1
|
Sheng W, Peng H, Gao B, Song C, Li J. Electrochemical Benzylic C─H Sulfation beyond the O-Sulfonation Limitation. Angew Chem Int Ed Engl 2025:e202507048. [PMID: 40329843 DOI: 10.1002/anie.202507048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Direct C─H sulfation represents a valuable transformation for the synthesis of organosulfates. However, it has been challenging to achieve owing to the presence of multiple C─H bonds with comparable strengths and steric environments. Current methods for producing organosulfates primarily rely on O-sulfonation, which limits their applicability to hydroxyl-containing compounds. Herein, we report a practical and cost-efficient method for the electrochemical sulfation of benzylic C─H bonds. This reaction avoids the need for strong oxidants, demonstrating broad substrate scope, excellent chemoselectivity, and site selectivity. The orthogonal reactivity of this protocol is particularly evident in the transformation of alcohol substrates.
Collapse
Affiliation(s)
- Wei Sheng
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Huanhuan Peng
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Ben Gao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072
| | - Chunlan Song
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Jiakun Li
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
2
|
Alshehri JA, Jones AM. Chemical approaches to the sulfation of small molecules: current progress and future directions. Essays Biochem 2024; 68:449-466. [PMID: 38958528 PMCID: PMC11625868 DOI: 10.1042/ebc20240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Sulfation is one of the most important modifications that occur to a wide range of bioactive small molecules including polysaccharides, proteins, flavonoids, and steroids. In turn, these sulfated molecules have significant biological and pharmacological roles in diverse processes including cell signalling, modulation of immune and inflammation response, anti-coagulation, anti-atherosclerosis, and anti-adhesive properties. This Essay summarises the most encountered chemical sulfation methods of small molecules. Sulfation reactions using sulfur trioxide amine/amide complexes are the most used method for alcohol and phenol groups in carbohydrates, steroids, proteins, and related scaffolds. Despite the effectiveness of these methods, they suffer from issues including multiple-purification steps, toxicity issues (e.g., pyridine contamination), purification challenges, stoichiometric excess of reagents which leads to an increase in reaction cost, and intrinsic stability issues of both the reagent and product. Recent advances including SuFEx, the in situ reagent approach, and TBSAB show the widespread appeal of novel sulfating approaches that will enable a larger exploration of the field in the years to come by simplifying the purification and isolation process to access bespoke sulfated small molecules.
Collapse
Affiliation(s)
- Jaber A Alshehri
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Alan M Jones
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| |
Collapse
|
3
|
Yue S, Ding G, Zheng Y, Song C, Xu P, Yu B, Li J. Dimethyl sulfate and diisopropyl sulfate as practical and versatile O-sulfation reagents. Nat Commun 2024; 15:1861. [PMID: 38424087 PMCID: PMC10904734 DOI: 10.1038/s41467-024-46214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
O-Sulfation is a vital post-translational modification in bioactive molecules, yet there are significant challenges with their synthesis. Dialkyl sulfates, such as dimethyl sulfate and diisopropyl sulfate are commonly used as alkylation agents in alkaline conditions, and result in the formation of sulfate byproducts. We report herein a general and robust approach to O-sulfation by harnessing the tunable reactivity of dimethyl sulfate or diisopropyl sulfate under tetrabutylammonium bisulfate activation. The versatility of this O-sulfation protocol is interrogated with a diverse range of alcohols, phenols and N-OH compounds, including carbohydrates, amino acids and natural products. The enhanced electrophilicity of the sulfur atom in dialkyl sulfates, facilitated by the interaction with bisulfate anion (HSO4-), accounts for this pioneering chemical reactivity. We envision that our method will be useful for application in the comprehension of biological functions and discovery of drugs.
Collapse
Affiliation(s)
- Shuaishuai Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guoping Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
- Key Laboratory of Structure-based Drug Design & Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Ye Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chunlan Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Jiakun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
4
|
Mlynarska-Cieslak A, Chrominski M, Spiewla T, Baranowski MR, Bednarczyk M, Jemielity J, Kowalska J. Fluorinated Phosphoadenosine 5'-Phosphosulfate Analogues for Continuous Sulfotransferase Activity Monitoring and Inhibitor Screening by 19F NMR Spectroscopy. ACS Chem Biol 2022; 17:661-669. [PMID: 35196009 PMCID: PMC8938925 DOI: 10.1021/acschembio.1c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Sulfotransferases
(STs) are ubiquitous enzymes that participate
in a vast number of biological processes involving sulfuryl group
(SO3) transfer. 3′-phosphoadenosine 5′-phosphosulfate
(PAPS) is the universal ST cofactor, serving as the “active
sulfate” source in cells. Herein, we report the synthesis of
three fluorinated PAPS analogues that bear fluorine or trifluoromethyl
substituents at the C2 or C8 positions of adenine and their evaluation
as substitute cofactors that enable ST activity to be quantified and
real-time-monitored by fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy. Using plant AtSOT18 and human SULT1A3
as two model enzymes, we reveal that the fluorinated PAPS analogues
show complementary properties with regard to recognition by enzymes
and the working 19F NMR pH range and are attractive versatile
tools for studying STs. Finally, we developed an 19F NMR
assay for screening potential inhibitors against SULT1A3, thereby
highlighting the possible use of fluorinated PAPS analogues for the
discovery of drugs for ST-related diseases.
Collapse
Affiliation(s)
- Agnieszka Mlynarska-Cieslak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mikolaj Chrominski
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Tomasz Spiewla
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R. Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Marcelina Bednarczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Haas TM, Mundinger S, Qiu D, Jork N, Ritter K, Dürr‐Mayer T, Ripp A, Saiardi A, Schaaf G, Jessen HJ. Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of 18O-Phosphoramidites. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112457. [PMID: 38505299 PMCID: PMC10947094 DOI: 10.1002/ange.202112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18O-labelled phosphates is presented, based on a family of modified 18O2-phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry.
Collapse
Affiliation(s)
- Thomas M. Haas
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Stephan Mundinger
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Danye Qiu
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Nikolaus Jork
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling Studies &, Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgGermany
| | - Kevin Ritter
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Tobias Dürr‐Mayer
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Alexander Ripp
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for molecular Cell BiologyUniversity College LondonUK
| | - Gabriel Schaaf
- INRES—Institut für Nutzpflanzenwissenschaften und RessourcenschutzUniversität BonnKarlrobert-Kreiten-Strasse 1353115BonnGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling Studies &, Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgGermany
| |
Collapse
|
6
|
Haas TM, Mundinger S, Qiu D, Jork N, Ritter K, Dürr‐Mayer T, Ripp A, Saiardi A, Schaaf G, Jessen HJ. Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of 18 O-Phosphoramidites. Angew Chem Int Ed Engl 2022; 61:e202112457. [PMID: 34734451 PMCID: PMC9298905 DOI: 10.1002/anie.202112457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/12/2022]
Abstract
Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18 O-labelled phosphates is presented, based on a family of modified 18 O2 -phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18 O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18 O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry.
Collapse
Affiliation(s)
- Thomas M. Haas
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Stephan Mundinger
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Danye Qiu
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Nikolaus Jork
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling Studies &, Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgGermany
| | - Kevin Ritter
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Tobias Dürr‐Mayer
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Alexander Ripp
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for molecular Cell BiologyUniversity College LondonUK
| | - Gabriel Schaaf
- INRES—Institut für Nutzpflanzenwissenschaften und RessourcenschutzUniversität BonnKarlrobert-Kreiten-Strasse 1353115BonnGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling Studies &, Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgGermany
| |
Collapse
|
7
|
Tibble RW, Depaix A, Kowalska J, Jemielity J, Gross JD. Biomolecular condensates amplify mRNA decapping by biasing enzyme conformation. Nat Chem Biol 2021; 17:615-623. [PMID: 33767388 PMCID: PMC8476181 DOI: 10.1038/s41589-021-00774-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Cells organize biochemical processes into biological condensates. P-bodies are cytoplasmic condensates that are enriched in enzymes important for mRNA degradation and have been identified as sites of both storage and decay. How these opposing outcomes can be achieved in condensates remains unresolved. mRNA decapping immediately precedes degradation, and the Dcp1/Dcp2 decapping complex is enriched in P-bodies. Here, we show that Dcp1/Dcp2 activity is modulated in condensates and depends on the interactions promoting phase separation. We find that Dcp1/Dcp2 phase separation stabilizes an inactive conformation in Dcp2 to inhibit decapping. The activator Edc3 causes a conformational change in Dcp2 and rewires the protein-protein interactions to stimulate decapping in condensates. Disruption of the inactive conformation dysregulates decapping in condensates. Our results indicate that the regulation of enzymatic activity in condensates relies on a coupling across length scales ranging from microns to ångstroms. We propose that this regulatory mechanism may control the functional state of P-bodies and related phase-separated compartments.
Collapse
Affiliation(s)
- Ryan W Tibble
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Anaïs Depaix
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - John D Gross
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Abstract
Organosulfates and sulfamates are important classes of bioactive molecules but due to their polar nature, they are both difficult to prepare and purify. We report an operationally simple, double ion-exchange method to access organosulfates and sulfamates. Inspired by the novel sulfating reagent, TriButylSulfoAmmonium Betaine (TBSAB), we developed a 3-step procedure using tributylamine as the novel solubilising partner coupled to commercially available sulfating agents. Hence, in response to an increasing demand for complementary methods to synthesise organosulfates, we developed an alternative sulfation route based on an inexpensive, molecularly efficient and solubilising cation exchanging method using off-the-shelf reagents. The disclosed method is amenable to a range of differentially substituted benzyl alcohols, benzylamines and aniline and can also be performed at low temperature for sensitive substrates in good to excellent isolated yield.
Collapse
|
9
|
Yadav M, Krishnamurthy R. Bis(dimethylamino)phosphorodiamidate: A Reagent for the Regioselective Cyclophosphorylation of cis-Diols Enabling One-Step Access to High-Value Target Cyclophosphates. Org Lett 2019; 21:7400-7404. [PMID: 31469285 DOI: 10.1021/acs.orglett.9b02694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bis(dimethylamino)phosphorodiamidate (BDMDAP) enables an efficient and one-pot cyclophosphorylation of vicinal cis-diol moiety of polyol-organics of biological importance without the need for protecting group chemistry and is amenable to large-scale reactions. The utility of this reagent is demonstrated through the synthesis of high-value targets such as cyclic phosphates of myo-inositol, nucleosides, metabolites, and drug molecules.
Collapse
Affiliation(s)
- Mahipal Yadav
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.,NSF-NASA Center for Chemical Evolution , Atlanta , Georgia 30332 , United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.,NSF-NASA Center for Chemical Evolution , Atlanta , Georgia 30332 , United States
| |
Collapse
|
10
|
Gill DM, Male L, Jones AM. Sulfation made simple: a strategy for synthesising sulfated molecules. Chem Commun (Camb) 2019; 55:4319-4322. [PMID: 30883632 DOI: 10.1039/c9cc01057b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of organosulfates is a burgeoning area in biology, yet there are significant challenges with their synthesis. We report the development of a tributylsulfoammonium betaine as a high yielding route to organosulfates. The optimised reaction conditions were interrogated with a diverse range of alcohols, including natural products and amino acids.
Collapse
Affiliation(s)
- Daniel M Gill
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | |
Collapse
|
11
|
Warminski M, Sikorski PJ, Kowalska J, Jemielity J. Applications of Phosphate Modification and Labeling to Study (m)RNA Caps. Top Curr Chem (Cham) 2017; 375:16. [PMID: 28116583 PMCID: PMC5396385 DOI: 10.1007/s41061-017-0106-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The cap is a natural modification present at the 5' ends of eukaryotic messenger RNA (mRNA), which because of its unique structural features, mediates essential biological functions during the process of gene expression. The core structural feature of the mRNA cap is an N7-methylguanosine moiety linked by a 5'-5' triphosphate chain to the first transcribed nucleotide. Interestingly, other RNA 5' end modifications structurally and functionally resembling the m7G cap have been discovered in different RNA types and in different organisms. All these structures contain the 'inverted' 5'-5' oligophosphate bridge, which is necessary for interaction with specific proteins and also serves as a cleavage site for phosphohydrolases regulating RNA turnover. Therefore, cap analogs containing oligophosphate chain modifications or carrying spectroscopic labels attached to phosphate moieties serve as attractive molecular tools for studies on RNA metabolism and modification of natural RNA properties. Here, we review chemical, enzymatic, and chemoenzymatic approaches that enable preparation of modified cap structures and RNAs carrying such structures, with emphasis on phosphate-modified mRNA cap analogs and their potential applications.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
12
|
One flask synthesis of 2′,3′-cyclic nucleoside monophosphates from unprotected nucleosides using activated cyclic trimetaphosphate. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Novel reactivity of Fhit proteins: catalysts for fluorolysis of nucleoside 5'-phosphoramidates and nucleoside 5'-phosphosulfates to generate nucleoside 5'-phosphorofluoridates. Biochem J 2015; 468:337-44. [PMID: 25826698 DOI: 10.1042/bj20141568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fragile histidine triad (HIT) proteins (Fhits) occur in all eukaryotes but their function is largely unknown. Human Fhit is presumed to function as a tumour suppressor. Previously, we demonstrated that Fhits catalyse hydrolysis of not only dinucleoside triphosphates but also natural adenosine 5'-phosphoramidate (NH2-pA) and adenosine 5'-phosphosulfate (SO4-pA) as well as synthetic adenosine 5'-phosphorofluoridate (F-pA). In the present study, we describe an Fhit-catalysed displacement of the amino group of nucleoside 5'-phosphoramidates (NH2-pNs) or the sulfate moiety of nucleoside 5'-phosphosulfates (SO4-pNs) by fluoride anion. This results in transient accumulation of the corresponding nucleoside 5'-phosphorofluoridates (F-pNs). Substrate specificity and kinetic characterization of the fluorolytic reactions catalysed by the human Fhit and other examples of involvement of fluoride in the biochemistry of nucleotides are described. Among other HIT proteins, human histidine triad nucleotide-binding protein (Hint1) catalysed fluorolysis of NH2-pA 20 times and human Hint2 40 times more slowly than human Fhit.
Collapse
|
14
|
Wojdyła-Mamoń AM, Guranowski A. Adenylylsulfate-ammonia adenylyltransferase activity is another inherent property of Fhit proteins. Biosci Rep 2015; 35:e00235. [PMID: 26181368 PMCID: PMC4613722 DOI: 10.1042/bsr20150135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023] Open
Abstract
Fhits (fragile histidine triad proteins) occur in eukaryotes but their function is largely unknown, although human Fhit is believed to act as a tumour suppressor. Fhits also exhibit dinucleoside triphosphatase, adenylylsulfatase and nucleoside phosphoramidase activities that in each case yield nucleoside 5'-monophosphate as a product. Due to the dinucleoside triphosphatase activity, Fhits may also be involved in mRNA decapping. In the present study, we demonstrate Fhit-catalysed ammonolysis of adenosine 5'-phosphosulfate, which results in the formation of adenosine 5'-phosphoramidate. This reaction has previously been associated with adenylylsulfate-ammonia adenylyltransferase (EC 2.7.7.51). Our finding shows that the capacity to catalyse ammonolysis is another inherent property of Fhits. Basic kinetic parameters and substrate specificity of this reaction catalysed by human Fhit are presented.
Collapse
Affiliation(s)
- Anna M Wojdyła-Mamoń
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - Andrzej Guranowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland
| |
Collapse
|
15
|
Baranowski MR, Nowicka A, Rydzik AM, Warminski M, Kasprzyk R, Wojtczak BA, Wojcik J, Claridge TDW, Kowalska J, Jemielity J. Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for ¹⁹F NMR studies. J Org Chem 2015; 80:3982-97. [PMID: 25816092 DOI: 10.1021/acs.joc.5b00337] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To broaden the scope of existing methods based on (19)F nucleotide labeling, we developed a new method for the synthesis of fluorophosphate (oligo)nucleotide analogues containing an O to F substitution at the terminal position of the (oligo)phosphate moiety and evaluated them as tools for (19)F NMR studies. Using three efficient and comprehensive synthetic approaches based on phosphorimidazolide chemistry and tetra-n-butylammonium fluoride, fluoromonophosphate, or fluorophosphate imidazolide as fluorine sources, we prepared over 30 fluorophosphate-containing nucleotides, varying in nucleobase type (A, G, C, U, m(7)G), phosphate chain length (from mono to tetra), and presence of additional phosphate modifications (thio, borano, imido, methylene). Using fluorophosphate imidazolide as fluorophosphorylating reagent for 5'-phosphorylated oligos we also synthesized oligonucleotide 5'-(2-fluorodiphosphates), which are potentially useful as (19)F NMR hybridization probes. The compounds were characterized by (19)F NMR and evaluated as (19)F NMR molecular probes. We found that fluorophosphate nucleotide analogues can be used to monitor activity of enzymes with various specificities and metal ion requirements, including human DcpS enzyme, a therapeutic target for spinal muscular atrophy. The compounds can also serve as reporter ligands for protein binding studies, as exemplified by studying interaction of fluorophosphate mRNA cap analogues with eukaryotic translation initiation factor (eIF4E).
Collapse
Affiliation(s)
- Marek R Baranowski
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Anna Nowicka
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,§Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anna M Rydzik
- ‡Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Marcin Warminski
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Renata Kasprzyk
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Blazej A Wojtczak
- §Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jacek Wojcik
- ∥Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Timothy D W Claridge
- ‡Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Joanna Kowalska
- †Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Jacek Jemielity
- §Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Mueller JW, Shafqat N. Adenosine-5'-phosphosulfate--a multifaceted modulator of bifunctional 3'-phospho-adenosine-5'-phosphosulfate synthases and related enzymes. FEBS J 2013; 280:3050-7. [PMID: 23517310 PMCID: PMC3734648 DOI: 10.1111/febs.12252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
All sulfation reactions rely on active sulfate in the form of 3′-phospho-adenosine-5′-phosphosulfate (PAPS). In fungi, bacteria, and plants, the enzymes responsible for PAPS synthesis, ATP sulfurylase and adenosine-5′-phosphosulfate (APS) kinase, reside on separate polypeptide chains. In metazoans, however, bifunctional PAPS synthases catalyze the consecutive steps of sulfate activation by converting sulfate to PAPS via the intermediate APS. This intricate molecule and the related nucleotides PAPS and 3′-phospho-adenosine-5′-phosphate modulate the function of various enzymes from sulfation pathways, and these effects are summarized in this review. On the ATP sulfurylase domain that initially produces APS from sulfate and ATP, APS acts as a potent product inhibitor, being competitive with both ATP and sulfate. For the APS kinase domain that phosphorylates APS to PAPS, APS is an uncompetitive substrate inhibitor that can bind both at the ATP/ADP-binding site and the PAPS/APS-binding site. For human PAPS synthase 1, the steady-state concentration of APS has been modelled to be 1.6 μm, but this may increase up to 60 μm under conditions of sulfate excess. It is noteworthy that the APS concentration for maximal APS kinase activity is 15 μm. Finally, we recognized APS as a highly specific stabilizer of bifunctional PAPS synthases. APS most likely stabilizes the APS kinase part of these proteins by forming a dead-end enzyme–ADP–APS complex at APS concentrations between 0.5 and 5 μm; at higher concentrations, APS may bind to the catalytic centers of ATP sulfurylase. Based on the assumption that cellular concentrations of APS fluctuate within this range, APS can therefore be regarded as a key modulator of PAPS synthase functions.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism (CEDAM), School of Clinical and Experimental Medicine, University of Birmingham, Institute of Biomedical Research, Birmingham, UK.
| | | |
Collapse
|