1
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
2
|
Ma F, Wang Q, Xu Q, Zhang CY. Self-Assembly of Superquenched Gold Nanoparticle Nanosensors for Lighting up BACE-1 in Live Cells. Anal Chem 2021; 93:15124-15132. [PMID: 34739230 DOI: 10.1021/acs.analchem.1c03430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The β-site amyloid precursor protein-cleaving enzyme 1 (BACE-1) plays a key role in Alzheimer's disease (AD) pathogenesis and is regarded as a valuable biomarker for AD diagnosis and treatment. The reported BACE-1 assay often suffers from laborious procedures, large sample consumption, and unsatisfactory sensitivity with high background signals. Herein, we report the self-assembly of superquenched gold nanoparticle (AuNP) nanosensors for lighting up the BACE-1 in live cells. Through the self-assembly of both fluorophore-labeled peptide probes and quencher-labeled assistant DNAs on the surface of a single AuNP, a superquenched AuNP nanoprobe is obtained with a high quenching efficiency of 98.37% and a near-zero background fluorescence. The presence of target BACE-1 induces a distinct fluorescence signal as a result of the BACE-1-catalyzed cleavage of peptide probe and the subsequent release of abundant fluorophore moieties from the AuNP nanoprobe. The fluorescence signal can be directly visualized by single-molecule imaging and easily quantified by single-molecule counting. This nanosensor involves only a single nanoprobe for the one-step homogeneous detection of the BACE-1 activity without the requirements of any antibodies and separation steps, and it possesses good selectivity and high sensitivity with a low detection limit of 26.48 pM. Moreover, it can be employed to screen BACE-1 inhibitors and analyze kinetic parameters. Especially, this nanoprobe possesses good stability and can be easily transferred into live cells for the real-time imaging of cellular BACE-1 activity, providing a new platform for BACE-1-associated research and early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
Ozaki M, Imai T, Tsuruoka T, Sakashita S, Tomizaki KY, Usui K. Elemental composition control of gold-titania nanocomposites by site-specific mineralization using artificial peptides and DNA. Commun Chem 2021; 4:1. [PMID: 36697560 PMCID: PMC9814042 DOI: 10.1038/s42004-020-00440-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023] Open
Abstract
Biomineralization, the precipitation of various inorganic compounds in biological systems, can be regulated in terms of the size, morphology, and crystal structure of these compounds by biomolecules such as proteins and peptides. However, it is difficult to construct complex inorganic nanostructures because they precipitate randomly in solution. Here, we report that the elemental composition of inorganic nanocomposites can be controlled by site-specific mineralization by changing the number of two inorganic-precipitating peptides bound to DNA. With a focus on gold and titania, we constructed a gold-titania photocatalyst that responds to visible light excitation. Both microscale and macroscale observations revealed that the elemental composition of this gold-titania nanocomposite can be controlled in several ten nm by changing the DNA length and the number of peptide binding sites on the DNA. Furthermore, photocatalytic activity and cell death induction effect under visible light (>450 nm) irradiation of the manufactured gold-titania nanocomposite was higher than that of commercial gold-titania and titania. Thus, we have succeeded in forming titania precipitates on a DNA terminus and gold precipitates site-specifically on double-stranded DNA as intended. Such nanometer-scale control of biomineralization represent a powerful and efficient tool for use in nanotechnology, electronics, ecology, medical science, and biotechnology.
Collapse
Affiliation(s)
- Makoto Ozaki
- grid.258669.60000 0000 8565 5938Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Takahito Imai
- grid.440926.d0000 0001 0744 5780Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, 520-2194 Otsu, Japan
| | - Takaaki Tsuruoka
- grid.258669.60000 0000 8565 5938Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Shungo Sakashita
- grid.258669.60000 0000 8565 5938Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Kin-ya Tomizaki
- grid.440926.d0000 0001 0744 5780Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, 520-2194 Otsu, Japan ,grid.440926.d0000 0001 0744 5780Department of Materials Chemistry and Innovative Materials and Processing Research Center, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, 520-2194 Otsu, Japan
| | - Kenji Usui
- grid.258669.60000 0000 8565 5938Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
4
|
Usui K, Okada A, Sakashita S, Shimooka M, Tsuruoka T, Nakano SI, Miyoshi D, Mashima T, Katahira M, Hamada Y. DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity. Molecules 2017; 22:E1991. [PMID: 29144399 PMCID: PMC6150327 DOI: 10.3390/molecules22111991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 01/23/2023] Open
Abstract
The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca2+, and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.
Collapse
Affiliation(s)
- Kenji Usui
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Arisa Okada
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Shungo Sakashita
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Masayuki Shimooka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takaaki Tsuruoka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Shu-Ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Yoshio Hamada
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
5
|
Usui K, Ozaki M, Yamada A, Hamada Y, Tsuruoka T, Imai T, Tomizaki KY. Site-specific control of multiple mineralizations using a designed peptide and DNA. NANOSCALE 2016; 8:17081-17084. [PMID: 27550384 DOI: 10.1039/c6nr03468c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have developed a site-specific method for precipitating multiple inorganic compounds using target DNA and a designed peptide consisting of a peptide nucleic acid (PNA) sequence and an inorganic compound-precipitating sequence. This system for controlled site-specific precipitation represents a powerful tool for use in nanobiotechnology and materials science.
Collapse
Affiliation(s)
- Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ozaki M, Nagai K, Nishiyama H, Tsuruoka T, Fujii S, Endoh T, Imai T, Tomizaki KY, Usui K. Site-specific control of silica mineralization on DNA using a designed peptide. Chem Commun (Camb) 2016; 52:4010-3. [PMID: 26690695 DOI: 10.1039/c5cc07870a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a site-specific method for precipitating inorganic compounds using organic compounds, DNA, and designed peptides with peptide nucleic acids (PNAs). Such a system for site-specific precipitation represents a powerful tool for use in nanobiochemistry and materials chemistry.
Collapse
Affiliation(s)
- Makoto Ozaki
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Kazuma Nagai
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Hiroto Nishiyama
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takaaki Tsuruoka
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Satoshi Fujii
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Tamaki Endoh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahito Imai
- Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan
| | - Kin-Ya Tomizaki
- Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan and Innovative Materials and Processing Research Center, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan.
| | - Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
7
|
Usui K, Okada A, Kobayashi K, Sugimoto N. Control of guanine-rich DNA secondary structures depending on the protease activity using a designed PNA peptide. Org Biomol Chem 2015; 13:2022-5. [PMID: 25519192 DOI: 10.1039/c4ob02535k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We constructed a regulation system for DNA secondary structure formation of G-rich sequences using a designed PNA peptide exhibiting an on-to-off switching functionality, depending on the protease activity. This study introduces the new concept of a simple and powerful system for regulating quadruplex-related important biological events.
Collapse
Affiliation(s)
- Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
8
|
Tomizaki KY, Usui K, Mihara H. Protein-protein interactions and selection: array-based techniques for screening disease-associated biomarkers in predictive/early diagnosis. FEBS J 2010; 277:1996-2005. [PMID: 20412053 DOI: 10.1111/j.1742-4658.2010.07626.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been considerable interest in recent years in the development of miniaturized and parallelized array technology for protein-protein interaction analysis and protein profiling, namely 'protein-detecting microarrays'. Protein-detecting microarrays utilize a wide variety of capture agents (antibodies, fusion proteins, DNA/RNA aptamers, synthetic peptides, carbohydrates, and small molecules) immobilized at high spatial density on a solid surface. Each capture agent binds selectively to its target protein in a complex mixture, such as serum or cell lysate samples. Captured proteins are subsequently detected and quantified in a high-throughput fashion, with minimal sample consumption. Protein-detecting microarrays were first described by MacBeath and Schreiber in 2000, and the number of publications involving this technology is rapidly increasing. Furthermore, the first multiplex immunoassay systems have been cleared by the US Food and Drug Administration, signaling recognition of the usefulness of miniaturized and parallelized array technology for protein detection in predictive/early diagnosis. Although genetic tests still predominate, with further development protein-based diagnosis will become common in clinical use within a few years.
Collapse
Affiliation(s)
- Kin-ya Tomizaki
- Innovative Materials and Processing Research Center and Department of Materials Chemistry, Ryukoku University, Otsu, Japan
| | | | | |
Collapse
|
9
|
|
10
|
Aneja A, Mathur N, Bhatnagar PK, Mathur PC. Triple-FRET Technique for Energy Transfer Between Conjugated Polymer and TAMRA Dye with Possible Applications in Medical Diagnostics. J Biol Phys 2008; 34:487-93. [PMID: 19669508 DOI: 10.1007/s10867-008-9107-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 07/18/2008] [Indexed: 11/29/2022] Open
Abstract
Three-component Förster resonance energy transfer (FRET) has been used to obtain efficient FRET between the cationic conjugated polymer (CCP) as donor and 5-carboxy tetramethylrhodamine (TAMRA) dye as acceptor, by using an intermediate donor, fluorescein. In spite of the fact that there is enough overlap between the emission spectra of CCP and absorption spectra of TAMRA, the efficiency of FRET between CCP and TAMRA is poor. The reason for this is that while the Förster critical distance is not very sensitive to the overlap, the FRET efficiency is extremely sensitive to it. However, it is observed that the FRET efficiency between CCP and TAMRA improves considerably when fluorescein is introduced in the solution. The triple FRET so obtained can be used for deoxyribonucleic acid sequence detection in medical diagnostics because the fluorescence emission from TAMRA is pH-insensitive.
Collapse
Affiliation(s)
- Anamika Aneja
- Materials Laboratory, Department of Electronic Science, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India,
| | | | | | | |
Collapse
|
11
|
Debaene F, Da Silva JA, Pianowski Z, Duran FJ, Winssinger N. Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metallo-proteases as well as tyrosine phosphatases. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.03.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Watanabe S, Tomizaki KY, Takahashi T, Usui K, Kajikawa K, Mihara H. Interactions between peptides containing nucleobase amino acids and T7 phages displaying S. cerevisiae proteins. Biopolymers 2007; 88:131-40. [PMID: 17206624 DOI: 10.1002/bip.20662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The importance of high-throughput analyses of protein abundances and functions is interestingly increasing in genomic/proteomic studies. In such postgenome sequencing era, a protein-detecting chip, in which a large number of molecules specifically capturing target proteins (capturing agents) such as antibodies, recombinant proteins, and small molecules are arrayed onto solid, wet, or semi-wet substrates, enables comprehensive analysis of proteomes by a single experiment. However, whole proteomes are generally complicated for comprehensive analyses so that alternative approaches to subproteome analysis categorized by protein functions and binding properties (focused proteome) would be effective. Approaching the goal of development of designed peptide chip for protein analysis, diversity increases in peptide structures and validation of target proteins are needed. We herein describe design and synthesis of nucleobase amino acid (NBA)-containing peptides, selection of nucleic acid-related proteins derived from S. cerevisiae, and detection of interactions between NBA-containing peptides and T7 phages displaying proteins by both enzyme-linked immunosorbent assays (ELISA) and label-free anomalous reflection of gold (AR) measurements. Twenty-eight phage clones were obtained by the phage-display method and sequenced. Ten of 28 clones were expected to be nucleic acid-related proteins including initiation factor, TYB protein, ribosomal proteins, elongation factor, ATP synthase subunit, GTP-binding protein, and ribonuclease. Other phage clones encoded several classes of enzymes such as reductase, oxidase, aldolase, metalloprotease, and hexokinase. Both ELISA and AR measurements suggested that the methodology of in vitro selection for recognition of the NBA-containing peptide presented in this study was successfully established. Such a combination of NBA and phage display technologies would be potential to efficiently confirm valuable target proteins binding specifically to capturing agents, to be arrayed onto solid surfaces to develop the designed peptide chip.
Collapse
Affiliation(s)
- Sinya Watanabe
- The COE21 Program and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
In the continuous drive to increase screening throughput and reduce sample requirement, microarray-based
technologies have risen to the occasion. In the past 7 years, a number of new methodologies have
been developed for preparing small molecule microarrays from combinatorial and natural product libraries
with the goal of identifying new interactions or enzymatic activities. Recent advances and applications
of small molecule microarrays are reviewed.
Collapse
|
14
|
Tomizaki K, Usui K, Mihara H. ELECTROCHEMISTRY 2007; 75:981-986. [DOI: 10.5796/electrochemistry.75.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
15
|
Usui K, Tomizaki KY, Mihara H. Screening of α-helical peptide ligands controlling a calcineurin-phosphatase activity. Bioorg Med Chem Lett 2007; 17:167-71. [PMID: 17035011 DOI: 10.1016/j.bmcl.2006.09.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 11/26/2022]
Abstract
In this paper, we describe an application of 202-membered fluorescently labeled peptide library designed to take an alpha-helix secondary structure. As a proof-of-concept experiment, a calmodulin (CaM)/calcineurin (Cn) pair was chosen to screen alpha-helical peptide ligands that tightly bind to CaM and also control enzymatic functions of Cn. Three peptides were successfully selected from the library by assaying Cn-phosphatase activities and peptide-CaM interactions (dual check process). The strategy using a designed peptide library shows real promise as a peptide-based high-throughput screening system.
Collapse
Affiliation(s)
- Kenji Usui
- Department of Bioengineering and The COE21 Program, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-40, 4259 Nagatsuta, Midori, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
16
|
Usui K, Tomizaki KY, Mihara H. Protein-fingerprint data mining of a designed α-helical peptide array. ACTA ACUST UNITED AC 2006; 2:417-20. [PMID: 17153138 DOI: 10.1039/b608875a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The data generated from protein fingerprints with an alpha-helical peptide array were analyzed using several statistical methods such as hierarchical clustering analysis and principal component analysis to discriminate target proteins.
Collapse
Affiliation(s)
- Kenji Usui
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, 226-8501, Japan
| | | | | |
Collapse
|