1
|
Singh YP, Kumar H. Recent Advances in Medicinal Chemistry of Memantine Against Alzheimer's Disease. Chem Biol Drug Des 2024; 104:e14638. [PMID: 39370170 DOI: 10.1111/cbdd.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) is a chronic progressive, age-related neurodegenerative brain disorder characterized by the irreversible decline of memory and other cognitive functions. It is one of the major health threat of the 21st century, which affects around 60% of the population over the age of 60 years. The problem of this disease is even more major because the existing pharmacotherapies only provide symptomatic relief without addressing the basic factors of the disease. It is characterized by the extracellular deposition of amyloid β (Aβ) to form senile plaques, and the intracellular hyperphosphorylation of tau to form neurofibrillary tangles (NFTs). Due to the complex pathophysiology of this disease, various hypotheses have been proposed, including the cholinergic, Aβ, tau, oxidative stress, and the metal-ion hypothesis. Among these, the cholinergic and Aβ hypotheses are the primary targets for addressing AD. Therefore, continuous advances have been made in developing potential cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists to delay disease progression and restore cholinergic neurotransmission. In this review article, we tried to comprehensively summarize the recent advancement in NMDA receptor antagonist (memantine) and their hybrid analogs as potential disease-modifying agents for the treatment of AD. Furthermore, we also depicted the design, rationale, and SAR analysis of the memantine-based hybrids used in the last decade for the treatment of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Himachal Pradesh Technical University, Hamirpur, India
| | - Harish Kumar
- Himachal Pradesh Technical University, Hamirpur, India
- Government College of Pharmacy, Shimla, India
| |
Collapse
|
2
|
Gorrie D, Bravo M, Fan L. The Yin and Yang of the Natural Product Triptolide and Its Interactions with XPB, an Essential Protein for Gene Expression and DNA Repair. Genes (Basel) 2024; 15:1287. [PMID: 39457411 PMCID: PMC11507457 DOI: 10.3390/genes15101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Triptolide, a bioactive diterpene tri-epoxide extracted from Tripterygium wilfordii Hook F (TWHF), exhibits notable pharmacological activities, including anti-inflammatory, immunosuppressive, antifertility, and anticancer effects. Despite its promising therapeutic potential, clinical applications of triptolide are significantly limited by its poor water solubility and substantial toxicity, particularly hepatotoxicity, nephrotoxicity, and cardiotoxicity. These toxic effects are difficult to separate from many of its desired therapeutic effects, the Yin and Yang of triptolide applications. Triptolide's therapeutic and toxic effects are linked to its inhibitory interactions with XPB, a DNA helicase essential for transcription by RNA polymerase II (RNAPII) and nucleotide excision repair (NER). By irreversibly binding to XPB, triptolide inhibits its ATPase activity, leading to global repression of transcription and impaired NER, which underlies its cytotoxic and antitumor properties. Recent developments, including triptolide prodrugs such as Minnelide and derivatives like glutriptolides, aim to enhance its pharmacokinetic properties and reduce toxicity. This review critically examines triptolide's chemical structure, therapeutic applications, toxicological profile, and molecular interactions with XPB and other protein targets to inform future strategies that maximize therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
| | | | - Li Fan
- Department of Biochemistry, University of California, 900 University Ave, Riverside, CA 92521, USA; (D.G.); (M.B.)
| |
Collapse
|
3
|
Ding MY, Ning C, Chen SR, Yin HR, Xu J, Wang Y. Discovery of natural product derivative triptolidiol as a direct NLRP3 inhibitor by reducing K63-specific ubiquitination. Br J Pharmacol 2024. [PMID: 39219027 DOI: 10.1111/bph.17320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND PURPOSE NLRP3 is up-regulated in inflammatory and autoimmune diseases. The development of NLRP3 inhibitors is challenged by the identification of compounds with distinct mechanisms of action avoiding side effects and toxicity. Triptolide is a natural product with multiple anti-inflammatory activities, but a narrow therapeutic window. EXPERIMENTAL APPROACH Natural product triptolide derivatives were screened for NLRP3 inhibitors in human THP-1 and mouse bone marrow-derived macrophages. The efficacy of potent NLRP3 inhibitors was evaluated in LPS-induced acute lung injury and septic shock models. KEY RESULTS Triptolidiol was identified as a selective inhibitor of NLRP3 with high potency. Triptolidiol inactivated the NLRP3 inflammasome in human THP-1 and mouse primary macrophages primed with LPS. Triptolidiol specifically inhibited pro-caspase 1 cleavage downstream of NLRP3, but not AIM2 or NLRC4 inflammasomes. Based on the structure-activity relationship study, the C8-β-OH group was critical for its binding to NLRP3. Triptolidiol exhibited a submicromolar KD for NLRP3, binding to residue C280. This binding prevented the interaction of NLRP3 with NEK7, the key regulator of NLRP3 inflammasome oligomerization and assembly, but not with the inflammasome adaptor protein ASC. Triptolidiol decreased the K63-specific ubiquitination of NLRP3, leading NLRP3 to a "closed" inactive conformation. Intraperitoneal administration of triptolidiol significantly attenuated LPS-induced acute lung injury and lethal septic shock. CONCLUSION AND IMPLICATIONS Triptolidiol is a novel NLRP3 inhibitor that regulates inflammasome assembly and activation by decreasing K63-linked ubiquitination. Triptolidiol has novel structural features that make it distinct from reported NLRP3 inhibitors and represents a viable therapeutic lead for inflammatory diseases.
Collapse
Affiliation(s)
- Mo-Yu Ding
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Chengqing Ning
- SUSTech Academy for Advanced Interdisciplinary Studies and Department of Chemistry, and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Shao-Ru Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Hao-Ran Yin
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Jing Xu
- SUSTech Academy for Advanced Interdisciplinary Studies and Department of Chemistry, and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Ying Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Macao SAR, China
- Minister of Education Science Center for Precision Oncology, University of Macau, Macao SAR, China
| |
Collapse
|
4
|
He Z, Botchway BOA, Zhang Y, Liu X. Triptolide activates the Nrf2 signaling pathway and inhibits the NF-κB signaling pathway to improve Alzheimer disease. Metab Brain Dis 2024; 39:173-182. [PMID: 37624431 DOI: 10.1007/s11011-023-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer disease (AD) is a common neurodegenerative disease with pathological features of accumulated amyloid plaques, neurofibrillary tangles, and the significant inflammatory environment. These features modify the living microenvironment for nerve cells, causing the damage, dysfunction, and death. Progressive neuronal loss directly leads to cognitive decline in AD patients and is closely related to brain inflammation. Therefore, impairing inflammation via signaling pathways may facilitate either the prevention or delay of the degenerative process. Triptolide has been evidenced to possess potent anti-inflammatory effect. In this review, we elaborate on two signaling pathways (the NF-κB and Nrf2 signaling pathways) that are involved in the anti-inflammatory effect of triptolide.
Collapse
Affiliation(s)
- Zuoting He
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, Kensington, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China.
| |
Collapse
|
5
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
6
|
Liu JY, Guo HY, Quan ZS, Shen QK, Cui H, Li X. Research progress of natural products and their derivatives against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2171026. [PMID: 36803484 PMCID: PMC9946335 DOI: 10.1080/14756366.2023.2171026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease (AD), a persistent neurological dysfunction, has an increasing prevalence with the aging of the world and seriously threatens the health of the elderly. Although there is currently no effective treatment for AD, researchers have not given up, and are committed to exploring the pathogenesis of AD and possible therapeutic drugs. Natural products have attracted considerable attention owing to their unique advantages. One molecule can interact with multiple AD-related targets, thus having the potential to be developed in a multi-target drug. In addition, they are amenable to structural modifications to increase interaction and decrease toxicity. Therefore, natural products and their derivatives that ameliorate pathological changes in AD should be intensively and extensively studied. This review mainly presents research on natural products and their derivatives for the treatment of AD.
Collapse
Affiliation(s)
- Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong Cui
- Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China,Hong Cui Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China,CONTACT Xiaoting Li Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
7
|
Zhou L, Huang X, Li H, Wang J, Lu Z. Triptolide improves Alzheimer's disease by regulating the NF‑κB signaling pathway through the lncRNA NEAT1/microRNA 361‑3p/TRAF2 axis. Exp Ther Med 2023; 26:440. [PMID: 37614428 PMCID: PMC10443046 DOI: 10.3892/etm.2023.12139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is a serious social and medical problem threatening human health. The present study investigated the effect and underlying action mechanism of triptolide (Tri) on AD progression. Reverse transcription-quantitative PCR and western blotting analysis were used to determine the changes in RNA expression and levels of NF-κB signaling pathway proteins before and after lipopolysaccharide (LPS) induction. Nucleocytoplasmic separation experiments determined the intracellular localization of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1). A dual-luciferase assay was used to analyze the binding between NEAT1 and microRNA (miRNA/miR)-361 or tumor necrosis factor receptor-associated factor 2 (TRAF2) and miR-361-3p and RNA pull-down was used to analyze the binding between NEAT1 and miR-361-3p. Cell Counting Kit-8, flow cytometry and ELISA were used to detect the effects of interaction between Tri and NEAT1/miR-361-3p/TRAF2 on cell viability, apoptosis and inflammatory factor levels, respectively. The results showed that LPS-mediated human microglial clone 3 cell line (HMC3) viability decreased and apoptosis and inflammatory factors (IL-1β, IL-6, IL-18 and TNF-α) increased. Tri inhibited LPS-mediated effects in a dose-dependent manner by downregulating NEAT1 expression. NEAT1 is highly expressed in the cytoplasm and reduces the transcription and translation of downstream TRAF2 by acting as a competitive endogenous RNA that adsorbs miR-361-3p. LPS-mediated HMC3 cell injury, inflammation and activation of NF-κB signaling were partially reversed in presence of Tri. The miR-361-3p mimic promoted the Tri effect and overexpression of (ov)-NEAT1 partially reversed the Tri-miR-361-3p combined effect. The effects of ov-NEAT1 were partially attenuated by small interfering (si)-TRAF2. Overall, Tri inhibited the LPS-induced decrease in viability, increase in apoptosis and inflammation and activation of NF-κB signaling in HMC3 cells. Tri regulation affected the NEAT1/miR-361-3p/TRAF2 axis. These findings suggested a potential therapeutic role for Tri in the clinical management of AD by modulating this molecular axis.
Collapse
Affiliation(s)
- Li Zhou
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuming Huang
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Haiyan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jihui Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
8
|
Xu P, Wu Z, Peng Y, Gao J, Zheng F, Tan J, Xu J, Wang T. Neuroprotection of Triptolide against Amyloid-Beta1-42-induced toxicity via the Akt/mTOR/p70S6K-mediated Autophagy Pathway. AN ACAD BRAS CIENC 2022; 94:e20210938. [PMID: 35946645 DOI: 10.1590/0001-3765202220210938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
Triptolide is a natural active compound that has significant neuroprotective properties and shows promising effects in the treatment of Alzheimer's disease (AD). Recent studies have shown that autophagy occurs in AD. In this study, we determined whether autophagy regulated by triptolide ameliorates neuronal death caused by amyloid-Beta1-42 (Aβ1-42). We examined the effects of triptolide on cell viability, autophagy, apoptosis, and the protein kinase B/mammalian target of the rapamysin/70 kDa ribosomal protein S6 kinase (Akt/mTOR/p70S6K) signaling pathway in PC12 cells. The results indicated that triptolide treatment exhibited a cytoprotective effect against cell injury induced by Aβ1-42. Triptolide also reduced apoptosis and enhanced cell survival by decreasing autophagosome accumulation and inducing autophagic degradation. Furthermore, our results also showed that activating the Akt/mTOR/p70S6K mechanism was one reason for the protection of triptolide. Triptolide treatment protected against Aβ1-42-induced cytotoxicity by decreasing autophagosome accumulation, and inducing autophagic degradation in PC12 cells. These findings also suggest that the reduction of autophagosome accumulation observed in triptolide-treated cells was Akt/mTOR/p70S6K pathway dependent. Overall, triptolide exhibits a neuron protective effect and this study provides new insight into AD prevention and treatment.
Collapse
Affiliation(s)
- Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Zixuan Wu
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yanfei Peng
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jing Gao
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Fang Zheng
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Junzhen Tan
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jing Xu
- Tianjin Medical University General Hospital, Department of Neurology, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Tao Wang
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| |
Collapse
|
9
|
Cao Z, Liu B, Li L, Lu P, Yan L, Lu C. Detoxification strategies of triptolide based on drug combinations and targeted delivery methods. Toxicology 2022; 469:153134. [PMID: 35202762 DOI: 10.1016/j.tox.2022.153134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Tripterygium wilfordii Hook f. has a long history of use in Chinese medicine. Triptolide (TP), as its main pharmacological component, has been widely explored in various diseases, including systemic lupus erythematosus, rheumatoid arthritis and cancer. However, due to its poor water solubility, limited therapeutic range and multi-organ toxicity, TP's clinical application has been greatly hampered. To improve its clinical potential, many attenuated drug combinations have been developed based on its toxicity mechanism and targeted delivery systems aimed at its water-solubility and structure. This review, conducted a systematic review of TP detoxification strategies including drug combination detoxification strategies from metabolic and toxic mechanisms, as well as drug delivery detoxification strategies from the prodrug strategy and nanotechnology. Many detoxification strategies have demonstrated promising potential in vitro and in vivo due to previous extensive studies on TP. Therefore, summarizing and discussing TP detoxification strategies for clinical problems can serve as a reference for developing novel TP detoxification strategies, and provide opportunities for future clinical applications.
Collapse
Affiliation(s)
- Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Zhao J, Zhang F, Xiao X, Wu Z, Hu Q, Jiang Y, Zhang W, Wei S, Ma X, Zhang X. Tripterygium hypoglaucum (Lévl.) Hutch and Its Main Bioactive Components: Recent Advances in Pharmacological Activity, Pharmacokinetics and Potential Toxicity. Front Pharmacol 2021; 12:715359. [PMID: 34887747 PMCID: PMC8650721 DOI: 10.3389/fphar.2021.715359] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023] Open
Abstract
Tripterygium hypoglaucum (Lévl.) Hutch (THH) is believed to play an important role in health care and disease treatment according to traditional Chinese medicine. Moreover, it is also the representative of medicine with both significant efficacy and potential toxicity. This characteristic causes THH hard for embracing and fearing. In order to verify its prospect for clinic, a wide variety of studies were carried out in the most recent years. However, there has not been any review about THH yet. Therefore, this review summarized its characteristic of components, pharmacological effect, pharmacokinetics and toxicity to comprehensively shed light on the potential clinical application. More than 120 secondary metabolites including terpenoids, alkaloids, glycosides, sugars, organic acids, oleanolic acid, polysaccharides and other components were found in THH based on phytochemical research. All these components might be the pharmacological bases for immunosuppression, anti-inflammatory and anti-tumour effect. In addition, recent studies found that THH and its bioactive compounds also demonstrated remarkable effect on obesity, insulin resistance, fertility and infection of virus. The main mechanism seemed to be closely related to regulation the balance of immune, inflammation, apoptosis and so on in various disease. Furthermore, the study of pharmacokinetics revealed quick elimination of the main component triptolide. The feature of celastrol was also investigated by several models. Finally, the side effect of THH was thought to be the key for its limitation in clinical application. A series of reports indicated that multiple organs or systems including liver, kidney and genital system were involved in the toxicity. Its potential serious problem in liver was paid specific attention in recent years. In summary, considering the significant effect and potential toxicity of THH as well as its components, the combined medication to inhibit the toxicity, maintain effect might be a promising method for clinical conversion. Modern advanced technology such as structure optimization might be another way to reach the efficacy and safety. Thus, THH is still a crucial plant which remains for further investigation.
Collapse
Affiliation(s)
- Junqi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shizhang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
11
|
Huang Y, Huang W, Yang G, Wang R, Ma L. Design and synthesis of novel diosgenin-triazole hybrids targeting inflammation as potential neuroprotective agents. Bioorg Med Chem Lett 2021; 43:128092. [PMID: 33964436 DOI: 10.1016/j.bmcl.2021.128092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/09/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease, and its incidence is expected to increase as the global population ages. Recent studies provide increasing evidence that inflammation plays a key role in the pathogenesis and progression of AD. Diosgenin, an active ingredient in Dioscorea nipponica Makino, is a promising bioactive lead compound in the treatment of Alzheimer's disease, which exhibited anti-inflammatory activity. To search for more efficient anti-Alzheimer agents, a series of novel diosgenin-triazolyl hybrids were designed, synthesized, and their neuroprotective effects against oxygen-glucose deprivation-induced neurotoxicity and LPS-induced NO production were evaluated. Most of these new hybrids displayed better activities than DIO. In particular, the promising compound L6 not only demonstrated an excellent neuroprotective effect but also showed the best anti-inflammatory activity. The structure-activity relationship study illustrated that the introduction of benzyl or phenyl triazole did improve the activity, and the introduction of benzyl triazole was better than that of phenyl triazole. The results we obtained showed that the diosgenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates, and compound L6 has the potential to be an important lead compound for further research.
Collapse
Affiliation(s)
- Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiwei Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
12
|
Guo Y, Ji W, Lu Y, Wang Y. Triptolide reduces salivary gland damage in a non-obese diabetic mice model of Sjögren's syndrome via JAK/STAT and NF-κB signaling pathways. J Clin Biochem Nutr 2021; 68:131-138. [PMID: 33879964 PMCID: PMC8046007 DOI: 10.3164/jcbn.20-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Triptolide (TP) has anti-inflammatory and immunosuppressive effects. However, the effect of triptolide on Sjögren's syndrome (SS) is rarely reported. In this paper, we studied the effects of triptolide on non-obese diabetes mice model of SS. In this study, salivary flow rate was measured every two weeks, and autoantibodies levels in the serum were detected. Salivary gland index and spleen index were detected, pathological changes of salivary gland were detected by hematoxylin-eosin staining, inflammatory factors were detected by enzyme linked immunosorbent assay, lymphocytes were detected by flow cytometry, proliferation of T cells and B cells were detected, and related proteins were detected by Western blot. Triptolide increased salivary flow rate and salivary gland index, and decreased spleen gland index. Moreover, triptolide reduced the infiltration of lymphocytes to salivary glands, decreased the level of autoantibodies in serum, and reduced the inflammatory factors in salivary glands and IFN-γ induced salivary gland epithelial cells. Further, triptolide inhibited activator of JAK/STAT pathway and NF-κB pathway. In conclusion, triptolide could inhibit the infiltration of lymphocytes and the expression of inflammatory factors through JAK/STAT pathway and NF-κB pathway. Thus, triptolide may be used as a potential drug to treat SS.
Collapse
Affiliation(s)
- Yunke Guo
- Department of Rheumatism, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing 210000, China
| | - Wei Ji
- Department of Rheumatism, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing 210000, China
| | - Yueyang Lu
- Integration of traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing 210023, China
| | - Yue Wang
- Department of Rheumatism, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Qixia District, Nanjing 210000, China
| |
Collapse
|
13
|
Zhang H, Lu G. Synthesis of celastrol derivatives as potential non-nucleoside hepatitis B virus inhibitors. Chem Biol Drug Des 2020; 96:1380-1386. [PMID: 32573976 DOI: 10.1111/cbdd.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
A series of para-quinone methide (pQM) moiety and C-20- modified derivatives of celastrol were synthesized and evaluated for their inhibitory effect on the secretion of HBsAg and HBeAg as well as the inhibitory effect against HBV DNA replication. The results suggested that amidation of C-20 carboxylic group could generate derivatives with good anti-HBV profile, among them compound 14 showed the best inhibitory activity on the secretion of HBsAg (IC50 = 11.9 µμ) and HBeAg (IC50 = 13.1 µμ) with SI of 3.3 and 3.0, respectively. In addition, 14 also showed potent inhibitory effect against HBV DNA replication (48.5 ± 15.1%, 25 µM). This is, to our knowledge, the first report of celastrol derivatives as potential non-nucleoside HBV inhibitors.
Collapse
Affiliation(s)
- He Zhang
- Beijing BeiqinBiotech Co. Ltd., Xinggu Economic Development Zone, Beijing, China
| | - Gongxi Lu
- Beijing BeiqinBiotech Co. Ltd., Xinggu Economic Development Zone, Beijing, China
| |
Collapse
|
14
|
Lv H, Jiang L, Zhu M, Li Y, Luo M, Jiang P, Tong S, Zhang H, Yan J. The genus Tripterygium: A phytochemistry and pharmacological review. Fitoterapia 2019; 137:104190. [DOI: 10.1016/j.fitote.2019.104190] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
|
15
|
Hou W, Liu B, Xu H. Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem 2019; 176:378-392. [DOI: 10.1016/j.ejmech.2019.05.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
|
16
|
Pashirova TN, Burilova EA, Tagasheva RG, Zueva IV, Gibadullina EM, Nizameev IR, Sudakov IA, Vyshtakalyuk AB, Voloshina AD, Kadirov MK, Petrov KA, Burilov AR, Bukharov SV, Zakharova LY. Delivery nanosystems based on sterically hindered phenol derivatives containing a quaternary ammonium moiety: Synthesis, cholinesterase inhibition and antioxidant activity. Chem Biol Interact 2019; 310:108753. [PMID: 31319075 DOI: 10.1016/j.cbi.2019.108753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/09/2022]
Abstract
Multitarget ligands (MTL) based on sterically hindered phenol and containing a quaternary ammonium moiety (SHP-n-Q) were synthesized. These compounds are inhibitors of cholinesterases with antioxidant properties. The inhibitory selectivity is 10-fold potent for BChE than for AChE. IC50 of SHP-n-Q for BChE is 20 μM. SHP-n-Q and their nanosystems exhibit more pronounced antioxidant properties than the synthetic antioxidant (hindered phenol, butylated hydroxytoluene). These compounds display a low hemolytic activity against human red blood cells. The nanotechnological approach was used to increase the bioavailability of SHP-n-Q derivatives. For water soluble SHP-n-Q derivative, the self-assembled structures have a size close to 100 nm at critical association concentration (0.01 M). Mixed cationic liposomes based on l-α-phosphatidylcholine and SHP-n-Q of 100 nm diameter were prepared. The stability, encapsulation efficacy and release from liposomes of a model drug, Rhodamine B, depend on the structure of SHP-n-Q. Cationic liposomes based on l-α-phosphatidylcholine and SHP-3-Q show a good stability in time (1year) and a sustained release (>65 h). They are promising templates for the development of anti-Alzheimer MT-drug delivery systems.
Collapse
Affiliation(s)
- T N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation.
| | - E A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - R G Tagasheva
- Kazan National Research Technological University, Karl Marx str., 68, 420015, Kazan, Russian Federation
| | - I V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - E M Gibadullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - I R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, 420015, Kazan, Russian Federation
| | - I A Sudakov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - A B Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - A D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - M K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, 420015, Kazan, Russian Federation
| | - K A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - A R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - S V Bukharov
- Kazan National Research Technological University, Karl Marx str., 68, 420015, Kazan, Russian Federation
| | - L Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
17
|
Li J, Hao J. Treatment of Neurodegenerative Diseases with Bioactive Components of Tripterygium wilfordii. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:769-785. [PMID: 31091976 DOI: 10.1142/s0192415x1950040x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tripterygium wilfordii Hook F. (TWHF), a traditional Chinese medicine, has been widely used to treat autoimmune and inflammatory diseases including rheumatoid arthritis, systemic lupus erythematosus and dermatomyositis in China. Recently, studies have demonstrated that the bioactive components of TWHF have effective therapeutic potential for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and Multiple Sclerosis. In this paper, we summarize the research progress of triptolide and celastrol (the two major TWHF components) as well as their analogues in the treatment of neurodegenerative diseases. In addition, we review and discuss the molecular mechanisms and structure features of those two bioactive TWHF components, highlighting their therapeutic promise in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianheng Li
- * School of Pharmacy, Key laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, Hebei, P. R. China
| | - Jijun Hao
- † College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.,‡ Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
18
|
Zhang Z, Zhang S, Lui CNP, Zhu P, Zhang Z, Lin K, Dai Y, Yung KKL. Traditional Chinese medicine-based neurorestorative therapy for Alzheimer’s and Parkinson’s disease. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The prevalence of multiple neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has been dramatically increasing, particularly in the aging population. However, the currently available therapies merely alleviate the symptoms of these diseases and are unable to retard disease progression significantly. Traditional Chinese medicine (TCM) has been used in clinical practice for thousands of years for ameliorating symptoms or interfering with the pathogenesis of aging- associated diseases. Modern pharmacological studies have proved that TCM imparts disease-modifying therapeutic effects against these diseases, such as protection of neurons, clearance of protein aggregates, and regulation of neuroinflammation. This review summarizes the evidence from recent studies on AD and PD therapies regarding the neuroprotective activities and molecular mechanisms of a series of TCM formulations comprising herbs and their active ingredients. The findings of this review support the use of TCM as an alternative source of therapy for the treatment of neurodegenerative diseases.
Collapse
|