1
|
Asgari S, Farasati Far B, Charmi G, Maghsoudi PH, Keihankhadiv S, Seyedhamzeh M, Kaushik AK. Chitosan-Grafted-Poly( N-vinylcaprolactam)-Decorated Fe 3O 4@SiO 2 Core-Shell Nanoformulation as an Efficient Drug Delivery System for Poorly Soluble Drugs. ACS APPLIED BIO MATERIALS 2023; 6:5809-5827. [PMID: 38015201 DOI: 10.1021/acsabm.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hydrocortisone, a commonly used anti-inflammatory drug, has limited aqueous solubility and several side effects. To address this challenge, as a proof-of-concept, this article demonstrates the development of a controlled-release drug delivery system (DDS) for hydrocortisone using chitosan-grafted poly(N-vinylcaprolactam) (CS-g-PNVCL)-coated core-shell Fe3O4@SiO2 nanoformulations (NFs). Reported magnetic nanoparticles (NPs) were synthesized and modified with silica, PNVCL, and CS precursors to enhance the biocompatibility of DDS and drug-loading efficiency. The release rate of hydrocortisone from Fe3O4@SiO2@CS-g-PNVCL NFs was observed to be higher at lower pH values, and the smart polymer coating demonstrated temperature responsiveness, facilitating drug release at higher temperatures. Fe3O4@SiO2@CS-g-PNVCL NFs exhibited a cell viability of around 97.2 to 87.3% (5-100 μg/mL) after 24-48 h, while the hydrocortisone-NFs had a cell viability of around 93.2 to 82.3%. Our findings suggest that CS-g-PNVCL-coated Fe3O4@SiO2 NPs effectively enhance the solubility, loading capacity, and targeted delivery of poorly soluble drugs, thereby improving their therapeutic efficacy and bioavailability.
Collapse
Affiliation(s)
- Sarah Asgari
- School of Advanced Science and Technology, Tehran Medical Science Branch, Islamic Azad University, Tehran 19585-466, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 16844, Iran
| | - Gholamreza Charmi
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | | | - Shadi Keihankhadiv
- Department of Physical Chemistry and Technology of polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) and Department of Pharmaceutical Nanotechnology School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184 Iran
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| |
Collapse
|
2
|
Cabral AMTDPV, Fernandes ACG, Joaquim NAM, Veiga F, Sofio SPC, Paiva I, Esteso MA, Rodrigo MM, Valente AJM, Ribeiro ACF. Complexation of 5-Fluorouracil with β-Cyclodextrin and Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and Removing This Polluting Drug. TOXICS 2022; 10:toxics10060300. [PMID: 35736908 PMCID: PMC9228719 DOI: 10.3390/toxics10060300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
The formation of complexes of the drug 5-fluorouracil (5-FU) with β-cyclodextrin (β-CD) and sodium dodecyl sulphate (SDS) was studied through experimental measurements of the ternary mutual diffusion coefficients (D11, D22, D12, and D21) for the systems {5-FU (component 1) + β-CD (component 2) + water} and {5-FU (component 1) + SDS (component 2) + water} at 298.15 K and at concentrations up to 0.05 mol dm−3 by using the Taylor dispersion method, with the objective of removing this polluting drug from the residual systems in which it was present. The results found showed that a coupled diffusion of 5-FU occurred with both β-CD and SDS, as indicated by the nonzero values of the cross-diffusion coefficients, D12 and D21, as a consequence of the complex formation between 5-FU and the β-CD or SDS species. That is, 5-FU was solubilized (encapsulated) by both carriers, although to a greater extent with SDS (K = 20.0 (±0.5) mol−1 dm3) than with β-CD (K = 10.0 (±0.5) mol−1 dm3). Values of 0.107 and 0.190 were determined for the maximum fraction of 5-FU solubilized with β-CD and SDS (at concentrations above its CMC), respectively. This meant that SDS was more efficient at encapsulating and thus removing the 5-FU drug.
Collapse
Affiliation(s)
- Ana M. T. D. P. V. Cabral
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Ana C. G. Fernandes
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Neuza A. M. Joaquim
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.M.T.D.P.V.C.); (N.A.M.J.); (F.V.)
| | - Sara P. C. Sofio
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Isabel Paiva
- Centre of Geography and Spatial Planning, Department of Geography and Tourism, University of Coimbra, 3004-530 Coimbra, Portugal;
| | - Miguel A. Esteso
- Universidad Católica de Ávila, Calle los Canteros s/n, 05005 Ávila, Spain
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
- Correspondence: (M.A.E.); (A.C.F.R.)
| | - M. Melia Rodrigo
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
| | - Artur J. M. Valente
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
| | - Ana C. F. Ribeiro
- Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra, 3004-535 Coimbra, Portugal; (A.C.G.F.); (S.P.C.S.); (A.J.M.V.)
- Correspondence: (M.A.E.); (A.C.F.R.)
| |
Collapse
|
3
|
Zhang Y, Lv M, Xu H. Insecticidal activity of twin compounds from podophyllotoxin and cytisine. Bioorg Med Chem Lett 2021; 43:128104. [PMID: 33984477 DOI: 10.1016/j.bmcl.2021.128104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022]
Abstract
To explore natural-product-based insecticide candidates, and high value-added application of natural plants in agriculture, a series of twin compounds were prepared from two natural products podophyllotoxin and cytisine, which are isolated from the plants Podophyllum hexandrum and Thermopsis lanceolata, respectively. Compounds IIa (X = Cl, Y = R1 = R2 = H), IIIc (X = Y = R1 = R2 = Cl) and IVd (X = R1 = R2 = Br, Y = H) exhibited >2-fold potent insecticidal activity of podophyllotoxin against armyworm with FMRs greater than 60%. SARs were also observed. It is noteworthy that the idea of twin insecticides was addressed for the first time. We hope this idea will be conducive to design new twin insecticidal agents, and lay the foundation for future high value-added application of the plants P. hexandrum and T. lanceolata as potentially botanical pesticides in agriculture.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China
| | - Min Lv
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China.
| | - Hui Xu
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, PR China.
| |
Collapse
|
4
|
Ewert de Oliveira B, Junqueira Amorim OH, Lima LL, Rezende RA, Mestnik NC, Bagatin E, Leonardi GR. 5-Fluorouracil, innovative drug delivery systems to enhance bioavailability for topical use. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Ding F, Fu J, Tao C, Yu Y, He X, Gao Y, Zhang Y. Recent Advances of Chitosan and its Derivatives in Biomedical Applications. Curr Med Chem 2020; 27:3023-3045. [DOI: 10.2174/0929867326666190405151538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Chitosan is the second-most abundant natural polysaccharide. It has unique characteristics,
such as biodegradability, biocompatibility, and non-toxicity. Due to the existence of its free amine
group and hydroxyl groups on its backbone chain, chitosan can undergo further chemical modifications
to generate Chitosan Derivatives (CDs) that permit additional biomedical functionality. Chitosan
and CDs can be fabricated into various forms, including Nanoparticles (NPs), micelles, hydrogels,
nanocomposites and nano-chelates. For these reasons, chitosan and CDs have found a tremendous
variety of biomedical applications in recent years. This paper mainly presents the prominent
applications of chitosan and CDs for cancer therapy/diagnosis, molecule biosensing, viral infection,
and tissue engineering over the past five years. Moreover, future research directions on chitosan are
also considered.
Collapse
Affiliation(s)
- Fei Ding
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Jiawei Fu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Chuang Tao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yanhua Yu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yangguang Gao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
6
|
He T, Wang W, Chen B, Wang J, Liang Q, Chen B. 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 2020; 236:116094. [PMID: 32172896 DOI: 10.1016/j.carbpol.2020.116094] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Different size and morphology monodispersed chitosan (CS) microspheres loaded with the anticancer drug of 5-fluorouracil (5-Fu) were prepared by the microfluidic method assisted by a crosslinking unit with crosslinkers of tripolyphosphate (TPP) and glutaraldehyde (GTA). The sizes, morphologies, drug loading, encapsulation efficiency, drug release and cytotoxicity of 5-Fu loaded CS microspheres were characterized and determined. Results indicated that the CS microspheres were uniform in size distributions. They possessed excellent encapsulation efficiency and drug loading. The TPP-crosslinked CS microspheres had rough surfaces and exhibited faster drug release, whereas the CS microspheres crosslinked with GTA had smooth surfaces and showed slower drug release. Furthermore, 5-Fu-loaded CS microspheres exhibited sustained drug release which well fitted the first-order kinetics model and were pH-responsive in that the drug cumulative release was greater at acidic environments than at neutral conditions. Finally, 5-Fu loaded CS microspheres provided sufficient cytotoxicity and were satisfactory in the cancer cell inhibition.
Collapse
Affiliation(s)
- Tianxi He
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China; Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenbin Wang
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Benshou Chen
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Jiu Wang
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China
| | - Qionglin Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Boshui Chen
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China.
| |
Collapse
|
7
|
Voblikova T, Mannino S, Barybina L, Sadovoy V, Permyakov A, Ivanov V, Selimov M. Immobilisation of bifidobacteria in biodegradable food-grade microparticles. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-1-74-83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present research features a natural polymer that can be used for immobilisation of bifidobacteria as well as a method of immobilisation. We described a modified method of microencapsulation of probiotics using sodi- um alginate. The experiment studied the effect of encapsulation on probiotic stability and involved an in vitro model of human digestive tract. The test sample of microencapsulated Bifi obacterium bifi um 791 showed a decrease in the activity from 3.0×107 to 2.2×105 CFU/ml in a mouse model with pH 1.2. By contrast, the control sample, unprotected by biodegradable polymer microcapsules, demonstrated a higher death rate of bifidobacteria: from 2.6×108 CFU/ml to 5.0×103 CFU/ml. The control sample demonstrated the same downward trend in in vitro gastrointestinal models with pH values of 4.5, 6.8, 7.2, and 5.8. Because the total plate count fell down to 4.0l g CFU/ml in acidity gradients, the titres of the initial microencapsulated biomass had to be increased up to > 109 CFU/ml. According to the results of scanning electron microscopy, the new type of microcapsules obtained by using a resistant starch had a closed sur- face. Prebiotics increased the resistance of bacteria to low pH and bile salts. Bifidobacteria encapsulated with natural biodegradable polymers proved to be well-tolerated and harmless for mice. The experiment revealed that biodegrad- able polymer microcapsules did not cause any chronic or acute toxicity when administered orally at 2×107 CFU per 1 gram of animal mass. The microcapsules demonstrated neither dermonecrotic properties nor any irritant effect on the ocular mucosa and, thus, can be used for food enforcement.
Collapse
|
8
|
Massella D, Argenziano M, Ferri A, Guan J, Giraud S, Cavalli R, Barresi AA, Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019; 11:E403. [PMID: 31405229 PMCID: PMC6723157 DOI: 10.3390/pharmaceutics11080403] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.
Collapse
Affiliation(s)
- Daniele Massella
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Stéphane Giraud
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| |
Collapse
|
9
|
Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P. Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Mar Drugs 2019; 17:E369. [PMID: 31234361 PMCID: PMC6627199 DOI: 10.3390/md17060369] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Huge amounts of chitin and chitosans can be found in the biosphere as important constituents of the exoskeleton of many organisms and as waste by worldwide seafood companies. Presently, politicians, environmentalists, and industrialists encourage the use of these marine polysaccharides as a renewable source developed by alternative eco-friendly processes, especially in the production of regular cosmetics. The aim of this review is to outline the physicochemical and biological properties and the different bioextraction methods of chitin and chitosan sources, focusing on enzymatic deproteinization, bacteria fermentation, and enzymatic deacetylation methods. Thanks to their biodegradability, non-toxicity, biocompatibility, and bioactivity, the applications of these marine polymers are widely used in the contemporary manufacturing of biomedical and pharmaceutical products. In the end, advanced cosmetics based on chitin and chitosans are presented, analyzing different therapeutic aspects regarding skin, hair, nail, and oral care. The innovative formulations described can be considered excellent candidates for the prevention and treatment of several diseases associated with different body anatomical sectors.
Collapse
Affiliation(s)
| | | | | | - Siyuan Deng
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
10
|
Wang L, Wan M, Li Z, Zhong N, Liang D, Ge L. A comparative study of the effects of concentrated growth factors in two different forms on osteogenesis in vitro. Mol Med Rep 2019; 20:1039-1048. [PMID: 31173196 PMCID: PMC6625392 DOI: 10.3892/mmr.2019.10313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Extending the release cycle of growth factors to match the cycle of bone remodeling is difficult. When using concentrated growth factors (CGFs), the release of growth factors is excessively rapid. In the present study, CGF samples were prepared by centrifugation. CGF samples were then lyophilized and grinded into a powder, which was termed freeze‑dried CGF. The freeze‑dried CGF samples were mixed with chitosan‑alginate composite hydrogels, and the mixture was lyophilized. The result was a chitosan‑alginate composite CGF membrane, which was called sustained‑release CGF. This study investigated whether freeze‑dried CGF in a chitosan‑alginate composite gel can release CGF steadily to achieve effective osteogenesis. The proliferation and osteogenic expression of MC3T3‑E1 cells induced by the supernatants from incubation with freeze‑dried CGF and sustained‑release CGF were evaluated. The concentrations of the growth factors, transforming growth factor β1 (TGF‑β1), insulin‑like growth factor‑1 (IGF‑1), platelet‑derived growth factor‑AB (PDGF‑AB) and vascular endothelial growth factor (VEGF), in these two experimental groups at different times were determined by ELISA kits. The freeze‑dried CGF showed better osteogenic performance than the sustained‑release CGF in the early stages. At later stages, the sustained‑release CGF had significant advantages over freeze‑dried CGF in terms of promoting osteogenic mineralization. By characterizing the biologic properties of the CGF in the two different forms in vitro, we obtained a better understanding of their clinical effects.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Mianjia Wan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Ningying Zhong
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Dongliang Liang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| |
Collapse
|
11
|
Esposito MC, Santos ALA, Bonfilio R, de Araújo MB. A Critical Review of Analytical Methods in Pharmaceutical Matrices for Determination of Corticosteroids. Crit Rev Anal Chem 2019; 50:111-124. [PMID: 30869528 DOI: 10.1080/10408347.2019.1581050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Corticosteroids are a class of hormones released by the adrenal cortex, which includes glucocorticoids and mineralocorticoids. Glucocorticoids have an important role in the metabolism of carbohydrates, proteins and calcium and effective anti-inflammatory and immunosuppressive activity. Due to their intense immunomodulatory and anti-inflammatory activity, glucocorticoids are used in the treatment of various inflammatory, malignant, allergic conditions such as rhinitis, asthma, dermatological, rheumatic, ophthalmic and neurological diseases, as well as after organ transplants. They are the most widely prescribed drugs in the world. The objective of this review is to provide an overview of the analytical methods in pharmaceutical matrices for determination of corticosteroids. In this study, the predominance of liquid chromatography methods for the analysis of corticosteroids from pharmaceutical products is evident for both liquid and semisolid dosage forms as well as for solids. The same can be said for topical, oral and parenteral formulations. Methods such as spectrophotometry are also used, but given the advantages of chromatographic methods such as better selectivity and sensitivity, they have become the choice for analysis of these drugs, however, most methods still do not meet the credentials of "green chemistry."
Collapse
Affiliation(s)
- Milena Carla Esposito
- Department of Food and Drug Administration, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Rudy Bonfilio
- Department of Food and Drug Administration, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Magali Benjamim de Araújo
- Department of Food and Drug Administration, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
12
|
Abstract
Chitosan and its derivatives as vehicles for drug delivery can achieve the purpose of sustained release and controlled release for drugs, improve the stability of drugs, and reduce adverse drug reactions. So, the bioavailability of drugs can be enhanced. Therefore, chitosan and its derivatives have become a hotspot in the field of drug delivery. Their characteristics as drug delivery vectors were introduced, the types and applications were summarized. The development direction of chitosan and its derivatives in this field was also forecasted.
Collapse
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Center, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, China
| | - Yang Liu
- Active Carbohydrate Research Center, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, China
| | - Ling Chen
- Active Carbohydrate Research Center, Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, China
| |
Collapse
|
13
|
Hemati Azandaryani A, Derakhshandeh K, Arkan E. Electrospun nanobandage for hydrocortisone topical delivery as an antipsoriasis candidate. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1375493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, Faculty of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Davoudi Z, Rabiee M, Houshmand B, Eslahi N, Khoshroo K, Rasoulianboroujeni M, Tahriri M, Tayebi L. Development of chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis. Drug Dev Ind Pharm 2017; 44:40-55. [DOI: 10.1080/03639045.2017.1371738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Davoudi
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Behzad Houshmand
- Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Morteza Rasoulianboroujeni
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Mohammadreza Tahriri
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Bijukumar D, Choonara YE, Murugan K, Choonara BF, Kumar P, du Toit LC, Pillay V. Design of an Inflammation-Sensitive Polyelectrolyte-Based Topical Drug Delivery System for Arthritis. AAPS PharmSciTech 2016; 17:1075-85. [PMID: 26515798 DOI: 10.1208/s12249-015-0434-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022] Open
Abstract
The most successful treatment strategy for arthritis is intra-articular injections that are costly and have reduced patient compliance. The purpose of the current study was to develop an inflammation-sensitive system for topical drug administration. Multi-macromolecular alginate-hyaluronic acid-chitosan (A-H-C) polyelectrolyte complex nanoparticles, loaded with indomethacin were developed employing pre-gel and post-gel techniques in the presence of dodecyl-L-pyroglutamate (DLP). In addition to in vitro studies, in silico simulations were performed to affirm and associate the molecular interactions inherent to the formulation of core all-natural multi-component biopolymeric architectures composed of an anionic (alginate), a cationic (chitosan), and an amphi-ionic polyelectrolytic (hyaluronic acid) macromolecule. The results demonstrated that DLP significantly influenced the size of the synthesized nanoparticles. Drug-content analysis revealed higher encapsulation efficiency (77.3%) in the presence of DLP, irrespective of the techniques used. Moreover, in vitro drug release studies showed that indomethacin release from the nanosystem was significantly improved (98%) in Fenton's reagent. Drug permeation across a cellulose membrane using a Franz diffusion cell system showed an initial surge flux (0.125 mg/cm(-2)/h), followed by sustained release of indomethacin for the post-gel nanoparticles revealing its effective skin permeation efficiency. In conclusion, the study presents novel nanoparticles which could effectively encapsulate and deliver hydrophobic drugs to the target site, particularly for arthritis.
Collapse
|
16
|
Carvalho IT, Estevinho BN, Santos L. Application of microencapsulated essential oils in cosmetic and personal healthcare products - a review. Int J Cosmet Sci 2015; 38:109-19. [DOI: 10.1111/ics.12232] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022]
Affiliation(s)
- I. T. Carvalho
- LEPABE; Departamento de Engenharia Química; Faculdade de Engenharia da Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - B. N. Estevinho
- LEPABE; Departamento de Engenharia Química; Faculdade de Engenharia da Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - L. Santos
- LEPABE; Departamento de Engenharia Química; Faculdade de Engenharia da Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| |
Collapse
|
17
|
Chatterjee S, Salaün F, Campagne C. Development of multilayer microcapsules by a phase coacervation method based on ionic interactions for textile applications. Pharmaceutics 2014; 6:281-97. [PMID: 24932719 PMCID: PMC4085600 DOI: 10.3390/pharmaceutics6020281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022] Open
Abstract
The present study describes the development of multilayer microcapsules by 11 alternate additions of chitosan (Chi) and sodium dodecyl sulfate (SDS) in a combined emulsification and phase coacervation method based on ionic interactions. After an alkali treatment, microcapsules are applied on polyester (PET) fabric by a padding process to investigate their wash-durability on fabric. Air atmospheric plasma treatment is performed on PET fabric to modify the surface properties of the textiles. Zeta potential, X-ray photoelectron spectroscopy (XPS), wetting measurements, scanning electron microscopy (SEM), and atomic force microscopy (AFM) with surface roughness measurements are realized to characterize and determine wash durability of microcapsule samples onto PET. After alkali treatment, the microcapsules are selected for textile application because they are submicron sized with the desired morphology. The results obtained from various characterization techniques indicate that microcapsules are wash-durable on PET fabric pre activated by air plasma atmospheric as Chi based microcapsules can interact directly with PET by ionic interactions.
Collapse
Affiliation(s)
| | - Fabien Salaün
- University of Lille Nord de France, F-59000 Lille, France.
| | | |
Collapse
|
18
|
Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release 2014; 178:25-45. [DOI: 10.1016/j.jconrel.2013.12.028] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022]
|
19
|
Lam PL, Lee KKH, Ho YW, Wong RSM, Tong SW, Cheng CH, Lam KH, Tang JCO, Bian ZX, Gambari R, Kok SHL, Chui CH. The development of chitosan based microcapsules as delivery vehicles for orally administered daunorubicin. RSC Adv 2014. [DOI: 10.1039/c4ra00195h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Puga AM, Lima AC, Mano JF, Concheiro A, Alvarez-Lorenzo C. Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydr Polym 2013; 98:331-40. [DOI: 10.1016/j.carbpol.2013.05.091] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 11/25/2022]
|
21
|
Lam PL, Kok SHL, Ho YW, Wong RSM, Cheng GYM, Cheng CH, Lam KH, Gambari R, Lee KKH, Chui CH. A novel green gelatin–agar microencapsulation system with P. urinaria as an improved anti-A. niger model. Carbohydr Polym 2013; 92:877-80. [DOI: 10.1016/j.carbpol.2012.09.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/23/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
|
22
|
Lam PL, Li L, Yuen CWM, Gambari R, Wong RSM, Chui CH, Lam KH. Effects of multiple washing on cotton fabrics containing berberine microcapsules with anti-Staphylococcus aureusactivity. J Microencapsul 2012; 30:143-50. [DOI: 10.3109/02652048.2012.704953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|