1
|
Gozelle M, Bakar-Ates F, Massarotti A, Ozkan E, Gunindi HB, Ozkan Y, Eren G. In silico approach reveals N-(5-phenoxythiophen-2-yl)-2-(arylthio)acetamides as promising selective SIRT2 inhibitors: the case of structural optimization of virtual screening-derived hits. J Biomol Struct Dyn 2025; 43:1756-1767. [PMID: 38112299 DOI: 10.1080/07391102.2023.2293252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Epigenetic modifications play an essential role in tumor suppression and promotion. Among the diverse range of epigenetic regulators, SIRT2, a member of NAD+-dependent protein deacetylates, has emerged as a crucial regulator of cellular processes, including cell cycle progression, DNA repair, and metabolism, impacting tumor growth and survival. In the present work, a series of N-(5-phenoxythiophen-2-yl)-2-(arylthio)acetamide derivatives were identified following a structural optimization of previously reported virtual screening hits, accompanied by enhanced SIRT2 inhibitory potency. Among the compounds, ST44 and ST45 selectively inhibited SIRT2 with IC50 values of 6.50 and 7.24 μM, respectively. The predicted binding modes of the two compounds revealed the success of the optimization run. Moreover, ST44 displayed antiproliferative effects on the MCF-7 human breast cancer cell line. Further, the contribution of SIRT2 inhibition in this effect of ST44 was supported by western blotting, affording an increased α-tubulin acetylation. Furthermore, molecular dynamics (MD) simulations and binding free energy calculations using molecular mechanics/generalized born surface area (MM-GBSA) method evaluated the accuracy of predicted binding poses and ligand affinities. The results revealed that ST44 exhibited a remarkable level of stability, with minimal deviations from its initial docking conformation. These findings represented a significant improvement over the virtual screening hits and may contribute substantially to our knowledge for further selective SIRT2 drug discovery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmut Gozelle
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, "A. Avogadro", Novara, Italy
| | - Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Yesim Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Parameshwaraiah SM, Shivakumar R, Xi Z, Siddappa TP, Ravish A, Mohan A, Poonacha LK, Uppar PM, Basappa S, Dukanya D, Gaonkar SL, Kemparaju K, Lobie PE, Pandey V, Basappa B. Development of Novel Indazolyl-Acyl Hydrazones as Antioxidant and Anticancer Agents that Target VEGFR-2 in Human Breast Cancer Cells. Chem Biodivers 2024; 21:e202301950. [PMID: 38258537 DOI: 10.1002/cbdv.202301950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The increased expression of VEGFR-2 in a variety of cancer cells promotes a cascade of cellular responses that improve cell survival, growth, and proliferation. Heterocycles are common structural elements in medicinal chemistry and commercially available medications that target several biological pathways and induce cell death in cancer cells. Herein, the evaluation of indazolyl-acyl hydrazones as antioxidant and anticancer agents is reported. Compounds 4e and 4j showed inhibitory activity in free radical scavenging assays (DPPH and FRPA). The titled compounds were employed in cell viability studies using MCF-7 cells, and it was observed that compounds 4f and 4j exhibited IC50 values 15.83 μM and 5.72 μM, respectively. In silico docking revealed the favorable binding energies of -7.30 kcal/mol and -8.04 kcal/mol for these compounds towards Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), respectively. In conclusion, compounds with antioxidant activity and that target VEGFR-2 in breast cancer cells are reported.
Collapse
Affiliation(s)
- Sindhu M Parameshwaraiah
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Rashmi Shivakumar
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Zhang Xi
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Tejaswini P Siddappa
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Akshay Ravish
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Arunkumar Mohan
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Lisha K Poonacha
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Pradeep M Uppar
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, 500078, India
| | - Dukanya Dukanya
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| | - Santhosh L Gaonkar
- Manipal Academy of Higher Education, Department of Chemistry, Manipal Institute of Technology, Manipal, 576104, India
| | - Kempaiah Kemparaju
- University of Mysore, Manasagangotri, Department of Studies in Biochemistry, Mysore, 570006, India
| | - Peter E Lobie
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
- Tsinghua University, Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Vijay Pandey
- Tsinghua University, Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- Tsinghua University, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Basappa Basappa
- University of Mysore, Manasagangotri, Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, Mysore, 570006, India
| |
Collapse
|
3
|
Kaya SG, Eren G. Selective inhibition of SIRT2: A disputable therapeutic approach in cancer therapy. Bioorg Chem 2024; 143:107038. [PMID: 38113655 DOI: 10.1016/j.bioorg.2023.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Sirtuin 2 (SIRT2) is involved in a wide range of processes, from transcription to metabolism to genome stability. Dysregulation of SIRT2 has been associated with the pathogenesis and progression of different diseases, such as cancer and neurodegenerative disorders. In this context, targeting SIRT2 activity by small molecule inhibitors is a promising therapeutic strategy for treating related conditions, particularly cancer. This review summarizes the regulatory roles and molecular mechanisms of SIRT2 in cancer and the attempts to evaluate potential antitumor activities of SIRT2-selective inhibitors by in vitro and in vivo testing, which are expected to deepen our understanding of the role of SIRT2 in tumorigenesis and progression and may offer important clues or inspiration ideas for developing SIRT2 inhibitors with excellent affinity and selectivity.
Collapse
Affiliation(s)
- Selen Gozde Kaya
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
4
|
Scarano N, Abbotto E, Musumeci F, Salis A, Brullo C, Fossa P, Schenone S, Bruzzone S, Cichero E. Virtual Screening Combined with Enzymatic Assays to Guide the Discovery of Novel SIRT2 Inhibitors. Int J Mol Sci 2023; 24:ijms24119363. [PMID: 37298312 DOI: 10.3390/ijms24119363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2. The subsequent studies led to different experimental data regarding this protein in complex with further different chemo-types as SIRT2 inhibitors. Herein, we reported preliminary Structure-Based Virtual Screening (SBVS) studies using a commercially available library of compounds to identify novel scaffolds for the design of new SIRT2 inhibitors. Biochemical assays involving five selected compounds allowed us to highlight the most effective chemical features supporting the observed SIRT2 inhibitory ability. This information guided the following in silico evaluation and in vitro testing of further compounds from in-house libraries of pyrazolo-pyrimidine derivatives towards novel SIRT2 inhibitors (1-5). The final results indicated the effectiveness of this scaffold for the design of promising and selective SIRT2 inhibitors, featuring the highest inhibition among the tested compounds, and validating the applied strategy.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| |
Collapse
|
5
|
Paula Ceballos M, Darío Quiroga A, Palma NF. Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol 2023; 212:115573. [PMID: 37127248 DOI: 10.1016/j.bcp.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer worldwide. Therapeutic strategies are still challenging due to the high relapse rate after surgery and multidrug resistance (MDR). It is essential to better understand the mechanisms for HCC progression and MDR for the development of new therapeutic strategies. Mammalian sirtuins (SIRTs), a family of seven members, are related to tumor progression, MDR and prognosis and were proposed as potential prognostic markers, as well as therapeutic targets for treating cancer. SIRT1 is the most studied member and is overexpressed in HCC, playing an oncogenic role and predicting poor prognosis. Several manuscripts describe the role of SIRTs2-7 in HCC; most of them report an oncogenic role for SIRT2 and -7 and a suppressive role for SIRT3 and -4. The scenario is more confusing for SIRT5 and -6, since information is contradictory and scarce. For SIRT1 many inhibitors are available and they seem to hold therapeutic promise in HCC. For the other members the development of specific modulators has just started. This review is aimed to describe the features of SIRTs1-7 in HCC, and the role they play in the onset and progression of the disease. Also, when possible, we will depict the information related to the SIRTs modulators that have been tested in HCC and their possible implication in MDR. With this, we hope to clarify the role of each member in HCC and to shed some light on the most successful strategies to overcome MDR.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina
| | - Nicolás Francisco Palma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
6
|
Oxadiazole Schiff Base as Fe 3+ Ion Chemosensor: "Turn-off" Fluorescent, Biological and Computational Studies. J Fluoresc 2023; 33:751-772. [PMID: 36515760 DOI: 10.1007/s10895-022-03083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
Compound, (E)-5-(4-((thiophen-2-ylmethylene)amino)phenyl)-1,3,4-oxadiazole-2-thiol (3) was synthesized via condensation reaction of 5-(4-aminophenyl)-1,3,4-oxadiazole-2-thiol with thiophene-2-carbaldehyde in ethanol. For the synthesis and structural confirmation the FT-IR, 1H, 13C-NMR, UV-visible spectroscopy, and mass spectrometry were carried out. The long-term stability of the probe (3) was validated by the experimental as well as theoretical studies. The sensing behaviour of the compound 3 was monitored with various metal ions (Ca2+, Cr3+, Fe3+, Co2+, Mg2+, Na+, Ni2+, K+) using UV- Vis. and fluorescence spectroscopy techniques by various methods (effect of pH and density functional theory) which showing the most potent sensing behaviour with iron. Job's plot analysis confirmed the binding stoichiometry ratio 1:1 of Fe3+ ion and compound 3. The limit of detection (LOD), the limit of quantification (LOQ), and association constant (Ka) were calculated as 0.113 µM, 0.375 µM, and 5.226 × 105 respectively. The sensing behavior was further confirmed through spectroscopic techniques (FT-IR and 1H-NMR) and DFT calculations. The intercalative mode of binding of oxadiazole derivative 3 with Ct-DNA was supported through UV-Vis spectroscopy, fluorescence spectroscopy, viscosity, cyclic voltammetry, and circular dichroism measurements. The binding constant, Gibb's free energy, and stern-volmer constant were find out as 1.24 × 105, -29.057 kJ/mol, and 1.82 × 105 respectively. The cleavage activity of pBR322 plasmid DNA was also observed at 3 × 10-5 M concentration of compound 3. The computational binding score through molecular docking study was obtained as -7.4 kcal/mol. Additionally, the antifungal activity for compound 3 was also screened using broth dilution and disc diffusion method against C. albicans strain. The synthesized compound 3 showed good potential scavenging antioxidant activity against DPPH and H2O2 free radicals.
Collapse
|
7
|
Wang JJ, Sun W, Jia WD, Bian M, Yu LJ. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: a mini review. J Enzyme Inhib Med Chem 2022; 37:2304-2319. [PMID: 36000176 PMCID: PMC9423840 DOI: 10.1080/14756366.2022.2115036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxadiazole is a five-membered heterocyclic compound containing two nitrogen atoms and one oxygen atom. The 1,3,4-oxadiazole and 1,2,4-oxadiazole have favourable physical, chemical, and pharmacokinetic properties, which significantly increase their pharmacological activity via hydrogen bond interactions with biomacromolecules. In recent years, oxadiazole has been demonstrated to be the biologically active unit in a number of compounds. Oxadiazole derivatives exhibit antibacterial, anti-inflammatory, anti-tuberculous, anti-fungal, anti-diabetic and anticancer activities. In this paper, we report a series of compounds containing oxadiazole rings that have been published in the last three years only (2020-2022) as there was no report or their activities described in any article in 2019, which will be useful to scientists in research fields of organic synthesis, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wen Sun
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wei-Dong Jia
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Ming Bian
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Li-Jun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| |
Collapse
|
8
|
Vishwanath D, Girimanchanaika SS, Dukanya D, Rangappa S, Yang JR, Pandey V, Lobie PE, Basappa B. Design and Activity of Novel Oxadiazole Based Compounds That Target Poly(ADP-ribose) Polymerase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030703. [PMID: 35163965 PMCID: PMC8839658 DOI: 10.3390/molecules27030703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Novel PARP inhibitors with selective mode-of-action have been approved for clinical use. Herein, oxadiazole based ligands that are predicted to target PARP-1 have been synthesized and screened for the loss of cell viability in mammary carcinoma cells, wherein seven compounds were observed to possess significant IC50 values in the range of 1.4 to 25 µM. Furthermore, compound 5u, inhibited the viability of MCF-7 cells with an IC50 value of 1.4µM, when compared to Olaparib (IC50 = 3.2 µM). Compound 5s also decreased cell viability in MCF-7 and MDA-MB-231 cells with IC50 values of 15.3 and 19.2 µM, respectively. Treatment of MCF-7 cells with compounds 5u and 5s produced PARP cleavage, H2AX phosphorylation and CASPASE-3 activation comparable to that observed with Olaparib. Compounds 5u and 5s also decreased foci-formation and 3D Matrigel growth of MCF-7 cells equivalent to or greater than that observed with Olaparib. Finally, in silico analysis demonstrated binding of compound 5s towardsthe catalytic site of PARP-1, indicating that these novel oxadiazoles synthesized herein may serve as exemplars for the development of new therapeutics in cancer.
Collapse
Affiliation(s)
- Divakar Vishwanath
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India; (D.V.); (S.S.G.); (D.D.)
| | - Swamy S. Girimanchanaika
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India; (D.V.); (S.S.G.); (D.D.)
| | - Dukanya Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India; (D.V.); (S.S.G.); (D.D.)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Mandya 571448, India;
| | - Ji-Rui Yang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.-R.Y.); (V.P.)
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.-R.Y.); (V.P.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peter E. Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.-R.Y.); (V.P.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: (P.E.L.); (B.B.)
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India; (D.V.); (S.S.G.); (D.D.)
- Correspondence: (P.E.L.); (B.B.)
| |
Collapse
|
9
|
Shang C, Hou Y, Meng T, Shi M, Cui G. The Anticancer Activity of Indazole Compounds: A Mini Review. Curr Top Med Chem 2021; 21:363-376. [PMID: 33238856 DOI: 10.2174/1568026620999201124154231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
The incidence and mortality of cancer continue to grow since the current medical treatments often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. Heterocycles with potential therapeutic values are of great pharmacological importance, and among them, indazole moiety is a privileged structure in medicinal chemistry. Indazole compounds possess potential anticancer activity, and indazole-based agents such as, axitinib, lonidamine and pazopanib have already been employed for cancer therapy, demonstrating indazole compounds as useful templates for the development of novel anticancer agents. The aim of this review is to present the main aspects of exploring anticancer properties, such as the structural modifications, the structure-activity relationship and mechanisms of action, making an effort to highlight the importance and therapeutic potential of the indazole compounds in the present anticancer agents.
Collapse
Affiliation(s)
- Congshan Shang
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Yani Hou
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Tingting Meng
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Min Shi
- Medical College, Xi'an Peihua University, Xi'an 710025, Shaanxi, China
| | - Guoyan Cui
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shaanxi, China
| |
Collapse
|
10
|
Roshdy E, Mustafa M, Shaltout AER, Radwan MO, Ibrahim MAA, Soliman ME, Fujita M, Otsuka M, Ali TFS. Selective SIRT2 inhibitors as promising anticancer therapeutics: An update from 2016 to 2020. Eur J Med Chem 2021; 224:113709. [PMID: 34303869 DOI: 10.1016/j.ejmech.2021.113709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Sirtuin 2 (SIRT2) is a member of the human sirtuins, which regulates various biological processes and is deemed as a novel biomarker for different cancers. Depending on the tumor type, SIRT2 knockout leads to a controversial role in tumorigenesis, however, pharmacological inhibition of SIRT2 results exclusively in growth inhibition of various cancer cells. In this respect, selective SIRT2 inhibitors hold therapeutic promise in a wide range of tumors. The literature has a batch of successful stories of SIRT2 modulators discovery. This review presents our perspective on the up-to-date selective SIRT2 inhibitors and their antiproliferative activity.
Collapse
Affiliation(s)
- Eslam Roshdy
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Muhamad Mustafa
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt.
| | | | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan; Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mahmoud E Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Taha F S Ali
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan.
| |
Collapse
|
11
|
Dukanya, Shanmugam MK, Rangappa S, Metri PK, Mohan S, Basappa, Rangappa KS. Anti-proliferative activity and characterization data on oxadiazole derivatives. Data Brief 2020; 31:105979. [PMID: 32715036 PMCID: PMC7369534 DOI: 10.1016/j.dib.2020.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022] Open
Abstract
This data in brief article explains the anti-cancer activity and characterization of oxadiazoles [1]. The main objective of this article was to provide general synthetic procedures, spectral discussion and physical data on the new oxadiazole tethered indazole (OTDs). This article discusses the 1H NMR, 13C NMR, mass spectroscopy, HPLC and melting point of the synthetic compounds. MTT assay was used to determine the anti-proliferative activity in hepatocellular cell lines.
Collapse
Affiliation(s)
- Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117600, Singapore
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara-571448, Nagamangala Taluk, Mandya District, India
| | - Prashant K Metri
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Surender Mohan
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | | |
Collapse
|