1
|
Zocchi G, Fontanelli F, Spinelli S, Sturla L, Passalacqua M, González Urra JC, Delsante S, Zocchi E. Thermal measurements support a role of the ABA/LANCL1-2 hormone/receptors system in thermogenesis. Open Biol 2024; 14:240107. [PMID: 39657821 PMCID: PMC11631410 DOI: 10.1098/rsob.240107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis. Heat production by LANCL1/2-overexpressing versus double-silenced cells was compared in rat H9c2 cardiomyocytes with two different methods: differential temperature measurements using sensitive thermistor probes and differential isothermal calorimetry. Overexpressing cells generate an approximately double amount of thermal power compared with double-silenced cells, and addition of ABA further doubles heat production in overexpressing cells. With the temperature probes, we find a timescale of approximately 4 min for thermogenesis to 'turn on' after nutrient addition. We provide direct measurements of increased heat production triggered by the ABA/LANCL hormone receptors system. Combined with previous work on oxphos decoupling, these results support the role of the ABA/LANCL hormone receptors system as a hitherto unknown regulator of cell thermogenesis.
Collapse
Affiliation(s)
- Giovanni Zocchi
- Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
| | - Flavio Fontanelli
- Department of Physics, University of Genoa and National Institute of Nuclear Physics (INFN), Section of Genoa, Italy
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Laura Sturla
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | | | - Simona Delsante
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genoa, Genoa, Italy
| | - Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| |
Collapse
|
2
|
Wu L, Li W, Chen G, Yang Z, Lv X, Zheng L, Sun J, Ai L, Sun B, Ni L. Ameliorative effects of monascin from red mold rice on alcoholic liver injury and intestinal microbiota dysbiosis in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Dai Y, Santiago-Rivera JA, Hargett S, Salamoun JM, Hoehn KL, Santos WL. Conversion of oxadiazolo[3,4-b]pyrazines to imidazo[4,5-b]pyrazines via a tandem reduction-cyclization sequence generates new mitochondrial uncouplers. Bioorg Med Chem Lett 2022; 73:128912. [PMID: 35907607 DOI: 10.1016/j.bmcl.2022.128912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 11/02/2022]
Abstract
We report new mitochondrial uncouplers derived from the conversion of [1,2,5]oxadiazolo[3,4-b]pyrazines to 1H-imidazo[4,5-b]pyrazines. The in situ Fe-mediated reduction of the oxadiazole fragment followed by cyclization gave access to imidazopyrazines in moderate to good yields. A selection of orthoesters also allowed functionalization on the 2-position of the imidazole ring. This method afforded a variety of imidazopyrazine derivatives with varying substitution on the 2, 5 and 6 positions. Our studies suggest that both a 2-trifluoromethyl group and N-methylation are crucial for mitochondrial uncoupling capacity.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - José A Santiago-Rivera
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Stefan Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, VA 22908, United States; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
4
|
Targeting Energy Expenditure-Drugs for Obesity Treatment. Pharmaceuticals (Basel) 2021; 14:ph14050435. [PMID: 34066399 PMCID: PMC8148206 DOI: 10.3390/ph14050435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity and overweight are associated with lethal diseases. In this context, obese and overweight individuals infected by COVID-19 are at greater risk of dying. Obesity is treated by three main pharmaceutical approaches, namely suppressing appetite, reducing energy intake by impairing absorption, and increasing energy expenditure. Most compounds used for the latter were first envisaged for other medical uses. However, several candidates are now being developed explicitly for targeting obesity by increasing energy expenditure. This review analyzes the compounds that show anti-obesity activity exerted through the energy expenditure pathway. They are classified on the basis of their development status: FDA-approved, Withdrawn, Clinical Trials, and Under Development. The chemical nature, target, mechanisms of action, and description of the current stage of development are described for each one.
Collapse
|
5
|
Salamoun JM, Garcia CJ, Hargett SR, Murray JH, Chen SY, Beretta M, Alexopoulos SJ, Shah DP, Olzomer EM, Tucker SP, Hoehn KL, Santos WL. 6-Amino[1,2,5]oxadiazolo[3,4- b]pyrazin-5-ol Derivatives as Efficacious Mitochondrial Uncouplers in STAM Mouse Model of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:6203-6224. [PMID: 32392051 PMCID: PMC11042500 DOI: 10.1021/acs.jmedchem.0c00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small molecule mitochondrial uncouplers have recently garnered great interest for their potential in treating nonalcoholic steatohepatitis (NASH). In this study, we report the structure-activity relationship profiling of a 6-amino[1,2,5]oxadiazolo[3,4-b]pyrazin-5-ol core, which utilizes the hydroxy moiety as the proton transporter across the mitochondrial inner membrane. We demonstrate that a wide array of substituents is tolerated with this novel scaffold that increased cellular metabolic rates in vitro using changes in oxygen consumption rate as a readout. In particular, compound SHS4121705 (12i) displayed an EC50 of 4.3 μM in L6 myoblast cells and excellent oral bioavailability and liver exposure in mice. In the STAM mouse model of NASH, administration of 12i at 25 mg kg-1 day-1 lowered liver triglyceride levels and improved liver markers such as alanine aminotransferase, NAFLD activity score, and fibrosis. Importantly, no changes in body temperature or food intake were observed. As potential treatment of NASH, mitochondrial uncouplers show promise for future development.
Collapse
Affiliation(s)
- Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Jacob H Murray
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Simon P Tucker
- Continuum Biosciences, Pty Ltd., Sydney 2035, Australia
- Continuum Biosciences Inc., Boston, Massachusetts 02116, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|