1
|
Han M, Wang Z, Li Y, Song Y, Wang Z. The application and sustainable development of coral in traditional medicine and its chemical composition, pharmacology, toxicology, and clinical research. Front Pharmacol 2024; 14:1230608. [PMID: 38235111 PMCID: PMC10791799 DOI: 10.3389/fphar.2023.1230608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
This review discusses the variety, chemical composition, pharmacological effects, toxicology, and clinical research of corals used in traditional medicine in the past two decades. At present, several types of medicinal coral resources are identified, which are used in 56 formulas such as traditional Chinese medicine, Tibetan medicine, Mongolian medicine, and Uyghur medicine. A total of 34 families and 99 genera of corals are involved in medical research, with the Alcyoniidae family and Sarcophyton genus being the main research objects. Based on the structural types of compounds and the families and genera of corals, this review summarizes the compounds primarily reported during the period, including terpenoids, steroids, nitrogen-containing compounds, and other terpenoids dominated by sesquiterpene and diterpenes. The biological activities of coral include cytotoxicity (antitumor and anticancer), anti-inflammatory, analgesic, antibacterial, antiviral, immunosuppressive, antioxidant, and neurological properties, and a detailed summary of the mechanisms underlying these activities or related targets is provided. Coral toxicity mostly occurs in the marine ornamental soft coral Zoanthidae family, with palytoxin as the main toxic compound. In addition, nonpeptide neurotoxins are extracted from aquatic corals. The compatibility of coral-related preparations did not show significant acute toxicity, but if used for a long time, it will still cause toxicity to the liver, kidneys, lungs, and other internal organs in a dose-dependent manner. In clinical applications, individual application of coral is often used as a substitute for orthopedic materials to treat diseases such as bone defects and bone hyperplasia. Second, coral is primarily available in the form of compound preparations, such as Ershiwuwei Shanhu pills and Shanhu Qishiwei pills, which are widely used in the treatment of neurological diseases such as migraine, primary headache, epilepsy, cerebral infarction, hypertension, and other cardiovascular and cerebrovascular diseases. It is undeniable that the effectiveness of coral research has exacerbated the endangered status of corals. Therefore, there should be no distinction between the advantages and disadvantages of listed endangered species, and it is imperative to completely prohibit their use and provide equal protection to help them recover to their normal numbers. This article can provide some reference for research on coral chemical composition, biological activity, chemical ecology, and the discovery of marine drug lead compounds. At the same time, it calls for people to protect endangered corals from the perspectives of prohibition, substitution, and synthesis.
Collapse
Affiliation(s)
- Mengtian Han
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyuan Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiye Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinglian Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Nguyen NBA, El-Shazly M, Chen PJ, Peng BR, Chen LY, Hwang TL, Lai KH. Unlocking the Potential of Octocoral-Derived Secondary Metabolites against Neutrophilic Inflammatory Response. Mar Drugs 2023; 21:456. [PMID: 37623737 PMCID: PMC10455653 DOI: 10.3390/md21080456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Inflammation is a critical defense mechanism that is utilized by the body to protect itself against pathogens and other noxious invaders. However, if the inflammatory response becomes exaggerated or uncontrollable, its original protective role is not only demolished but it also becomes detrimental to the affected tissues or even to the entire body. Thus, regulating the inflammatory process is crucial to ensure that it is resolved promptly to prevent any subsequent damage. The role of neutrophils in inflammation has been highlighted in recent decades by a plethora of studies focusing on neutrophilic inflammatory diseases as well as the mechanisms to regulate the activity of neutrophils during the overwhelmed inflammatory process. As natural products have demonstrated promising effects in a wide range of pharmacological activities, they have been investigated for the discovery of new anti-inflammatory therapeutics to overcome the drawbacks of current synthetic agents. Octocorals have attracted scientists as a plentiful source of novel and intriguing marine scaffolds that exhibit many pharmacological activities, including anti-inflammatory effects. In this review, we aim to provide a summary of the neutrophilic anti-inflammatory properties of these marine organisms that were demonstrated in 46 studies from 1995 to the present (April 2023). We hope the present work offers a comprehensive overview of the anti-inflammatory potential of octocorals and encourages researchers to identify promising leads among numerous compounds isolated from octocorals over the past few decades to be further developed into anti-inflammatory therapeutic agents.
Collapse
Affiliation(s)
- Ngoc Bao An Nguyen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Bo-Rong Peng
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (N.B.A.N.); (B.-R.P.); (L.-Y.C.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Abdelkarem FM, Nafady AM, Allam AE, Mostafa MAH, Al Haidari RA, Hassan HA, Zaki MEA, Assaf HK, Kamel MR, Zidan SAH, Sayed AM, Shimizu K. A Comprehensive In Silico Study of New Metabolites from Heteroxenia fuscescens with SARS-CoV-2 Inhibitory Activity. Molecules 2022; 27:molecules27217369. [PMID: 36364194 PMCID: PMC9657797 DOI: 10.3390/molecules27217369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical investigation of the total extract of the Egyptian soft coral Heteroxenia fuscescens, led to the isolation of eight compounds, including two new metabolites, sesquiterpene fusceterpene A (1) and a sterol fuscesterol A (4), along with six known compounds. The structures of 1–8 were elucidated via intensive studies of their 1D, 2D-NMR, and HR-MS analyses, as well as a comparison of their spectral data with those mentioned in the literature. Subsequent comprehensive in-silico-based investigations against almost all viral proteins, including those of the new variants, e.g., Omicron, revealed the most probable target for these isolated compounds, which was found to be Mpro. Additionally, the dynamic modes of interaction of the putatively active compounds were highlighted, depending on 50-ns-long MDS. In conclusion, the structural information provided in the current investigation highlights the antiviral potential of H. fuscescens metabolites with 3β,5α,6β-trihydroxy steroids with different nuclei against SARS-CoV-2, including newly widespread variants.
Collapse
Affiliation(s)
- Fahd M. Abdelkarem
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Alaa M. Nafady
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (A.E.A.); (M.E.A.Z.)
| | - Mahmoud A. H. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 41477, Saudi Arabia
| | - Rwaida A. Al Haidari
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 41477, Saudi Arabia
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (A.E.A.); (M.E.A.Z.)
| | - Hamdy K. Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed R. Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sabry A. H. Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Savić MP, Sakač MN, Kuzminac IZ, Ajduković JJ. Structural diversity of bioactive steroid compounds isolated from soft corals in the period 2015-2020. J Steroid Biochem Mol Biol 2022; 218:106061. [PMID: 35031429 DOI: 10.1016/j.jsbmb.2022.106061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Marine soft corals are known as a good source of biologically active compounds, among which a large number of steroid compounds are identified. Structures and activities of these compounds have been used in drug discovery and development. From 2015 to 2020, 179 new steroid compounds were isolated from soft corals and structurally characterized. In this review, we report the structural classification and bioactivities of these compounds. The largest group of steroids from soft corals are hydroxysteroids, while the most common biological activity is anticancer. Besides, anticancer hydroxysteroids from soft corals exhibit anti-inflammatory and antibacterial activity. Unlike anticancer and antibacterial activity that can be observed in a number of steroid classes, antioxidant activity and antileishmanial effect were observed only in 19-oxygenated steroids, antiviral activity in pregnane-type steroids and spirosteroids, immunosuppressive activity in epoxy- and epidioxysteroids, and antibacterial activity in two steroid classes, hydroxysteroids and ketosteroids. This systematically analyzed link between the structure and activity of natural marine steroids is a good starting point for future drug design.
Collapse
Affiliation(s)
- Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Marija N Sakač
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Ivana Z Kuzminac
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
5
|
Abdelkarem FM, Abouelela ME, Kamel MR, Nafady AM, Allam AE, Abdel-Rahman IAM, Almatroudi A, Alrumaihi F, Allemailem KS, Assaf HK. Chemical Review of Gorgostane-Type Steroids Isolated from Marine Organisms and Their 13C-NMR Spectroscopic Data Characteristics. Mar Drugs 2022; 20:139. [PMID: 35200668 PMCID: PMC8878145 DOI: 10.3390/md20020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Gorgostane steroids are isolated from marine organisms and consist of 30 carbon atoms with a characteristic cyclopropane moiety. From the pioneering results to the end of 2021, isolation, biosynthesis, and structural elucidation using 13C-NMR will be used. Overall, 75 compounds are categorized into five major groups: gorgost-5-ene, 5,6-epoxygorgostane, 5,6-dihydroxygorgostane, 9,11-secogorgostane, and 23-demethylgorgostane, in addition to miscellaneous gorgostane. The structural diversity, selectivity for marine organisms, and biological effects of gorgostane steroids have generated considerable interest in the field of drug discovery research.
Collapse
Affiliation(s)
- Fahd M. Abdelkarem
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (F.M.A.); (M.E.A.); (A.M.N.); (A.E.A.); (H.K.A.)
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (F.M.A.); (M.E.A.); (A.M.N.); (A.E.A.); (H.K.A.)
| | - Mohamed R. Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (F.M.A.); (M.E.A.); (A.M.N.); (A.E.A.); (H.K.A.)
| | - Alaa M. Nafady
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (F.M.A.); (M.E.A.); (A.M.N.); (A.E.A.); (H.K.A.)
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (F.M.A.); (M.E.A.); (A.M.N.); (A.E.A.); (H.K.A.)
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (K.S.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (K.S.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (K.S.A.)
| | - Hamdy K. Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; (F.M.A.); (M.E.A.); (A.M.N.); (A.E.A.); (H.K.A.)
| |
Collapse
|
6
|
Cerri F, Saliu F, Maggioni D, Montano S, Seveso D, Lavorano S, Zoia L, Gosetti F, Lasagni M, Orlandi M, Taglialatela-Scafati O, Galli P. Cytotoxic Compounds from Alcyoniidae: An Overview of the Last 30 Years. Mar Drugs 2022; 20:134. [PMID: 35200663 PMCID: PMC8874409 DOI: 10.3390/md20020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
The octocoral family Alcyoniidae represents a rich source of bioactive substances with intriguing and unique structural features. This review aims to provide an updated overview of the compounds isolated from Alcyoniidae and displaying potential cytotoxic activity. In order to allow a better comparison among the bioactive compounds, we focused on molecules evaluated in vitro by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, by far the most widely used method to analyze cell proliferation and viability. Specifically, we surveyed the last thirty years of research, finding 153 papers reporting on 344 compounds with proven cytotoxicity. The data were organized in tables to provide a ranking of the most active compounds, to be exploited for the selection of the most promising candidates for further screening and pre-clinical evaluation as anti-cancer agents. Specifically, we found that (22S,24S)-24-methyl-22,25-epoxyfurost-5-ene-3β,20β-diol (16), 3β,11-dihydroxy-24-methylene-9,11-secocholestan-5-en-9-one (23), (24S)-ergostane-3β,5α,6β,25 tetraol (146), sinulerectadione (227), sinulerectol C (229), and cladieunicellin I (277) exhibited stronger cytotoxicity than their respective positive control and that their mechanism of action has not yet been further investigated.
Collapse
Affiliation(s)
- Federico Cerri
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Francesco Saliu
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Davide Maggioni
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Simone Montano
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Davide Seveso
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA—Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy;
| | - Luca Zoia
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Fabio Gosetti
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Marina Lasagni
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Marco Orlandi
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | | | - Paolo Galli
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| |
Collapse
|
7
|
An PP, Cui YS, Shi QY, Ren YH, Wu PQ, Liu QF, Liu HC, Zhou B, Yue JM. Pregnane steroids from the twigs and leaves of Strophanthus divaricatus and their cytotoxic activities. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Ghiciuc CM, Vicovan AG, Stafie CS, Antoniu SA, Postolache P. Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma. Mar Drugs 2021; 19:586. [PMID: 34822457 PMCID: PMC8620935 DOI: 10.3390/md19110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
One of the challenges to the management of severe asthma is the poor therapeutic response to treatment with glucocorticosteroids. Compounds derived from marine sources have received increasing interest in recent years due to their prominent biologically active properties for biomedical applications, as well as their sustainability and safety for drug development. Based on the pathobiological features associated with glucocorticoid resistance in severe asthma, many studies have already described many glucocorticoid resistance mechanisms as potential therapeutic targets. On the other hand, in the last decade, many studies described the potentially anti-inflammatory effects of marine-derived biologically active compounds. Analyzing the underlying anti-inflammatory mechanisms of action for these marine-derived biologically active compounds, we observed some of the targeted pathogenic molecular mechanisms similar to those described in glucocorticoid (GC) resistant asthma. This article gathers the marine-derived compounds targeting pathogenic molecular mechanism involved in GC resistant asthma and provides a basis for the development of effective marine-derived drugs.
Collapse
Affiliation(s)
- Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
| | - Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Sabina Antonela Antoniu
- Department of Medicine II—Palliative Care Nursing, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
9
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
10
|
Nature-derived anticancer steroids outside cardica glycosides. Fitoterapia 2020; 147:104757. [PMID: 33069834 DOI: 10.1016/j.fitote.2020.104757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Steriods which are ubiquitous in natural resources are important components of cell membranes and involved in several physiological functions. Steriods not only exerted the anticancer activity through inhibition of various enzymes and receptors in cancer cells, inclusive of aromatase, sulfatase, 5α-reductase, hydroxysteroid dehydrogenase and CYP 17, but also exhibited potential activity against various cancer forms including multidrug-resistant cancer with low cytotoxicity, and high bioavailability. Accordingly, steroids are useful scaffolds for the discovery of novel anticancer agents. This review aims to outline the advances of nature-derived steroids outside cardica glycosides with anticancer potential, covering the articles published between Jan. 2015 and Aug. 2020.
Collapse
|
11
|
Yang M, Cui WX, Li H, Li SW, Yao LG, Tang W, Mudianta IW, Guo YW. Sinulasterols A-C, three new bioactive oxygenated steroids from the South China Sea soft coral Sinularia depressa. Steroids 2020; 157:108598. [PMID: 32068075 DOI: 10.1016/j.steroids.2020.108598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Three new oxygenated steroids, sinulasterols A-C (1-3), along with seven known related steroids 4-10, were isolated from the Chinese soft coral Sinularia depressa. The structures of the new compounds were established from extensive spectroscopic data analyses and by comparison of their spectral data with those reported in the literature. Among the new compounds, metabolites 1 and 2 featured on unusual C-18 oxygenated pattern. In the TNF-α bioassay, compound 4 exhibited a potent inhibitory activity (IC50 = 12.1 μM), which was analogous to the positive control dexamethasone (IC50 = 8.7 μM), metabolites 1 and 2 displayed a moderate inhibitory activity (IC50 51.1 μM and 22.7 μM respectively).
Collapse
Affiliation(s)
- Min Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wan-Xiang Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
| | - Heng Li
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Wei Tang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555, Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
12
|
Tan JY, Liu Y, Cheng YG, Sun YP, Liu Y, Huang J, Guo S, Liu GZ, Kuang HX, Yang BY. Daturmetesides A-E, five new ergostane-type C 28 sterols from the leaves of Datura metel L. Steroids 2020; 156:108583. [PMID: 31982422 DOI: 10.1016/j.steroids.2020.108583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/28/2019] [Accepted: 01/20/2020] [Indexed: 01/22/2023]
Abstract
Five undescribed ergostane-type C28 sterols, daturmetesides A-E (1-5), were isolated from the leaves of Datura metel L. The chemical structures of these new compounds were characterized through extensive spectroscopic analysis and comparison with literatures. Among them, the absolute structures of daturmetesides A and C were unambiguously determined by X-ray crystallography. The anti-inflammatory effect of daturmetesides A-E was all tested by measuring nitric oxide production in lipopolysaccharide-activated RAW264.7 cells. Daturmetesides A, C and D moderatelylowered the NO production with IC50 values ranging from 17.05 ± 0.35 to 24.88 ± 0.93 μM.
Collapse
Affiliation(s)
- Jin-Yan Tan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yan-Gang Cheng
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yan-Ping Sun
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Jin Huang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shuang Guo
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Guo-Zhen Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| |
Collapse
|
13
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
14
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
15
|
Tseng WR, Ahmed AF, Huang CY, Tsai YY, Tai CJ, Orfali RS, Hwang TL, Wang YH, Dai CF, Sheu JH. Bioactive Capnosanes and Cembranes from the Soft Coral Klyxum flaccidum. Mar Drugs 2019; 17:md17080461. [PMID: 31394844 PMCID: PMC6722650 DOI: 10.3390/md17080461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Two new capnosane-based diterpenoids, flaccidenol A (1) and 7-epi-pavidolide D (2), two new cembranoids, flaccidodioxide (3) and flaccidodiol (4), and three known compounds 5 to 7 were characterized from the marine soft coral Klyxum flaccidum, collected off the coast of the island of Pratas. The structures of the new compounds were determined by extensive spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and spectroscopic data comparison with related structures. The rare capnosane diterpenoids were isolated herein from the genus Klyxum for the first time. The cytotoxicity of compounds 1 to 7 against the proliferation of a limited panel of cancer cell lines was assayed. The isolated diterpenoids also exhibited anti-inflammatory activity through suppression of superoxide anion generation and elastase release in the N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-stimulated human neutrophils. Furthermore, 1 and 7 also exhibited cytotoxicity toward the tested cancer cells, and 7 could effectively inhibit elastase release. It is worth noting that the biological activities of 7 are reported for the first time in this paper.
Collapse
Affiliation(s)
- Wan-Ru Tseng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Atallah F Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Ying Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chi-Jen Tai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Raha S Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chang-Feng Dai
- Institute of Oceanography, National Taiwan University, Taipei 112, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
16
|
Targeting acquired oncogenic burden in resilient pancreatic cancer: a novel benefit from marine polyphenols. Mol Cell Biochem 2019; 460:175-193. [PMID: 31367889 DOI: 10.1007/s11010-019-03579-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
Abstract
The upsurge of marine-derived therapeutics for cancer treatment is evident, with many drugs in clinical use and in clinical trials. Seaweeds harbor large amounts of polyphenols and their anti-cancer benefit is linear to their anti-oxidant activity. Our studies identified three superlative anti-cancer seaweed polyphenol drug candidates (SW-PD). We investigated the acquisition of oncogenic burden in radiation-resilient pancreatic cancer (PC) that could drive tumor relapse, and elucidated the efficacy of SW-PD candidates as adjuvants in genetically diverse in vitro systems and a mouse model of radiation-residual disease. QPCR profiling of 88 oncogenes in therapy-resilient PC cells identified a 'shared' activation of 40 oncogenes. SW-PD pretreatment inflicted a significant mitigation of acquired (shared) oncogenic burden, in addition to drug- and cell-line-specific repression signatures. Tissue microarray with IHC of radiation-residual tumors in mice signified acquired cellular localization of key oncoproteins and other critical architects. Conversely, SW-PD treatment inhibited the acquisition of these critical drivers of tumor genesis, dissemination, and evolution. Heightened death of resilient PC cells with SW-PD treatment validated the translation aspects. The results defined the acquisition of oncogenic burden in resilient PC and demonstrated that the marine polyphenols effectively target the acquired oncogenic burden and could serve as adjuvant(s) for PC treatment.
Collapse
|
17
|
Li G, Li H, Tang W, Guo YW, Li XW. Klyflaccilides A and B, Diterpenoids with 6/5/8/3 Fused Tetracyclic Carbon Skeleton from the Hainan Soft Coral Klyxum flaccidum. Org Lett 2019; 21:5660-5664. [DOI: 10.1021/acs.orglett.9b01998] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Geng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Heng Li
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Tang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
18
|
Decroo C, Colson E, Lemaur V, Caulier G, De Winter J, Cabrera-Barjas G, Cornil J, Flammang P, Gerbaux P. Ion mobility mass spectrometry of saponin ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 2:22-33. [PMID: 29873851 DOI: 10.1002/rcm.8193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Corentin Decroo
- Organic Synthesis and Mass Spectrometry Lab, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000, Mons, Belgium
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Emmanuel Colson
- Organic Synthesis and Mass Spectrometry Lab, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000, Mons, Belgium
| | - Guillaume Caulier
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Lab, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Gustavo Cabrera-Barjas
- Unit for Technology Development (UDT), University of Concepción, Av. Cordillera 2634, Parque Industrial Coronel, P.O. Box 4051 mail 3, Coronel, Región del Bío Bío, Chile
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000, Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Lab, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| |
Collapse
|
19
|
Haubrich BA. Microbial Sterolomics as a Chemical Biology Tool. Molecules 2018; 23:E2768. [PMID: 30366429 PMCID: PMC6278499 DOI: 10.3390/molecules23112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has become a powerful tool in chemical biology. Profiling the human sterolome has resulted in the discovery of noncanonical sterols, including oxysterols and meiosis-activating sterols. They are important to immune responses and development, and have been reviewed extensively. The triterpenoid metabolite fusidic acid has developed clinical relevance, and many steroidal metabolites from microbial sources possess varying bioactivities. Beyond the prospect of pharmacognostical agents, the profiling of minor metabolites can provide insight into an organism's biosynthesis and phylogeny, as well as inform drug discovery about infectious diseases. This review aims to highlight recent discoveries from detailed sterolomic profiling in microorganisms and their phylogenic and pharmacological implications.
Collapse
Affiliation(s)
- Brad A Haubrich
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
20
|
A Sterol from Soft Coral Induces Apoptosis and Autophagy in MCF-7 Breast Cancer Cells. Mar Drugs 2018; 16:md16070238. [PMID: 30018246 PMCID: PMC6071057 DOI: 10.3390/md16070238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that plays a key role in regulating cellular metabolism, and is a therapeutic target for cancer therapy. To search for potential PPARγ activators, a compound library comprising 11 marine compounds was examined. Among them, a sterol, 3β,11-dihydroxy-9,11-secogorgost-5-en-9-one (compound 1), showed the highest PPARγ activity with an IC50 value of 8.3 μM for inhibiting human breast adenocarcinoma cell (MCF-7) growth. Western blotting experiments showed that compound 1 induces caspase activation and PARP cleavage. In addition, compound 1 modulated the expression of various PPARγ-regulated downstream biomarkers including cyclin D1, cyclin-dependent kinase (CDK)6, B-cell lymphoma 2 (Bcl-2), p38, and extracellular-signal-regulated kinase (ERK). Moreover, compound 1 increased reactive oxygen species (ROS) generation, upregulated the phosphorylation and expression of H2AX, and induced autophagy. Interestingly, pre-treatment with the autophagy inhibitor 3-methyladenine rescued cells from compound 1-induced growth inhibition, which indicates that the cytotoxic effect of compound 1 is, in part, attributable to its ability to induce autophagy. In conclusion, these findings suggest the translational potential of compound 1 in breast cancer therapy.
Collapse
|
21
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
22
|
Bioactive Steroids with Methyl Ester Group in the Side Chain from a Reef Soft Coral Sinularia brassica Cultured in a Tank. Mar Drugs 2017; 15:md15090280. [PMID: 28862648 PMCID: PMC5618419 DOI: 10.3390/md15090280] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
A continuing chemical investigation of the ethyl acetate (EtOAc) extract of a reef soft coral Sinularia brassica, which was cultured in a tank, afforded four new steroids with methyl ester groups, sinubrasones A–D (1–4) for the first time. In particular, 1 possesses a β-d-xylopyranose. The structures of the new compounds were elucidated on the basis of spectroscopic analyses. The cytotoxicities of compounds 1–4 against the proliferation of a limited panel of cancer cell lines were assayed. The anti-inflammatory activities of these new compounds 1–4 were also evaluated by measuring their ability to suppress superoxide anion generation and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced human neutrophils. Compounds 2 and 3 were shown to exhibit significant cytotoxicity, and compounds 3 and 4 were also found to display attracting anti-inflammatory activities.
Collapse
|
23
|
Li K, Scott AM, Brant CO, Fissette SD, Riedy JJ, Hoye TR, Li W. Bile Salt-like Dienones Having a Novel Skeleton or a Rare Substitution Pattern Function as Chemical Cues in Adult Sea Lamprey. Org Lett 2017; 19:4444-4447. [PMID: 28816048 DOI: 10.1021/acs.orglett.7b01921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two novel sulfated bile salt-like dienones, featuring either a unique, rearranged side chain or a rare cis-11,12-diol on the steroidal C-ring, herein named petromyzene A (1) and B (2), respectively, were isolated from water conditioned with spawning male sea lamprey (Petromyzon marinus; a jawless vertebrate animal). The structures of these natural products were elucidated by mass spectrometry and NMR spectroscopy. Petromyzenes A and B exhibited high olfactory potency for adult sea lamprey and strong behavioral attraction for spawning females.
Collapse
Affiliation(s)
- Ke Li
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Anne M Scott
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Cory O Brant
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Skye D Fissette
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Joseph J Riedy
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| |
Collapse
|
24
|
Chung TW, Su JH, Lin CC, Li YR, Chao YH, Lin SH, Chan HL. 24-Methyl-Cholesta-5,24(28)-Diene-3β,19-diol-7β-Monoacetate Inhibits Human Small Cell Lung Cancer Growth In Vitro and In Vivo via Apoptosis Induction. Mar Drugs 2017; 15:md15070210. [PMID: 28671570 PMCID: PMC5532652 DOI: 10.3390/md15070210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 01/06/2023] Open
Abstract
24-methyl-cholesta-5,24(28)-diene-3β,19-diol-7β-monoacetate (MeCDDA) is a natural steroid compound isolated from a wild-type soft coral (Nephthea erecta). The present study aimed to investigate the anti-small cell lung cancer (SCLC) effects of MeCDDA in vitro and in vivo, as well as to elucidate its underlying mechanism. Our results indicated that H1688 and H146 cells show relevant sensitivity to MeCDDA, and the exposure to MeCDDA in SCLC cells caused dose-dependent growth inhibitory responses. In addition, MeCDDA treatment promoted cell apoptosis and increased the activities of caspases in H1688 cells, reducing the mitochondrial membrane potential and stimulating the release of cytochrome c into the cytosol. Along with the increase in Bax expression and reduction in Bcl-2, the MeCDDA treatment also significantly decreased Akt and mTOR phosphorylation. Finally, MeCDDA treatment in the mouse xenograft model of H1688 cells exhibited significant inhibition of tumor growth, corroborating MeCDDA as a potential pre-clinical candidate for the treatment of SCLC. Overall, our results demonstrate that the cytotoxic effects of MeCDDA towards H1688 and H146 cells, possibly through the activation of the mitochondrial apoptotic pathway and inhibition of the PI3K/Akt/mTOR pathway, merit further studies for its possible clinical application in chemotherapy.
Collapse
Affiliation(s)
- Ting-Wen Chung
- Department of Medical Sciences, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Jui-Hsin Su
- Taiwan Coral Research Center, National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Chi-Chen Lin
- Department of Life Sciences, Institute of Biomedical Science, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yi-Rong Li
- Department of Life Sciences, Institute of Biomedical Science, National Chung Hsing University, Taichung 402, Taiwan.
- Department of Internal Medicine, Changhua Christian Hospital, Changhua Division of Chest Medicine, Changhua 500, Taiwan.
| | - Ya-Hsuan Chao
- Department of Life Sciences, Institute of Biomedical Science, National Chung Hsing University, Taichung 402, Taiwan.
| | - Sheng-Hao Lin
- Department of Internal Medicine, Changhua Christian Hospital, Changhua Division of Chest Medicine, Changhua 500, Taiwan.
| | - Hong-Lin Chan
- Department of Medical Sciences, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
25
|
Klyflaccisteroids K-M, bioactive steroidal derivatives from a soft coral Klyxum flaccidum. Bioorg Med Chem Lett 2017; 27:1220-1224. [PMID: 28159416 DOI: 10.1016/j.bmcl.2017.01.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 11/21/2022]
Abstract
New steroids, klyflaccisteroids K-M (1-3), were isolated from a soft coral Klyxum flaccidum. Their structures were elucidated on the basis of extensive spectroscopic analysis. Klyflaccisteroid K (1) is the unique 9,11-secosteroid with a 5,8-epidioxy-9-ene functional group. Klyflaccisteroid L (2) has an unusual 11-norsteroid skeleton and is the first example of 11-oxasteroid isolated from natural sources. Cytotoxicity assay showed that 1 and 3 possessed moderate to weak cytotoxicity against these cancer cells. Compound 1 was also found to display significant anti-inflammatory activity of suppressing superoxide anion generation (O2-) and elastase release, and compound 3 was found to show notable anti-inflammatory activity toward inhibition of elasstase release, too.
Collapse
|
26
|
Ahmed AF, Tsai CR, Huang CY, Wang SY, Sheu JH. Klyflaccicembranols A-I, New Cembranoids from the Soft Coral Klyxum flaccidum. Mar Drugs 2017; 15:md15010023. [PMID: 28117716 PMCID: PMC5295243 DOI: 10.3390/md15010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/22/2023] Open
Abstract
New cembranoids klyflaccicembranols A–I (1–9), along with gibberosene D (10), have been isolated from the organic extract of a Formosan soft coral Klyxum flaccidum. Their structures were established by extensive spectroscopic analyses, including 2D NMR spectroscopy, and spectral data comparison with related structures. The cytotoxicity of the isolated metabolites, as well as their nitric oxide (NO) inhibitory activity, were evaluated and reported. Metabolites 2, 4, 6, 8 and 9 were found to exhibit variable activities against a limited panel of cancer cell lines in a range of IC50 16.5–49.4 μM. Among the tested cembranoids, compounds 4, 5, 6, and 9 significantly inhibited NO production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages at a dose of 50 μg/mL.
Collapse
Affiliation(s)
- Atallah F Ahmed
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Chia-Ruei Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80756, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
27
|
Bioactive Steroids from the Formosan Soft Coral Umbellulifera petasites. Mar Drugs 2016; 14:md14100180. [PMID: 27727166 PMCID: PMC5082328 DOI: 10.3390/md14100180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
Three new steroids, petasitosterones A and B (1 and 2) and a spirosteroid petasitosterone C (3), along with eight known steroids (4–11), were isolated from a Formosan marine soft coral Umbellulifera petasites. The structures of these compounds were elucidated by extensive spectroscopic analysis and comparison of spectroscopic data with those reported. Compound 3 is a marine steroid with a rarely found A/B spiro[4,5]decane ring system. Compounds 1–3 and 5 displayed inhibitory activity against the proliferation of a limited panel of cancer cell lines, whereas 2 and 5 exhibited significant anti-inflammatory activity to inhibit nitric oxide (NO) production. The inhibitory activities for superoxide anion generation and elastase release of compounds 1–11 were also examined to evaluate the anti-inflammatory potential, and 2–4 were shown to exhibit significant activities.
Collapse
|