1
|
Mishra KB. 1,5-Disubstituted 1,2,3-triazoles: Molecular scaffolds for medicinal chemistry and biomolecular mimetics. Eur J Med Chem 2025; 291:117614. [PMID: 40239486 DOI: 10.1016/j.ejmech.2025.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Ruthenium (II) catalyzed click chemistry enable the highly efficient and selective synthesis of 1,5-disubstituted 1,2,3-triazoles. This method provides exclusive formation of the desired 1,5-regioisomer. In the past twenty years, these reactions have become a valuable tool in organic synthesis. Similar to 1,4-regioisomer of 1,2,3-triazole, 1,5-disubstituted 1,2,3-triazole functions as biocompatible linkers and biologically active scaffolds. This review focuses on the synthesis and medicinal chemistry significance of these triazoles as versatile building blocks. Notably, they serve as bioisosteres of the cis-amide bond, conferring enhanced stability and mimicking constrained amino acids, making them crucial for peptidomimetic development. Hence, we are discussing their application in the development of peptidomimetics. 1,5-Disbstituted 1,2,3- triazoles mimic cis-amide bond in the peptides, altering their conformation and biological activity. Furthermore, we have discussed its application to create novel bioactive molecules, including mimics of natural products, nucleosides, nucleotides, glycoconjugates, and protein-protein interaction inhibitors. This review highlights their substantial potential in drug discovery, and provides a valuable resource for future research in this field.
Collapse
Affiliation(s)
- Kunj B Mishra
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| |
Collapse
|
2
|
Malik A, Huda NU, Tahir SS, Warsi Z, Arif R, Khan MA, Rasheed S. Identification of new 1,2,3-Triazole analogues of sulfanilamide as inhibitors of the carbonic anhydrase II enzyme: Comprehensive in-vitro and in-vivo analyses. Int J Biol Macromol 2025; 303:140426. [PMID: 39894100 DOI: 10.1016/j.ijbiomac.2025.140426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Carbonic anhydrases (CAs) play a vital role in various physiological processes by catalyzing the reversible hydration of CO2 into HCO3-, hence maintaining the fluid and pH balance. Overexpression of carbonic anhydrases II (CA II) is associated with diseases, such as glaucoma, and epilepsy; therefore, it is considered as an important clinical target. Therapeutically used CA inhibitors exhibit several undesirable effects; therefore, there is an urgent need to identify new, safe, and effective inhibitors of the CAs. Keeping in view the importance of CA II inhibition, a library of new 1,3-disubstituted-1,2,3-triazole analogues of sulfanilamide is synthesized via Click chemistry, starting from sulfanilamide azide and different substituted propargyl ethers, incorporating benzyl and heteroarylmethyl moieties. The new derivatives showed significant CA II inhibitory activity (IC50 ranging between 0.19 0.66 μM) when compared with the standard inhibitor, acetazolamide (0.13 ± 0.01 μM). Among all, compounds 16 and 17 showed the most potent activity (IC50 = 0.19 μM) followed by compounds 23, and 18 (IC50 = 0.24 ± 0.014 and 0.26 ± 0.04 μM, respectively). Kinetics studies showed that all compounds are competitive inhibitors of bCA II enzyme (Ki ranging between 0.14-0.68 μM). Additionally, molecular docking studies revealed that all compounds formed network of interactions with the active site residues of the bCA II enzyme. All compounds were found to be non-toxic against BJ Human fibroblast cells. From in-vivo studies, we found that CA activity was significantly inhibited by the intraperitoneal administration of compounds 16 and 17 for up to 5 h. In conclusion, new 1,2,3-triazole analogues of sulfanilamide were identified as good CA II inhibitors.
Collapse
Affiliation(s)
- Aqsa Malik
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Noor Ul Huda
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syeda Sarah Tahir
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zoha Warsi
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rida Arif
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maria Aqeel Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Saima Rasheed
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
3
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Ivanova J, Abdoli M, Nocentini A, Žalubovskis R, Supuran CT. Derivatives of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxide as selective inhibitors of human carbonic anhydrases IX and XII over the cytosolic isoforms I and II. J Enzyme Inhib Med Chem 2023; 38:2170370. [PMID: 36718988 PMCID: PMC9891166 DOI: 10.1080/14756366.2023.2170370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
A series of 4-methyl-1,2,3-benzoxathiazine-2,2-dioxides with various substituents in 5, 6 or 7 positions was obtained from corresponding 2'-hydroxyacetophenones in their reaction with sulphamoyl chloride. 6- and 7-aryl substituted 4-methyl-1,2,3-benzoxathiazine-2,2-dioxides were obtained from aryl substituted 2'-hydroxyacetophenonesprepared from 4- or 5-bromo-2'-hydroxyacetophenones via two-step protocol. 4-Methyl-1,2,3-benzoxathiazine-2,2-dioxides were investigated as inhibitors of four human (h) carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, off-target cytosolic hCA I and II, and target transmembrane, tumour-associated hCA IX and XII. Twenty derivatives of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxide were obtained. With one exception (compound2a), they mostly act as nanomolar inhibitors of target hCA IX and XII. Basically, all screened compounds express none or low inhibitory properties towards off-target hCA I. hCA II is inhibited in micromolar range. Overwhelming majority of 4-methyl-1,2,3-benzoxathiazine 2,2-dioxides express excellent selectivity towards CA IX/XII over hCA I as well as very good selectivity towards CA IX/XII over hCA II.
Collapse
Affiliation(s)
| | - Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
5
|
Dorbabu A. Pyrazole/pyrazoline as an excellent pharmacophore in the design of carbonic anhydrase inhibitors (2018-2022). Arch Pharm (Weinheim) 2023; 356:e2200562. [PMID: 36599496 DOI: 10.1002/ardp.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrase (CA) is a metalloenzyme that catalyzes the interconversion between carbon dioxide and water and dissociated ions of carbonic acid. In addition, CA performs various other functions in animals and plants, depending on the part of the living being. CAs have been found in almost all organisms. Besides, CAs are associated with several diseases, such as glaucoma, obesity, epilepsy, cancer, and so on. CAs are also involved in tumor cell growth and angiogenesis. Thus, inhibition of CA may be an attractive way of control of such diseases. Hence, CA inhibitors have been designed and developed to cure CA-associated diseases. Some examples of approved CA inhibitors are dorzolamide, methazolamide, brinzolamide, and dichlorphenamide. Furthermore, various heterocyclic scaffolds were utilized for the design of CA inhibitors. Among those, pyrazole/pyrazoline derivatives have exhibited greater potency toward CA inhibition. Hence, research that took place in the field of drug design and discovery of CA inhibition has been systematically reviewed and collated. Alongside, the structure-activity relationship has been described, followed by a description of the most potent molecules and their structural features.
Collapse
Affiliation(s)
- Atukuri Dorbabu
- SRMPP Government First Grade College, Huvina Hadagali, India
| |
Collapse
|
6
|
Ivanova J, Abdoli M, Nocentini A, Žalubovskis R, Supuran CT. 1,2,3-Benzoxathiazine-2,2-dioxides – effective inhibitors of human carbonic anhydrases. J Enzyme Inhib Med Chem 2023; 38:225-238. [DOI: 10.1080/14756366.2022.2142787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
7
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
8
|
Giovannuzzi S, Capasso C, Nocentini A, Supuran CT. Continued Structural Exploration of Sulfocoumarin as Selective Inhibitor of Tumor-Associated Human Carbonic Anhydrases IX and XII. Molecules 2022; 27:molecules27134076. [PMID: 35807318 PMCID: PMC9267968 DOI: 10.3390/molecules27134076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023] Open
Abstract
A series of new 3- and 7-substituted sulfocoumarins was obtained by several cyclization reactions and subsequent derivatization for screening as prodrug inhibitors of the human (h) cancer-associated carbonic anhydrases (CAs) IX and XII. All products were ineffective inhibitors against the off-target hCA I and II, whilst hCAs IX and XII were inhibited with inhibition constants (KIs) spanning from low nanomolar to the high micromolar range, according to the sulfocoumarin derivatization pattern. In particular, sulfocoumarin 15 turned out to be the most potent and selective inhibitor herein reported (hCA I and II: KI > 100 µM; hCA IX: KI = 22.9 nM; hCA XII: KI = 19.2 nM). Considering that hCA IX and XII validated anti-tumor targets, such prodrug, isoform-selective inhibitors as the sulfocoumarins reported here may be useful for identifying suitable drug candidates for clinical trials.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
- Correspondence: (A.N.); (C.T.S.)
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy;
- Correspondence: (A.N.); (C.T.S.)
| |
Collapse
|
9
|
Huang Y, Zhao X, Chen D, Zheng Y, Luo J, Huang S. Access to Sulfocoumarins via Three‐Component Reaction of β‐Keto Sulfonyl Fluorides, Arynes, and DMF. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Huang
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Xueyan Zhao
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Dengfeng Chen
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Yu Zheng
- Nanjing Forestry University Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing CHINA
| | - Jinyue Luo
- Nanjing Forestry University International Innovation Center for Forest Chemicals and Materials Nanjing CHINA
| | - Shenlin Huang
- Nanjing Forestry University College of Chemical Engineering No. 159, Longpan Road 210037 Nanjing CHINA
| |
Collapse
|
10
|
Xu Y, Zhang Z, Shi J, Liu X, Tang W. Recent developments of synthesis and biological activity of sultone scaffolds in medicinal chemistry. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
11
|
Galati S, Yonchev D, Rodríguez-Pérez R, Vogt M, Tuccinardi T, Bajorath J. Predicting Isoform-Selective Carbonic Anhydrase Inhibitors via Machine Learning and Rationalizing Structural Features Important for Selectivity. ACS OMEGA 2021; 6:4080-4089. [PMID: 33585783 PMCID: PMC7876851 DOI: 10.1021/acsomega.0c06153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 05/03/2023]
Abstract
Carbonic anhydrases (CAs) catalyze the physiological hydration of carbon dioxide and are among the most intensely studied pharmaceutical target enzymes. A hallmark of CA inhibition is the complexation of the catalytic zinc cation in the active site. Human (h) CA isoforms belonging to different families are implicated in a wide range of diseases and of very high interest for therapeutic intervention. Given the conserved catalytic mechanisms and high similarity of many hCA isoforms, a major challenge for CA-based therapy is achieving inhibitor selectivity for hCA isoforms that are associated with specific pathologies over other widely distributed isoforms such as hCA I or hCA II that are of critical relevance for the integrity of many physiological processes. To address this challenge, we have attempted to predict compounds that are selective for isoform hCA IX, which is a tumor-associated protein and implicated in metastasis, over hCA II on the basis of a carefully curated data set of selective and nonselective inhibitors. Machine learning achieved surprisingly high accuracy in predicting hCA IX-selective inhibitors. The results were further investigated, and compound features determining successful predictions were identified. These features were then studied on the basis of X-ray structures of hCA isoform-inhibitor complexes and found to include substructures that explain compound selectivity. Our findings lend credence to selectivity predictions and indicate that the machine learning models derived herein have considerable potential to aid in the identification of new hCA IX-selective compounds.
Collapse
Affiliation(s)
- Salvatore Galati
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Dimitar Yonchev
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Raquel Rodríguez-Pérez
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Martin Vogt
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
| | - Tiziano Tuccinardi
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
- . Phone: 39-050-2219595
| | - Jürgen Bajorath
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, D-53115 Bonn, Germany
- . Phone: 49-228-7369-100
| |
Collapse
|
12
|
Thacker PS, Sridhar Goud N, Argulwar OS, Soman J, Angeli A, Alvala M, Arifuddin M, Supuran CT. Synthesis and biological evaluation of some coumarin hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorg Chem 2020; 104:104272. [PMID: 32961467 DOI: 10.1016/j.bioorg.2020.104272] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 02/09/2023]
Abstract
Two series, coumarin-linked to thiazolidinone via a pyrazole linker (6a-m, Series 1) and coumarin-linked 1,2,3-triazoles (5a-j, Series 2) were synthesized and the synthesized compounds were subjected for evaluation against the four physiologically and pharmacologically relevant hCA isoforms, hCA I, II, IX and XII. The results indicated selective inhibition of tumor-associated isoforms hCA IX and XII over the off-target isoforms, hCA I and II. The compounds of series 1 exhibited better hCA IX inhibition compared to hCA XII, with compounds 6i, 6h, 6a and 6k, exhibiting notable Ki values of less than 100 nM. Among all the compounds, compound 6i showed the best inhibition with a Ki value of 61.5 nM. Among the compounds of series 2, compounds 5a, 5b, 5c, 5d, 5f and 5j exhibited notable hCA IX inhibition. Compound 5d showed the best inhibition with a Ki value of 32.7 nM. In the case of hCA XII, compound 5i showed the best inhibition with a Ki value of 84.2 nM. Hence, compound 6i from Series 1 and 5d from Series 2 could be taken as lead compounds for the further development of selective and potent hCA IX inhibitors, whereas the compound 5i from Series 2 can be explored further for the design of selective and potent hCA XII inhibitors.
Collapse
Affiliation(s)
- Pavitra S Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Nerella Sridhar Goud
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Omkar S Argulwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Jyothsna Soman
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India; Department of Chemistry, Anwarul Uloom College, 11-3-918, New Malleypally, Hyderabad 500001, T. S., India.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
13
|
Grandāne A, Nocentini A, Domračeva I, Žalubovskis R, Supuran CT. Development of oxathiino[6,5-b]pyridine 2,2-dioxide derivatives as selective inhibitors of tumor-related carbonic anhydrases IX and XII. Eur J Med Chem 2020; 200:112300. [PMID: 32460112 DOI: 10.1016/j.ejmech.2020.112300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/16/2022]
Abstract
Oxathiino[6,5-b]pyridine 2,2-dioxides are identified as a new class of isoform-selective nanomolar inhibitors of tumor associated human carbonic anhydrases (hCA) IX and XII. At the same time they do not inhibit or poorly inhibit cytosolic isoforms hCA I and II. Oxathiino[6,5-b]pyridine 2,2-dioxides exhibited good antiproliferative properties on tumor cell lines MCF-7 (Human breast adenocarcinoma), A549 (human lung (alveolar) adenocarcinoma) and HeLa (epithelioid cervix carcinoma).
Collapse
Affiliation(s)
- Aiga Grandāne
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Alessio Nocentini
- Università degli Studi di Firenze, NEUROFARBA Department, Section of Pharmaceutical Chemistry, Via Ugo Schiff 6, Sesto Fiorentino, Florence, 50019, Italy
| | - Ilona Domračeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., Riga, 1048, Latvia.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Department, Section of Pharmaceutical Chemistry, Via Ugo Schiff 6, Sesto Fiorentino, Florence, 50019, Italy
| |
Collapse
|
14
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
15
|
Benzoxepinones: A new isoform-selective class of tumor associated carbonic anhydrase inhibitors. Bioorg Med Chem 2020; 28:115496. [PMID: 32327349 DOI: 10.1016/j.bmc.2020.115496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
Benzoxepinones ("homocoumarins") are identified as a new class of selective inhibitors for tumor associated human carbonic anhydrases (hCA, EC 4.2.1.1) isoforms IX and XII. Similar to coumarins, they do not inhibit or poorly inhibit cytosolic human (h) isoforms hCA I and II, but act as nanomolar inhibitors of the trans-membrane, tumor associated isoforms hCA IX and XII.
Collapse
|
16
|
Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020; 15:671-686. [PMID: 32208982 DOI: 10.1080/17460441.2020.1743676] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The spacious active site cavity of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) shows a great versatility for a variety of binding modes for modulators of activity, inhibitors, and activators, some of which are clinically used drugs. AREAS COVERED There are at least four well-documented CA inhibition mechanisms and the same number of binding modes for CA inhibitors (CAIs), one of which superposes with the binding of activators (CAAs). They include (i) coordination to the catalytic metal ion; (ii) anchoring to the water molecule coordinated to the metal ion; (iii) occlusion of the active site entrance; and (iv) binding outside the active site. A large number of chemical classes of CAIs show these binding modes explored in detail by kinetic, crystallographic, and other techniques. The tail approach was applied to all of them and allowed many classes of highly isoform-selective inhibitors. This is the subject of our review. EXPERT OPINION All active site regions of CAs accommodate inhibitors to bind, which is reflected in very different inhibition profiles for such compounds and the possibility to design drugs with effective action and new applications, such as for the management of hypoxic tumors, neuropathic pain, cerebral ischemia, arthritis, and degenerative disorders.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence , Florence, Italy
| |
Collapse
|
17
|
Krasavin M, Žalubovskis R, Grandāne A, Domračeva I, Zhmurov P, Supuran CT. Sulfocoumarins as dual inhibitors of human carbonic anhydrase isoforms IX/XII and of human thioredoxin reductase. J Enzyme Inhib Med Chem 2020; 35:506-510. [PMID: 31928252 PMCID: PMC7006680 DOI: 10.1080/14756366.2020.1712596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) cancer-associated isoforms hCA IX and – hCA XII is being able to also inhibit thioredoxin reductase was verified and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative stress, may both contribute to the observed antiproliferative profile of these compounds against many cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for designing innovative therapeutic agents.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Aiga Grandāne
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Petr Zhmurov
- Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Claudiu T Supuran
- Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
18
|
Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov 2019; 14:1175-1197. [DOI: 10.1080/17460441.2019.1651289] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child’s Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
19
|
Bozdag M, Ferraroni M, Ward C, Carta F, Bua S, Angeli A, Langdon SP, Kunkler IH, Al-Tamimi AMS, Supuran CT. Carbonic anhydrase inhibitors based on sorafenib scaffold: Design, synthesis, crystallographic investigation and effects on primary breast cancer cells. Eur J Med Chem 2019; 182:111600. [PMID: 31419777 DOI: 10.1016/j.ejmech.2019.111600] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Carbonic anhydrase inhibitors (CAIs) of the sulfonamide, sulfamate and coumarin classes bearing the phenylureido tail found in the clinically used drug Sorafenib, a multikinase inhibitor actually used for the management of hepatocellular carcinomas, are reported. All compounds were assayed on human (h) CA isoforms I, II, VII and IX, involved in various pathologies. Among the sulfonamides, several compounds were selective for inhibiting hCA IX, with KI values in the low nanomolar ranges (i.e. 0.7-30.2 nM). We explored the binding modes of such compounds by means of X-ray crystallographic studies on isoform hCA I in adduct with one sulfonamide and a sulfamate inhibitor. Antiproliferative properties of some sulfamates on breast tumor cell lines were also investigated.
Collapse
Affiliation(s)
- Murat Bozdag
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Carol Ward
- Breakthrough Breast Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, UK
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Silvia Bua
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Simon P Langdon
- Breakthrough Breast Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, UK
| | - Ian H Kunkler
- Breakthrough Breast Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, UK
| | - Abdul-Malek S Al-Tamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Alkharj, 11942, Saudi Arabia
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
20
|
Podolski-Renić A, Dinić J, Stanković T, Jovanović M, Ramović A, Pustenko A, Žalubovskis R, Pešić M. Sulfocoumarins, specific carbonic anhydrase IX and XII inhibitors, interact with cancer multidrug resistant phenotype through pH regulation and reverse P-glycoprotein mediated resistance. Eur J Pharm Sci 2019; 138:105012. [PMID: 31330259 DOI: 10.1016/j.ejps.2019.105012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
New 6-triazolyl-substituted sulfocoumarins were described as potent inhibitors of the transmembrane human carbonic anhydrase isoforms, CAIX and CAXII. These membrane associated enzymes that maintain pH and CO2 homeostasis are involved in cancer progression, invasion, and resistance to therapy. Recently, it was shown that CAXII expression associates with the expression of P-glycoprotein in multidrug resistant cancer cells. CAXII regulates P-glycoprotein activity by maintaining high intracellular pHi. In this study, the activity of three new sulfocoumarins was evaluated in three sensitive and corresponding multidrug resistant cancer cell lines with increased P-glycoprotein expression (non-small cell lung carcinoma, colorectal carcinoma and glioblastoma). Compound 3 showed the highest potential for cancer cell growth inhibition in all tested cell lines. Flow cytometric analyses showed that compound 3 induced intracellular acidification, cell cycle arrest in G2/M phase and necrosis in non-small cell lung carcinoma cells. Compound 3 demonstrated irreversible, concentration- and time-dependent inhibition of P-glycoprotein activity in multidrug resistant non-small cell lung carcinoma cells. The suppression of P-glycoprotein activity was accompanied with increased P-glycoprotein expression suggesting a compensatory mechanism of multidrug resistant cancer cells. In addition, compound 3 was able to sensitize multidrug resistant non-small cell lung carcinoma cells to doxorubicin. Overall, results imply that compound 3 has multidrug resistance modulating effect through intracellular acidification and subsequent inhibition of P-glycoprotein activity.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia.
| | - Jelena Dinić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Stanković
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Amra Ramović
- State University of Novi Pazar, Vuka Karadzica bb, 36300 Novi Pazar, Serbia
| | - Aleksandrs Pustenko
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga LV-1048, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena Str. 3, Riga LV-1048, Latvia
| | - Milica Pešić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
21
|
Translational role of natural coumarins and their derivatives as anticancer agents. Future Med Chem 2019; 11:1057-1082. [PMID: 31140865 DOI: 10.4155/fmc-2018-0375] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural coumarins and their derivatives isolated from various plants or microorganisms have inherent antioxidant, antibacterial, antifungal, antiviral and anticancer properties among many biological activities. Some of these coumarins and their derivatives lead to self-programmed cancer cell death (apoptosis) via different mechanisms, which will be discussed. The link between bacterial and viral infections to cancer compels us to highlight fascinating reports from coumarin isolation from microorganisms; comment on the recent bioavailability studies of natural or derived coumarins; and discuss our perspectives with respect to bioisosterism in coumarins, p-glycoprotein inhibition and covalent modification, and bioprobes. Overall, this review hopes to stimulate and offer in particular medicinal chemists and the reader in general an outlook on natural coumarins and their derivatives with potential for cancer therapy.
Collapse
|
22
|
Sharma V, Kumar R, Bua S, Supuran CT, Sharma PK. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorg Chem 2019; 85:198-208. [DOI: 10.1016/j.bioorg.2019.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 12/28/2022]
|
23
|
Vats L, Sharma V, Angeli A, Kumar R, Supuran CT, Sharma PK. Synthesis of novel 4-functionalized 1,5-diaryl-1,2,3-triazoles containing benzenesulfonamide moiety as carbonic anhydrase I, II, IV and IX inhibitors. Eur J Med Chem 2018; 150:678-686. [PMID: 29571155 DOI: 10.1016/j.ejmech.2018.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 01/06/2023]
Abstract
The design, synthesis and biological evaluation of a library of 1,2,3-triazole carboxylates incorporating carboxylic acid, hydroxymethyl, carboxylic acid hydrazide, carboxamide and benzenesulfonamide moieties is disclosed. All the novel compounds were investigated for their inhibition potential against carbonic anhydrase (CA, EC 4.2.1.1) human (h) isoforms hCA I, II, IV and IX, well established drug targets. The cytosolic isoform hCA I was inhibited with Ki's ranging between 53.2 nM and 7.616 μM whereas the glaucoma associated cytosolic isoform hCA II was inhibited with Ki's in the range 21.8 nM-0.807 μM. The membrane bound isoform hCA IV, involved in glaucoma and retinitis pigmentosa among others, was effectively inhibited by some of these compounds with Ki < 60 nM, better than the reference drug acetazolamide (AAZ). The tumor associated isoform hCA IX, a recently validated antitumor/antimetastatic drug target, was also effectively inhibited by some of the new sulfonamides, which possess thus the potential to be used as tools for exploring in more details the selective inhibition of hCAs involved in various pathologies.
Collapse
Affiliation(s)
- Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm 188, and Neurofarba Department, Sezione di Scienze Farmaceutiche, Via U. Schiff 6, I-50019, Sesto Fiorentino (Firenze), Italy
| | - Rajiv Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm 188, and Neurofarba Department, Sezione di Scienze Farmaceutiche, Via U. Schiff 6, I-50019, Sesto Fiorentino (Firenze), Italy.
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
24
|
Nakai M, Pan J, Lin KS, Thompson JR, Nocentini A, Supuran CT, Nakabayashi Y, Storr T. Evaluation of 99mTc-sulfonamide and sulfocoumarin derivatives for imaging carbonic anhydrase IX expression. J Inorg Biochem 2018; 185:63-70. [PMID: 29778927 DOI: 10.1016/j.jinorgbio.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
With the aim to prepare hypoxia tumor imaging agents, technetium(I) and rhenium(I) tricarbonyl complexes with dipyridylamine (L1 = N-{[1-(2,2-dioxido-1,2-benzoxathiin-6-yl)-1H-1,2,3-triazol-4-yl]methyl}-N-(2-pyridinylmethyl)-2-pyridinemethanamine; L3 = N-{[1-[N-(4-aminosulfonylphenyl)]-1H-1,2,3-triazol-4-yl]methyl}-N-(2-pyridinyl-methyl)-2-pyridinemethanamine), and iminodiacetate (H2L2 = N-{[1-(2,2-dioxido-1,2-benzoxathiin-6-yl)-1H-1,2,3-triazole-4-yl]methyl}-N-(carboxy-methyl)-glycine; H2L4 = N-{[1-[N-(4-aminosulfonylphenyl)]-1H-1,2,3-triazole-4-yl]methyl}-N-(carboxymethyl)-glycine) ligands appended to sulfonamide or sulfocoumarin carbonic anhydrase inhibitors were synthesized. The Re(I) complexes were characterized using 1H/13C NMR, MS, EA, and in one case the X-ray structure of [Et3NH][Re(CO)3(L2)] was obtained. As expected, the Re coordination geometry is distorted octahedral, with a tridentate iminodiacetate ligand in a fac arrangement dictated by the three strong-field CO ligands. Inhibition studies of human carbonic anhydrases (hCAs) showed that the Re sulfocoumarin derivatives were inactive against hCA-I, -II and -IV, but had moderate affinity for hCA-IX. The Re sulfonamides showed improved affinity against all tested hCAs, with [Re(CO)3(L4)]- being the most active and selective for the hCA-IX isoform. The corresponding 99mTc complexes were synthesized from fac-[99mTc(CO)3(H2O)3]+, purified by HPLC, and obtained with average 41-76% decay-corrected radiochemical yields and with >99% radiochemical purity. Uptake in HT-29 tumors at 1 h post-injection was highest for [99mTc(CO)3(L4)]- (0.14 ± 0.10%ID/g) in comparison to [99mTc(CO)3(L1)]+ (0.06 ± 0.01%ID/g), [99mTc(CO)3(L2)]- (0.03 ± 0.00%ID/g), and [99mTc(CO)3(L3)]+ (0.07 ± 0.03%ID/g). The uptake in tumors was further reduced at 4 h post-injection. For potential imaging application with single photon emission computed tomography, further optimization is needed to improve the affinity to hCA-IX and uptake in hCA-IX expressing tumors.
Collapse
Affiliation(s)
- Misaki Nakai
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamatecho, Suita-shi, Osaka 564-8680, Japan.
| | - Jihne Pan
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | - John R Thompson
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Alessio Nocentini
- NEUROFARBA Department, Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino,50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino,50019 Florence, Italy
| | - Yasuo Nakabayashi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamatecho, Suita-shi, Osaka 564-8680, Japan
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
25
|
Supuran CT, Alterio V, Di Fiore A, D' Ambrosio K, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med Res Rev 2018; 38:1799-1836. [PMID: 29635752 DOI: 10.1002/med.21497] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Human carbonic anhydrase (CA) IX is a tumor-associated protein, since it is scarcely present in normal tissues, but highly overexpressed in a large number of solid tumors, where it actively contributes to survival and metastatic spread of tumor cells. Due to these features, the characterization of its biochemical, structural, and functional features for drug design purposes has been extensively carried out, with consequent development of several highly selective small molecule inhibitors and monoclonal antibodies to be used for different purposes. Aim of this review is to provide a comprehensive state-of-the-art of studies performed on this enzyme, regarding structural, functional, and biomedical aspects, as well as the development of molecules with diagnostic and therapeutic applications for cancer treatment. A brief description of additional pharmacologic applications for CA IX inhibition in other diseases, such as arthritis and ischemia, is also provided.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, Naples, Italy
| | | | - Fabrizio Carta
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | | |
Collapse
|
26
|
|
27
|
Atahan A, Gencer N, Bilen C, Yavuz E, Genc H, Sonmez F, Zengin M, Ceylan M, Kucukislamoglu M. Synthesis, Biological Activity and Structure-Activity Relationship of Novel Diphenylurea Derivatives Containing Tetrahydroquinoline as Carbonic Anhydrase I and II Inhibitors. ChemistrySelect 2018. [DOI: 10.1002/slct.201702562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alparslan Atahan
- Duzce University; Department of Polymer Engineering; Faculty of Technology; 81620 Duzce Turkey
| | - Nahit Gencer
- Balikesir University; Department of Chemistry; Faculty of Arts and Science; 10145 Balikesir Turkey
| | - Cigdem Bilen
- Balikesir University; Department of Chemistry; Faculty of Arts and Science; 10145 Balikesir Turkey
| | - Emre Yavuz
- Balikesir University; Department of Chemistry; Faculty of Arts and Science; 10145 Balikesir Turkey
| | - Hayriye Genc
- Sakarya University; Department of Chemistry; Faculty of Arts and Science; 54187 Sakarya Turkey
| | - Fatih Sonmez
- Sakarya University; Department of Chemistry; Faculty of Arts and Science; 54187 Sakarya Turkey
| | - Mustafa Zengin
- Sakarya University; Department of Chemistry; Faculty of Arts and Science; 54187 Sakarya Turkey
| | - Mustafa Ceylan
- Gaziosmanpasa University; Department of Chemistry; Faculty of Arts and Science; 60250 Tokat Turkey
| | - Mustafa Kucukislamoglu
- Sakarya University; Department of Chemistry; Faculty of Arts and Science; 54187 Sakarya Turkey
| |
Collapse
|
28
|
Alterio V, Esposito D, Monti SM, Supuran CT, De Simone G. Crystal structure of the human carbonic anhydrase II adduct with 1-(4-sulfamoylphenyl-ethyl)-2,4,6-triphenylpyridinium perchlorate, a membrane-impermeant, isoform selective inhibitor. J Enzyme Inhib Med Chem 2017; 33:151-157. [PMID: 29199489 PMCID: PMC7011996 DOI: 10.1080/14756366.2017.1405263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyridinium containing sulfonamides have been largely investigated as carbonic anhydrase inhibitors (CAIs), showing interesting selectivity features. Nevertheless, only few structural studies are so far available on adducts that these compounds form with diverse CA isoforms. In this paper, we report the structural characterization of the adduct that a triphenylpyridinium derivative forms with hCA II, showing that the substitution of the pyridinium ring plays a key role in determining the conformation of the inhibitor in the active site and consequently the binding affinity to the enzyme. These findings open new perspectives on the basic structural requirements for designing sulfonamide CAIs with a selective inhibition profile.
Collapse
Affiliation(s)
| | - Davide Esposito
- a Istituto di Biostrutture e Bioimagini-CNR , Naples , Italy
| | | | - Claudiu T Supuran
- b Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences , Università degli Studi di Firenze , Sesto Fiorentino, Florence , Italy
| | | |
Collapse
|
29
|
Vullo D, Kumar RSS, Scozzafava A, Ferry JG, Supuran CT. Sulphonamide inhibition studies of the β-carbonic anhydrase from the bacterial pathogen Clostridium perfringens. J Enzyme Inhib Med Chem 2017; 33:31-36. [PMID: 29098923 PMCID: PMC6009973 DOI: 10.1080/14756366.2017.1388233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Clostridium perfringens (CpeCA) was recently characterised kinetically and for its anion inhibition profile. In the search of effective CpeCA inhibitors, possibly useful to inhibit the growth/pathogenicity of this bacterium, we report here an inhibition study of this enzyme with a panel of aromatic, heterocyclic and sugar sulphonamides/sulphamates. Some sulphonamides, such as acetazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, sulthiame and 4-(2-hydroxymethyl-4-nitrophenyl-sulphonamido)ethylbenzenesulphonamide were effective CpeCA inhibitors, with KIs in the range of 37.4-71.6 nM. Zonisamide and saccharin were the least effective such inhibitors, whereas many other aromatic and heterocyclic sulphonamides were moderate - weak inhibitors with KIs ranging between 113 and 8755 nM. Thus, this study provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.
Collapse
Affiliation(s)
- Daniela Vullo
- a Chemistry Department, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| | - R Siva Sai Kumar
- b Department of Biochemistry and Molecular Biology, Eberly College of Science , The Pennsylvania State University , University Park , PA , USA
| | - Andrea Scozzafava
- a Chemistry Department, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy
| | - James G Ferry
- b Department of Biochemistry and Molecular Biology, Eberly College of Science , The Pennsylvania State University , University Park , PA , USA
| | - Claudiu T Supuran
- a Chemistry Department, Laboratorio di Chimica Bioinorganica , Università degli Studi di Firenze , Florence , Italy.,c NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| |
Collapse
|
30
|
Angapelly S, Sri Ramya PV, Angeli A, Supuran CT, Arifuddin M. Sulfocoumarin-, Coumarin-, 4-Sulfamoylphenyl-Bearing Indazole-3-carboxamide Hybrids: Synthesis and Selective Inhibition of Tumor-Associated Carbonic Anhydrase Isozymes IX and XII. ChemMedChem 2017; 12:1578-1584. [DOI: 10.1002/cmdc.201700446] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/20/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Srinivas Angapelly
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| | - P. V. Sri Ramya
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| | - Andrea Angeli
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Claudiu T. Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| |
Collapse
|
31
|
Bozdag M, Alafeefy AM, Altamimi AM, Carta F, Supuran CT, Vullo D. Synthesis of new 3-(2-mercapto-4-oxo-4 H -quinazolin-3-yl)-benzenesulfonamides with strong inhibition properties against the tumor associated carbonic anhydrases IX and XII. Bioorg Med Chem 2017; 25:2782-2788. [DOI: 10.1016/j.bmc.2017.03.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/01/2023]
|
32
|
Coumarins and other fused bicyclic heterocycles with selective tumor-associated carbonic anhydrase isoforms inhibitory activity. Bioorg Med Chem 2017; 25:677-683. [DOI: 10.1016/j.bmc.2016.11.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
|
33
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
34
|
Abstract
INTRODUCTION The enzyme carbonic anhydrase (CA, EC 4.2.1.1) is found in numerous organisms across the tree of life, with seven distinct classes known to date. CA inhibition can be exploited for the treatment of edema, glaucoma, seizures, obesity, cancer and infectious diseases. A myriad of CA inhibitor (CAI) classes and inhibition mechanisms have been identified over the past decade, mainly through structure-based drug design approaches. Five different CA inhibition mechanisms are presently known. Areas covered: Recent advances in structure-based CAI design are reviewed, with periodic table-based organization of inhibitor classes. Expert opinion: Various structure-based drug design studies have led to deep understanding of factors governing tight binding and selectivity for the various isoforms. Carboxylic acids, phenols, polyamines, diols, borols, boronic acids, coumarins and sulfonamides represent successful stories which led to an anti-tumor sulfonamide in Phase I clinical trials (SLC-0111). For many inhibitor classes, no detailed crystallographic data are available. Detailed structural characterization of all CAI classes may lead to further advances in the field with potential therapeutic implications in the management of indications including neuropathic pain, cerebral ischemia, arthritis and tumor imaging.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
35
|
Wang D, Yang Y, Huang R, Wang L, Wan H. Synthesis of Allenes through Triazole Gold(III) Catalysed Rearrangement of Propargyl Vinyl Ethers. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14754985053189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient and simple method to the synthesis of allene derivatives was developed through pyridyltriazole gold(III) catalysed rearrangement of propargyl vinyl ethers with moderate to good yields. It was found that the pyridyltriazole gold(III) complex is a good chemoselective catalyst in selective activation of alkynes and allenes. Compared to gold(I) catalysts, the pyridyltriazole gold(III) shows much better substrate tolerance and much higher air and moisture stability.
Collapse
Affiliation(s)
- Dawei Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P.R. China
| | - Yongchun Yang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P.R. China
| | - Ronghui Huang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P.R. China
| | - Likui Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P.R. China
| | - Huida Wan
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P.R. China
| |
Collapse
|
36
|
Kurt BZ, Sonmez F, Gokce B, Ergun A, Gencer N, Demir T, Arslan O, Kucukislamoglu M. In vitro inhibition effects on erythrocyte carbonic anhydrase I and II and structure-activity relationships of cumarylthiazole derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016050046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Rad-Moghadam K, Hassani SARM, Roudsari ST. N-methyl-2-pyrrolidonium chlorosulfonate: An efficient ionic-liquid catalyst and mild sulfonating agent for one-pot synthesis of δ-sultones. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Fluorescent sulfonamide carbonic anhydrase inhibitors incorporating 1,2,3-triazole moieties: Kinetic and X-ray crystallographic studies. Bioorg Med Chem 2016; 24:104-12. [DOI: 10.1016/j.bmc.2015.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022]
|
39
|
Nocentini A, Ceruso M, Carta F, Supuran CT. 7-Aryl-triazolyl-substituted sulfocoumarins are potent, selective inhibitors of the tumor-associated carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2015; 31:1226-33. [DOI: 10.3109/14756366.2015.1115401] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Alessio Nocentini
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
| | - Mariangela Ceruso
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| | - Fabrizio Carta
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T. Supuran
- University of Florence, Neurofarba Department, Sesto Fiorentino, Firenze, Italy and
- University of Florence, Dipartimento di Chimica “U. Schiff”, Laboratorio di Chimica Bioinorganica, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
40
|
Abstract
Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Neurofarba Department, Laboratorio Di Chimica Bioinorganica, Sezione Di Chimica Farmaceutica E Nutraceutica, Università Degli Studi Di Firenze , Florence , Italy
| |
Collapse
|
41
|
Alcaide B, Almendros P, Aragoncillo C, Fernández I, Gómez-Campillos G. Metal-Free Allene-Based Synthesis of Enantiopure Fused Polycyclic Sultones. Chemistry 2015; 22:285-94. [PMID: 26592734 DOI: 10.1002/chem.201504045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Benito Alcaide
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid (Spain).
| | - Pedro Almendros
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid (Spain).
| | - Cristina Aragoncillo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid (Spain)
| | - Israel Fernández
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid (Spain)
| | - Gonzalo Gómez-Campillos
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica I, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid (Spain)
| |
Collapse
|
42
|
Leitans J, Kazaks A, Balode A, Ivanova J, Zalubovskis R, Supuran CT, Tars K. Efficient Expression and Crystallization System of Cancer-Associated Carbonic Anhydrase Isoform IX. J Med Chem 2015; 58:9004-9. [DOI: 10.1021/acs.jmedchem.5b01343] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janis Leitans
- Biomedical Research and Study Center, Ratsupites 1, LV-1067, Riga, Latvia
| | - Andris Kazaks
- Biomedical Research and Study Center, Ratsupites 1, LV-1067, Riga, Latvia
| | - Agnese Balode
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Jekaterina Ivanova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Claudiu T. Supuran
- NEUROFARBA
Department, Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Laboratorio
di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via dellaLastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Kaspars Tars
- Biomedical Research and Study Center, Ratsupites 1, LV-1067, Riga, Latvia
- Faculty
of Biology, Department of Molecular Biology, University of Latvia, Jelgavas 1, LV-1004, Riga, Latvia
| |
Collapse
|
43
|
Click-tailed coumarins with potent and selective inhibitory action against the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem 2015; 23:6955-66. [DOI: 10.1016/j.bmc.2015.09.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/19/2023]
|
44
|
Kurt BZ, Sönmez F, Bilen Ç, Ergun A, Gençer N, Arslan O, Kucukislamoglu M. Synthesis, antioxidant and carbonic anhydrase I and II inhibitory activities of novel sulphonamide-substituted coumarylthiazole derivatives. J Enzyme Inhib Med Chem 2015; 31:991-8. [DOI: 10.3109/14756366.2015.1077823] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Belma Zengin Kurt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey,
| | - Fatih Sönmez
- Pamukova Vocational High School, Sakarya University, Sakarya, Turkey,
| | - Çiğdem Bilen
- Department of Chemistry, Faculty of Art and Sciences, Balikesir University, Balikesir, Turkey, and
| | - Adem Ergun
- Department of Chemistry, Faculty of Art and Sciences, Balikesir University, Balikesir, Turkey, and
| | - Nahit Gençer
- Department of Chemistry, Faculty of Art and Sciences, Balikesir University, Balikesir, Turkey, and
| | - Oktay Arslan
- Department of Chemistry, Faculty of Art and Sciences, Balikesir University, Balikesir, Turkey, and
| | - Mustafa Kucukislamoglu
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| |
Collapse
|
45
|
In a search for selective inhibitors of carbonic anhydrases: coumarin and its bioisosteres – synthesis and derivatization. Chem Heterocycl Compd (N Y) 2015. [DOI: 10.1007/s10593-015-1748-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Lugini L, Federici C, Borghi M, Azzarito T, Marino ML, Cesolini A, Spugnini EP, Fais S. Proton pump inhibitors while belonging to the same family of generic drugs show different anti-tumor effect. J Enzyme Inhib Med Chem 2015; 31:538-45. [PMID: 26018420 DOI: 10.3109/14756366.2015.1046062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CONTEXT Tumor acidity represents a major cause of chemoresistance. Proton pump inhibitors (PPIs) can neutralize tumor acidity, sensitizing cancer cells to chemotherapy. OBJECTIVE To compare the anti-tumor efficacy of different PPIs in vitro and in vivo. MATERIALS AND METHODS In vitro experiments PPIs anti-tumor efficacy in terms of cell proliferation and cell death/apoptosis/necrosis evaluation were performed. In vivo PPIs efficacy experiments were carried out using melanoma xenograft model in SCID mice. RESULTS Lansoprazole showed higher anti-tumor effect when compared to the other PPIs. The lansoprazole effect lasted even upon drug removal from the cell culture medium and it was independent from the lipophilicity of the PPIs formulation. DISCUSSION These PPIs have shown different anti-tumoral efficacy, and the most effective at low dose was lansoprazole. CONCLUSION The possibility to contrast tumor acidity by off-label using PPIs opens a new field of oncology investigation.
Collapse
Affiliation(s)
- Luana Lugini
- a Department of Therapeutic Research and Medicine Evaluation
| | | | - Martina Borghi
- b Department of Infectious, Parasitic and Immune-Mediate Diseases , and
| | | | | | - Albino Cesolini
- c Department of Ematology, Oncology and Molecular Biology , National Institute of Health , Rome , Italy
| | | | - Stefano Fais
- a Department of Therapeutic Research and Medicine Evaluation
| |
Collapse
|
47
|
Qi Z, Wang M, Li X. Rh(III)-catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group. Chem Commun (Camb) 2015; 50:9776-8. [PMID: 25025696 DOI: 10.1039/c4cc03627a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new rhodium-catalyzed synthesis of sultones via the oxidative coupling of sulfonic acids with internal alkynes is described. The reaction proceeds via aryl C-H activation assisted by a sulfonic acid group.
Collapse
Affiliation(s)
- Zisong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | | | | |
Collapse
|
48
|
Grandane A, Tanc M, Di Cesare Mannelli L, Carta F, Ghelardini C, Žalubovskis R, Supuran CT. 6-Substituted Sulfocoumarins Are Selective Carbonic Anhdydrase IX and XII Inhibitors with Significant Cytotoxicity against Colorectal Cancer Cells. J Med Chem 2015; 58:3975-83. [DOI: 10.1021/acs.jmedchem.5b00523] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Aiga Grandane
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Muhammet Tanc
- NEUROFARBA Department,
Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA Department,
Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Fabrizio Carta
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department,
Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Claudiu T. Supuran
- NEUROFARBA Department,
Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
49
|
Grandane A, Tanc M, Žalubovskis R, Supuran CT. Synthesis of 6-aryl-substituted sulfocoumarins and investigation of their carbonic anhydrase inhibitory action. Bioorg Med Chem 2015; 23:1430-6. [DOI: 10.1016/j.bmc.2015.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/08/2015] [Accepted: 02/12/2015] [Indexed: 11/30/2022]
|
50
|
Vullo D, Isik S, Bozdag M, Carta F, Supuran CT. 7-Amino-3,4-dihydro-1H-quinolin-2-one, a compound similar to the substituted coumarins, inhibits α-carbonic anhydrases without hydrolysis of the lactam ring. J Enzyme Inhib Med Chem 2015; 30:773-7. [PMID: 25672528 DOI: 10.3109/14756366.2014.970185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
7-Amino-3,4-dihydro-1H-quinolin-2-one, a compound structurally similar to coumarins, recently discovered class of inhibitors of the α-carbonic anhydrases (CAs, EC 4.2.1.1) was investigated for its interaction with all human (h) CA isoforms, hCA I-XIV. The compound was not an inhibitor of the cytosolic, widespread isoform hCA II (K(I) > 10 µM), was a weak inhibitor of hCA I, III, IV, VA, VI and XIII (K(I)s in the range of 0.90-9.5 µM) but effectively inhibited the cytosolic isoform hCA VII (K(I) of 480 nM) as well as the transmembrane isoforms hCA IX, XII and XIV (K(I)s in the range of 16.1-510 nM). Against many CA isoforms this lactam was a better inhibitor compared to the structurally similar 4-methyl-7-aminocoumarin, but unlike this compound, the lactam ring was not hydrolyzed and the inhibition was due to the intact bicyclic amino-quinolinone scaffold. Bicyclic lactams strucurally related to coumarins are thus a new class of CA inhibitors possessing however a distinct inhibition mechanism compared to the coumarins which undergo a hydrolysis of their lactone ring for generating the enzyme inhibitory species.
Collapse
Affiliation(s)
- Daniela Vullo
- a Department of Chemistry "Ugo Shiff" , University of Florence , Sesto Fiorentino , Italy
| | | | | | | | | |
Collapse
|