1
|
Bai X, Zhu J, Chen Y, Sun H. The design and development of LRRK2 inhibitors as novel therapeutics for Parkinson's disease. Future Med Chem 2025; 17:221-236. [PMID: 39717965 PMCID: PMC11749465 DOI: 10.1080/17568919.2024.2444875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease affecting nearly 10 million people worldwide and placing a heavy medical burden on both society and families. However, due to the complexity of its pathological mechanisms, current treatments for PD can only alleviate patients' symptoms. Therefore, novel therapeutic strategies are urgently sought in clinical practice. Leucine-rich repeat kinase 2 (LRRK2) has emerged as a highly promising target for PD therapy. Missense mutations within the structural domain of LRRK2, the most common genetic risk factor for PD, lead to abnormally elevated kinase activity and increase the risk of developing PD. In this article, we provide a comprehensive overview of the structure, biological function, and pathogenic mutations of LRRK2, and examine recent advances in the development of LRRK2 inhibitors. We hope that this article will provide a reference for the design of novel LRRK2 inhibitors based on summarizing the facts and elucidating the viewpoints.
Collapse
Affiliation(s)
- Xiaoxue Bai
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiawei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Naskar A, Roy RK, Srivastava D, Patra N. Decoding Inhibitor Egression from Wild-Type and G2019S Mutant LRRK2 Kinase: Insights into Unbinding Mechanisms for Precision Drug Design in Parkinson's Disease. J Phys Chem B 2024; 128:6657-6669. [PMID: 38822803 DOI: 10.1021/acs.jpcb.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) remains a viable target for drug development since the discovery of the association of its mutations with Parkinson's disease (PD). G2019S (in the kinase domain) is the most common mutation for LRRK2-based PD. Though various types of inhibitors have been developed for the kinase domain to reduce the effect of the mutation, understanding the working of these inhibitors at the molecular level is still ongoing. This study focused on the exploration of the dissociation mechanism (pathways) of inhibitors from (WT and G2019S) LRRK2 kinase (using homology model CHK1 kinase), which is one of the crucial aspects in drug discovery. Here, two ATP-competitive type I inhibitors, PF-06447475 and MLi-2 (Comp1 and Comp2 ), and one non-ATP-competitive type II inhibitor, rebastinib (Comp3), were considered for this investigation. To study the unbinding process, random accelerated molecular dynamics simulations were performed. The binding free energies of the three inhibitors for different egression paths were determined using umbrella sampling. This work found four major egression pathways that were adopted by the inhibitors Comp1 (path1, path2, and path3), Comp2 (path1, path2 and path3), and Comp3 (path3 and path4). Also, the mechanism of unbinding for each path and key residues involved in unbinding were explored. Mutation was not observed to impact the preference of the particular egression pathways for both LRRK2-Comp1 and -Comp2 systems. However, the findings suggested that the size of the inhibitor molecules might have an effect on the preference of the egression pathways. The binding energy and residence time of the inhibitors followed a similar trend to experimental observations. The findings of this work might provide insight into designing more potent inhibitors for the G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
3
|
Suo SN, Tian Y, Tan WL, Lou XY, Xu H, Wang YW, Peng Y. A Near-Infrared Colorimetric Fluorescent Probe for Ferrous Ion Detection and Imaging. J Fluoresc 2024; 34:1545-1550. [PMID: 37505364 DOI: 10.1007/s10895-023-03354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Based on the N-redox mechanism, a turn-on near-infrared fluorescence probe (SWJT-15) with cyano isophorone as skeleton was designed and synthesized for the detection of ferrous ions (Fe2+). The probe has a lower detection limit (83 nM) and fast response (200 s) to Fe2+ ions. And the probe has unique selectivity and good anti-interference performance against Fe2+ ions compared to other metal ions. Moreover, the probe has been successfully applied to imaging Fe2+ ions in HeLa cells.
Collapse
Affiliation(s)
- Sheng-Nan Suo
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Yang Tian
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Wei-Lun Tan
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Xiao-Yang Lou
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Hai Xu
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Yu Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| |
Collapse
|
4
|
Baidya AT, Deshwal S, Das B, Mathew AT, Devi B, Sandhir R, Kumar R. Catalyzing a Cure: Discovery and development of LRRK2 inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 143:106972. [PMID: 37995640 DOI: 10.1016/j.bioorg.2023.106972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD. LRRK2, is therefore considered as a legitimate target for the development of therapeutics against PD. During the last decade, efforts have been made to develop effective, safe and selective LRRK2 inhibitors and also our understanding about LRRK2 has progressed. However, there is an urge to learn from the previously designed and reported LRRK2 inhibitors in order to effectively approach designing of new LRRK2 inhibitors. In this review, we have aimed to cover the pre-clinical studies undertaken to develop small molecule LRRK2 inhibitors by screening the patents and other available literature in the last decade. We have highlighted LRRK2 as targets in the progress of PD and subsequently covered detailed design, synthesis and development of diverse scaffolds as LRRK2 inhibitors. Moreover, LRRK2 inhibitors under clinical development has also been discussed. LRRK2 inhibitors seem to be potential targets for future therapeutic interventions in the treatment and management of PD and this review can act as a cynosure for guiding discovery, design, and development of selective and non-toxic LRRK2 inhibitors. Although, there might be challenges in developing effective LRRK2 inhibitors, the opportunity to successfully develop novel therapeutics targeting LRRK2 against PD has never been greater.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Sonam Deshwal
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Alen T Mathew
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India.
| |
Collapse
|
5
|
Cao R, Chen C, Wen J, Zhao W, Zhang C, Sun L, Yuan L, Wu C, Shan L, Xi M, Sun H. Recent advances in targeting leucine-rich repeat kinase 2 as a potential strategy for the treatment of Parkinson's disease. Bioorg Chem 2023; 141:106906. [PMID: 37837728 DOI: 10.1016/j.bioorg.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Several single gene mutations involved in PD have been identified such as leucine-rich repeat kinase 2 (LRRK2), the most common cause of sporadic and familial PD. Its mutations have attracted much attention to therapeutically targeting this kinase. To date, many compounds including small chemical molecules with diverse scaffolds and RNA agents have been developed with significant amelioration in preclinical PD models. Currently, five candidates, DNL201, DNL151, WXWH0226, NEU-723 and BIIB094, have advanced to clinical trials for PD treatment. In this review, we describe the structure, pathogenic mutations and the mechanism of LRRK2, and summarize the development of LRRK2 inhibitors in preclinical and clinical studies, trying to provide an insight into targeting LRRK2 for PD intervention in future.
Collapse
Affiliation(s)
- Ruiwei Cao
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Caiping Chen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Jing Wen
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Weihe Zhao
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | | | - Longhui Sun
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Liyan Yuan
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Lei Shan
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Naskar A, Bhanja KK, Roy RK, Patra N. Structural insight into G2019S mutated LRRK2 kinase and brain-penetrant type I inhibitor complex: a molecular dynamics approach. J Biomol Struct Dyn 2023; 42:10129-10149. [PMID: 37702159 DOI: 10.1080/07391102.2023.2255675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
More than 40 mutations in the multidomain leucine-rich repeat kinase 2 (LRRK2) are found and mutation G2019S in the kinase domain is the most concerned with Parkinson's disease (PD). The discovery of the various types of inhibitors has largely emerged recently. However, the comparative study on molecular insight in WT and G2019S LRRK2 kinase domain upon binding of the inhibitors has not yet been explored in detail. This work considered five ATP-competitive Type I inhibitors complexed with WT and mutated LRRK2 kinase. Three reported potent and brain-penetrant inhibitors, GNE-7915, PF-06447475 and MLi-2 (comp1, comp2 and comp3 respectively) and also, another two inhibitors, Pyrrolo[2,3-b] pyridine derivative (comp4) and Pyrrolo[2,3-d] pyrimidine derivative (comp5), were used. In this work, classical and accelerated molecular dynamics (cMD and aMD) simulations were performed for a total of 12 systems (apo and holo). This study found structural and thermodynamic stability for all the inhibitors. Comparatively larger molecules (size 15.3 - 15.4 Å), comp1, comp3 and comp5, showed more selectivity towards mutated LRRK2 kinase in terms of flexibility of residues, compactness and dynamics of kinase, the stability inside the binding-pocket. Also, inhibitors comp3 and comp5 showed higher binding affinity towards G2019S LRRK2 among the five. Residues, E1948 and A1950 (in hinge region) were observed mainly to form hydrogen bonds with inhibitors. Finally, MLi-2 showed a conformational rearrangement by dihedral flipping in both WT and mutated systems but got stability in G2019S LRRK2. This work could potentially help design more improved and effective Type I inhibitors for G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Kousik K Bhanja
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India
| |
Collapse
|
7
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Patel A, Patel S, Mehta M, Patel Y, Langaliya D, Bhalodiya S, Bambharoliya T. Recent Update on the Development of Leucine- Rich Repeat Kinase 2 (LRRK2) Inhibitors: A Promising Target for the Treatment of Parkinson's Disease. Med Chem 2022; 18:757-771. [PMID: 35168510 DOI: 10.2174/1573406418666220215122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is a relatively common neurological disorder with incidence increasing with age. Since current medications only relieve the symptoms and do not change the course of the disease, therefore, finding disease-modifying therapies is a critical unmet medical need. However, significant progress in understanding how genetics underpins Parkinson's disease (PD) has opened up new opportunities for understanding disease pathogenesis and identifying possible therapeutic targets. One such target is leucine-rich repeat kinase 2 (LRRK2), an elusive enzyme implicated in both familial and idiopathic PD risk. As a result, both academia and industry have promoted the development of potent and selective inhibitors of LRRK2. In this review, we have summarized recent progress on the discovery and development of LRKK2 inhibitors as well as the bioactivity of several small-molecule LRRK2 inhibitors that have been used to inhibit LRRK2 kinase activity in vitro or in vivo.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Stuti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Meshwa Mehta
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Yug Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Dhruv Langaliya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Shyam Bhalodiya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
9
|
Targeting leucine-rich repeat kinase 2 (LRRK2) for the treatment of Parkinson's disease. Future Med Chem 2019; 11:1953-1977. [DOI: 10.4155/fmc-2018-0484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a serine-threonine kinase involved in multiple cellular processes and signaling pathways. LRRK2 mutations are associated with autosomal-inherited Parkinson's disease (PD), and evidence suggests that LRRK2 pathogenic variants generally increase kinase activity. Therefore, inhibition of LRRK2 kinase function is a promising therapeutic strategy for PD treatment. The search for drug-like molecules capable of reducing LRRK2 kinase activity in PD led to the design of selective LRRK2 inhibitors predicted to be within the CNS drug-like space. This review highlights the journey that translates chemical tools for interrogating the role of LRRK2 in PD into promising drug candidates, addressing the challenges in discovering selective and brain-penetrant LRRK2 modulators and exploring the structure–activity relationship of distinct LRRK2 inhibitors.
Collapse
|
10
|
Jiang X, Yang L, Yang W, Zhu Y, Fang L, Yu C. Controllable synthesis of 3-chloro- and 3,3-dichloro-2-oxindoles via hypervalent iodine-mediated chlorooxidation. Org Biomol Chem 2019; 17:6920-6924. [PMID: 31282524 DOI: 10.1039/c9ob01173k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and controllable protocol for the synthesis of 3-chloro- and 3,3-dichloro-2-oxindoles has been developed via hypervalent iodine-promoted chlorooxidation. By using two equivalents of 1-chloro-1,2-benziodoxol-3-(1H)-one, a wide range of indoles were transformed into 3-chloro-2-oxindoles in DMF/CF3CO2H/H2O at room temperature with good yields. As far as we know, this is the first report on the selective C-2 oxidation and C-3 monochlorination of simple indoles. In addition, three equivalents of the same hypervalent iodine afforded 3,3-dichloro-2-oxindoles in up to 99% yields under optimized conditions (dioxane/H2O, 80 °C). The method features mild reaction conditions, the widespread availability of the substrates, and good functional group tolerance.
Collapse
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Liechao Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Wenlong Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Yu Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Liyun Fang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| |
Collapse
|
11
|
Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors. Eur J Med Chem 2018; 155:197-209. [DOI: 10.1016/j.ejmech.2018.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
|
12
|
Ahmad S, St Hilaire VR, Dandepally SR, Johnson GL, Williams AL, Scott JE. Discovery and characterization of an iminocoumarin scaffold as an inhibitor of MEKK2 (MAP3K2). Biochem Biophys Res Commun 2018; 496:205-211. [PMID: 29309787 DOI: 10.1016/j.bbrc.2018.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022]
Abstract
The kinase MEKK2 (MAP3K2) activates the MEK5/ERK5 cell signaling pathway and may play an important role in tumor growth and metastasis. Thus, MEKK2 may represent a novel kinase target for cancer. In order to identify inhibitors of MEKK2, we screened a library of compounds using a high throughput MEKK2 intrinsic ATPase enzyme assay. We identified two hits with validated structures and confirmed activity in the primary assay (IC50 values = 322 nM and 7.7 μM) and two orthogonal MEKK2 biochemical assays. Compound 1, the more potent hit, was the subject of further investigation. Limited structure-activity relationship (SAR) studies were performed on this iminocoumarin hit which resulted in ≥20-fold more potent analogs (e.g. 8 and 16 nM IC50). Two analogs had improved selectivity in a 50-member kinase profiling panel compared to the hit. These studies suggested that substitutions around the phenoxy ring of this scaffold can impart improved potency and selectivity for MEKK2. Analog Compound 1s (16 nM IC50) was further verified by external testing to inhibit MEKK2 and MEKK3 with similar potencies. Compound 1s displayed activity in cell-based assays in which it inhibited ERK5 pathway activation in cells and inhibited cell migration in a scratch assay. Thus, we have identified a scaffold that has promising potential to be developed into a highly selective and potent inhibitor of MEKK2. Information from these SAR studies provides specific guidance for the future design of MEKK2 inhibitor probes.
Collapse
Affiliation(s)
- Syed Ahmad
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Valentine R St Hilaire
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Srinivasa R Dandepally
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Alfred L Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - John E Scott
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
13
|
Williamson DS, Smith GP, Acheson-Dossang P, Bedford ST, Chell V, Chen IJ, Daechsel JCA, Daniels Z, David L, Dokurno P, Hentzer M, Herzig MC, Hubbard RE, Moore JD, Murray JB, Newland S, Ray SC, Shaw T, Surgenor AE, Terry L, Thirstrup K, Wang Y, Christensen KV. Design of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors Using a Crystallographic Surrogate Derived from Checkpoint Kinase 1 (CHK1). J Med Chem 2017; 60:8945-8962. [PMID: 29023112 DOI: 10.1021/acs.jmedchem.7b01186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2), such as G2019S, are associated with an increased risk of developing Parkinson's disease. Surrogates for the LRRK2 kinase domain based on checkpoint kinase 1 (CHK1) mutants were designed, expressed in insect cells infected with baculovirus, purified, and crystallized. X-ray structures of the surrogates complexed with known LRRK2 inhibitors rationalized compound potency and selectivity. The CHK1 10-point mutant was preferred, following assessment of surrogate binding affinity with LRRK2 inhibitors. Fragment hit-derived arylpyrrolo[2,3-b]pyridine LRRK2 inhibitors underwent structure-guided optimization using this crystallographic surrogate. LRRK2-pSer935 HEK293 IC50 data for 22 were consistent with binding to Ala2016 in LRRK2 (equivalent to Ala147 in CHK1 10-point mutant structure). Compound 22 was shown to be potent, moderately selective, orally available, and brain-penetrant in wild-type mice, and confirmation of target engagement was demonstrated, with LRRK2-pSer935 IC50 values for 22 in mouse brain and kidney being 1.3 and 5 nM, respectively.
Collapse
Affiliation(s)
- Douglas S Williamson
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | | | | - Simon T Bedford
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Victoria Chell
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - I-Jen Chen
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | | - Zoe Daniels
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | | - Pawel Dokurno
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | | | | - Roderick E Hubbard
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Jonathan D Moore
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - James B Murray
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Samantha Newland
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Stuart C Ray
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Terry Shaw
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Allan E Surgenor
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Lindsey Terry
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Kenneth Thirstrup
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | - Yikang Wang
- Vernalis (R&D) Ltd. , Granta Park, Great Abington, Cambridge, CB21 6GB, United Kingdom
| | | |
Collapse
|
14
|
Christensen KV, Smith GP, Williamson DS. Development of LRRK2 Inhibitors for the Treatment of Parkinson's Disease. PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:37-80. [PMID: 28314412 DOI: 10.1016/bs.pmch.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Linkage and genome-wide association studies have identified a genetic risk locus for late-onset Parkinson's disease in chromosome 12, originally identified as PARK6. The causative gene was identified to code for a large multifunctional protein, LRRK2 (leucine-rich repeat kinase 2). The combined genetic and biochemical evidence supports a hypothesis in which the LRRK2 kinase function is causally involved in the pathogenesis of sporadic and familial forms of PD, and therefore that LRRK2 kinase inhibitors could be useful for treatment. Although LRRK2 has so far not been crystallised, the use of homology modelling and crystallographic surrogates has allowed the optimisation of chemical structures such that compounds of high selectivity with good brain penetration and appropriate pharmacokinetic properties are now available for understanding the biology of LRRK2 in vitro and in vivo. This chapter reviews LRRK2 biology, the structural biology of LRRK2 and gives an overview of inhibitors of LRRK2.
Collapse
Affiliation(s)
- K V Christensen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark
| | - G P Smith
- Neuroscience Drug Discovery, H. Lundbeck A/S, Valby, Denmark
| | | |
Collapse
|
15
|
Screening for chemical modulators for LRRK2. Biochem Soc Trans 2016; 44:1617-1623. [PMID: 27913670 DOI: 10.1042/bst20160242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 08/25/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022]
Abstract
After the discovery of leucine-rich repeat kinase 2 (LRRK2) as a risk factor for sporadic Parkinson's disease (PD) and mutations in LRRK2 as a cause of some forms of familial PD, there has been substantial interest in finding chemical modulators of LRRK2 function. Most of the pathogenic mutations in LRRK2 are within the enzymatic cores of the protein; therefore, many screens have focused on finding chemical modulators of this enzymatic activity. There are alternative screening approaches that could be taken to investigate compounds that modulate LRRK2 cellular functions. These screens are more often phenotypic screens. The preparation for a screen has to be rigorous and enable high-throughput accurate assessment of a compound's activity. The pipeline to beginning a drug screen and some LRRK2 inhibitor and phenotypic screens will be discussed.
Collapse
|
16
|
Greshock TJ, Sanders JM, Drolet RE, Rajapakse HA, Chang RK, Kim B, Rada VL, Tiscia HE, Su H, Lai MT, Sur SM, Sanchez RI, Bilodeau MT, Renger JJ, Kern JT, McCauley JA. Potent, selective and orally bioavailable leucine-rich repeat kinase 2 (LRRK2) inhibitors. Bioorg Med Chem Lett 2016; 26:2631-5. [DOI: 10.1016/j.bmcl.2016.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/14/2023]
|
17
|
Abstract
Mutations in LRRK2 are associated with inherited Parkinson's disease (PD) in a large number of families, and the genetic locus containing the LRRK2 gene contains a risk factor for sporadic PD. The LRRK2 protein contains several domains that suggest a role in cellular signaling, including a kinase domain. It is also clear that LRRK2 interacts, either physically or genetically, with several other important proteins implicated in PD, suggesting that LRRK2 may be a central player in the pathways that underlie parkinsonism. As such, LRRK2 has been proposed to be a plausible target for therapeutic intervention, with kinase inhibition being pursued most actively. However, there are still several fundamental aspects of LRRK2 biology and function that remain unresolved at this time. This review will focus on the key questions of normal function of LRRK2 and how this might be related to the pathophysiology of PD.
Collapse
|
18
|
Taymans JM, Greggio E. LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson's Disease, Where Do We Stand? Curr Neuropharmacol 2016; 14:214-25. [PMID: 26517051 PMCID: PMC4857626 DOI: 10.2174/1570159x13666151030102847] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
One of the most promising therapeutic targets for potential disease-modifying treatment of Parkinson's disease (PD) is leucine-rich repeat kinase 2 (LRRK2). Specifically, targeting LRRK2's kinase function has generated a lot of interest from both industry and academia. This work has yielded several published studies showing the feasibility of developing potent, selective and brain permeable LRRK2 kinase inhibitors. The availability of these experimental drugs is contributing to filling in the gaps in our knowledge on the safety and efficacy of LRRK2 kinase inhibition. Recent studies of LRRK2 kinase inhibition in preclinical models point to potential undesired effects in peripheral tissues such as lung and kidney. Also, while strategies are now emerging to measure target engagement of LRRK2 inhibitors, there remains an important need to expand efficacy studies in preclinical models of progressive PD. Future work in the LRRK2 inhibition field must therefore be directed towards developing molecules and treatment regimens which demonstrate efficacy in mammalian models of disease in conditions where safety liabilities are reduced to a minimum.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Jean-Pierre Aubert Research Center, UMR-S1172,rue Polonovski - 1 place de Verdun, 59045 Lille, France.
| | - Elisa Greggio
- Department of Biology, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
19
|
Gilsbach BK, Messias AC, Ito G, Sattler M, Alessi DR, Wittinghofer A, Kortholt A. Structural Characterization of LRRK2 Inhibitors. J Med Chem 2015; 58:3751-6. [PMID: 25897865 DOI: 10.1021/jm5018779] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Kinase inhibition is considered to be an important therapeutic target for LRRK2 mediated Parkinson's disease (PD). Many LRRK2 kinase inhibitors have been reported but have yet to be optimized in order to qualify as drug candidates for the treatment of the disease. In order to start a structure-function analysis of such inhibitors, we mutated the active site of Dictyostelium Roco4 kinase to resemble LRRK2. Here, we show saturation transfer difference (STD) NMR and the first cocrystal structures of two potent in vitro inhibitors, LRRK2-IN-1 and compound 19, with mutated Roco4. Our data demonstrate that this system can serve as an excellent tool for the structural characterization and optimization of LRRK2 inhibitors using X-ray crystallography and NMR spectroscopy.
Collapse
Affiliation(s)
- Bernd K Gilsbach
- †Department of Cell Biochemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Ana C Messias
- ‡Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,§Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Genta Ito
- ∥University of Dundee, DD1 4HN Dundee, Scotland
| | - Michael Sattler
- ‡Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,§Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | | | | | - Arjan Kortholt
- †Department of Cell Biochemistry, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|