of endohexosaminidase-catalysed glycosylation reactions using N-glycan oxazolines as donors was investigated as two reaction parameters were varied. Both the addition of quantities of an organic co-solvent and modulation of reaction pH between 6.5 and 8.0 were found to have different effects on reactions catalysed by either Endo A (and two available mutants) or Endo M, indicating subtle differences between these two family GH85 enzymes. Fine tuning of reaction pH, or the addition of quantities of an organic co-solvent, resulted in beneficial increases in achievable synthetic efficiency by effecting a reduction in the rate of competitive hydrolytic processes.
Collapse
Affiliation(s)
- Christoph D Heidecke
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | |
Collapse
|
22
|
Oda Y, Miura M, Hattori K, Yamanoi T. Syntheses and Doxorubicin-Inclusion Abilities of .BETA.-Cyclodextrin Derivatives with a Hydroquinone .ALPHA.-Glycoside Residue Attached at the Primary Side. Chem Pharm Bull (Tokyo) 2009; 57:74-8. [DOI: 10.1248/cpb.57.74] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Masumi Miura
- The Noguchi Institute
- Department of Nanochemistry, Faculty of Engineering, Tokyo Polytechnic University
| | - Kenjiro Hattori
- Department of Nanochemistry, Faculty of Engineering, Tokyo Polytechnic University
| | | |
Collapse
|
23
|
Oda Y, Yanagisawa H, Maruyama M, Hattori K, Yamanoi T. Design, synthesis and evaluation of d-galactose-β-cyclodextrin conjugates as drug-carrying molecules. Bioorg Med Chem 2008; 16:8830-40. [DOI: 10.1016/j.bmc.2008.08.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 11/26/2022]
|
24
|
Huang W, Ochiai H, Zhang X, Wang LX. Introducing N-glycans into natural products through a chemoenzymatic approach. Carbohydr Res 2008; 343:2903-13. [PMID: 18805520 DOI: 10.1016/j.carres.2008.08.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 08/23/2008] [Accepted: 08/31/2008] [Indexed: 10/21/2022]
Abstract
The present study describes an efficient chemoenzymatic method for introducing a core N-glycan of glycoprotein origin into various lipophilic natural products. It was found that the endo-beta-N-acetylglucosaminidase from Arthrobactor protophormiae (Endo-A) had broad substrate specificity and can accommodate a wide range of glucose (Glc)- or N-acetylglucosamine (GlcNAc)-containing natural products as acceptors for transglycosylation, when an N-glycan oxazoline was used as a donor substrate. Using lithocholic acid as a model compound, we have shown that introduction of an N-glycan could be achieved by a two-step approach: chemical glycosylation to introduce a monosaccharide (Glc or GlcNAc) as a handle, and then Endo-A catalyzed transglycosylation to accomplish the site-specific N-glycan attachment. For those natural products that already carry terminal Glc or GlcNAc residues, direct enzymatic transglycosylation using sugar oxazoline as the donor substrate was achievable to introduce an N-glycan. It was also demonstrated that simultaneous double glycosylation could be fulfilled when the natural product contains two Glc residues. This chemoenzymatic method is concise, site-specific, and highly convergent. Because N-glycans of glycoprotein origin can serve as ligands for diverse lectins and cell-surface receptors, introduction of a defined N-glycan into biologically significant natural products may bestow novel properties onto these natural products for drug discovery and development.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
25
|
ZHANG H, PENG ML, CUI YL, CHEN C. Magnetic HP-β-CD Composite Nanoparticle: Synthesis, Characterization and Application as a Carrier of Doxorubicinin vitro. CHINESE J CHEM 2008. [DOI: 10.1002/cjoc.200890314] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Villalonga R, Cao R, Fragoso A. Supramolecular Chemistry of Cyclodextrins in Enzyme Technology. Chem Rev 2007; 107:3088-116. [PMID: 17590054 DOI: 10.1021/cr050253g] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Smiljanic N, Moreau V, Yockot D, Benito JM, García Fernández JM, Djedaïni-Pilard F. Supramolecular Control of Oligosaccharide–Protein Interactions: Switchable and Tunable Ligands for Concanavalin A Based on β-Cyclodextrin. Angew Chem Int Ed Engl 2006; 45:5465-8. [PMID: 16856195 DOI: 10.1002/anie.200601123] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Nicolas Smiljanic
- Laboratoire des Glucides UMR6219, Université Picardie Jules Verne, 33 rue St. Leu, 80039 Amiens, France
| | | | | | | | | | | |
Collapse
|
28
|
Smiljanic N, Moreau V, Yockot D, Benito JM, García Fernández JM, Djedaïni-Pilard F. Supramolecular Control of Oligosaccharide–Protein Interactions: Switchable and Tunable Ligands for Concanavalin A Based on β-Cyclodextrin. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200601123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|