1
|
Chen W, Wang R, Lin Y, Wang X, Cai F, Lin M, Wang J, Zhang H, Chen M. The antibreast cancer therapeutic potential of quinazoline hybrids-Part I. Future Med Chem 2025:1-15. [PMID: 40304260 DOI: 10.1080/17568919.2025.2498881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is the leading cause of cancer-related mortality among female patients across the world. Chemotherapy is a critical means for breast cancer therapy, and administration of chemotherapy could reduce the risk of recurrence by approximately one-third in early breast cancer. However, multidrug resistance represents a principal obstacle to effective chemotherapeutic interventions against breast cancer and is an increasing clinical challenge, creating an urgent demand to explore innovative chemotherapeutics to combat this formidable disease. Quinazoline hybrids with structural and mechanistic diversity exhibit excellent activity against breast cancers including drug-resistant forms and have the potential to reduce side effects caused by the corresponding pharmacophores. Notably, lapatinib, a quinazoline-furan-sulfone hybrid, has already been launched for breast cancer therapy. Thus, quinazoline hybrids represent a fertile source for the development of novel chemotherapeutics for clinical deployment in the control and eradication of breast cancer. This review emphasizes the current scenario of quinazoline hybrids with antibreast cancer therapeutic potential and focuses on structure-activity relationships (SARs) and modes of action, developed from 2020 onwards, to facilitate the rational discovery of more effective antibreast cancer candidates. [Figure: see text]This review emphasizes the current landscape of quinazoline hybrids with antibreast cancer therapeutic potential, delves into structure-activity relationships and mechanisms of action developed from 2020 onwards, aiming to facilitate the rational discovery of more effective and less toxic candidates.
Collapse
Affiliation(s)
- Wei Chen
- Department of Breast Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ruo Wang
- Department of Breast Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yidan Lin
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaoqiang Wang
- Department of Breast Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Feili Cai
- Department of Breast Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Mengbo Lin
- Department of Breast Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Jiawen Wang
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Hui Zhang
- Department of Breast Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Min Chen
- Department of Pharmacy, Shengli Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Jaouen J, Bailly C. Alkaloids from Mackinlaya species and synthetic mackinazolinone derivatives: An overview. Bioorg Med Chem 2025; 117:118018. [PMID: 39591875 DOI: 10.1016/j.bmc.2024.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Mackinazolinone is the main alkaloid isolated from plants of the genus Mackinlaya, essentially distributed in tropical Asia and Australia. There are five Mackinlaya species all containing bioactive alkaloids with a tetrahydropyridoquinazolinone core such as mackinazoline (1) and mackinazolinone (2). The present review retraces the origin of mackinazolinone and compares the different chemical routes to synthesize the natural product, through different methods including classical batch synthesis, solid-phase supported synthesis, microwaved irradiation and photochemistry. A panel of about 70 mackinazolinone analogues and derivatives is presented to illustrate the diversity of chemical approaches and structures. The pharmacology of mackinazolinone has been little investigated but derivatives with antibacterial or anticancer properties have been identified. The molecular targets for these compounds are essentially unknown, but a few proteins of interest have been evoked occasionally, such as the EGFR kinase. The natural product mackinazolinone has largely inspired chemists to develop novel products and chemical processes. Hopefully, the review will now encourage pharmacologists to further explore the properties of these quinazolinones as potential anti-infectious, anticancer and/or neuroprotective agents.
Collapse
Affiliation(s)
- Julie Jaouen
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; University of Lille, CHU Lille, ULR 7365 GRITA - Groupe de Recherche sur les Formes Injectables et Technologies Associées, F-59000 Lille, France
| | - Christian Bailly
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; OncoWitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France.
| |
Collapse
|
3
|
Soliman AM, Kodous AS, Al-Sherif DA, Ghorab MM. Quinazoline sulfonamide derivatives targeting MicroRNA-34a/MDM4/p53 apoptotic axis with radiosensitizing activity. Future Med Chem 2024; 16:929-948. [PMID: 38661115 PMCID: PMC11221547 DOI: 10.4155/fmc-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: New quinazoline benzenesulfonamide hybrids 4a-n were synthesized to determine their cytotoxicity and effect on the miR-34a/MDM4/p53 apoptotic pathway. Materials & methods: Cytotoxicity against hepatic, breast, lung and colon cancer cell lines was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Compound 4d was the most potent against HepG2 and MCF-7 cancer cells, with potential apoptotic activity verified by a significant upregulation of miR-34a and p53 gene expressions. The apoptotic effect of 4d was further investigated and showed downregulation of miR-21, VEGF, STAT3 and MDM4 gene expression. Conclusion: The anticancer and apoptotic activities of 4d were enhanced post irradiation by a single dose of 8 Gy γ-radiation. Docking analysis demonstrated a valuable affinity of 4d toward VEGFR2 and MDM4 active sites.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Diana A Al-Sherif
- Technology of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, 6th of October University, Giza 12585, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| |
Collapse
|
4
|
Zhang P, Shi C, Dong T, Song J, Du G. The anticancer therapeutic potential of pyrimidine-sulfonamide hybrids. Future Med Chem 2024; 16:905-924. [PMID: 38624011 PMCID: PMC11249161 DOI: 10.4155/fmc-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Peng Zhang
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Congcong Shi
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Tongbao Dong
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Juntao Song
- Hematology & Oncology Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Gang Du
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| |
Collapse
|
5
|
Ismail HS, Khalil A, Taha RA, Lasheen DS, Abou El Ella DA. Design, molecular modelling and synthesis of novel benzothiazole derivatives as BCL-2 inhibitors. Sci Rep 2023; 13:15554. [PMID: 37730790 PMCID: PMC10511702 DOI: 10.1038/s41598-023-41783-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Apoptosis plays a crucial role in cancer pathogenesis and drug resistance. BCL-2 family of enzymes is considered as one of the key enzymes which is involved in apoptosis. When there is disruption in the balance between anti-apoptotic and pro-apoptotic members of the BCL-2 family apoptosis is dysregulated in the affected cells. Herein, 33 novel benzothiazole-based molecules 7a-i, 8a-f, 9a-b, 12a-e, 13a-d, 14a,b, and 17a-j were designed, synthesized and tested for their BCL-2 inhibitory activity. Scaffold hopping strategy was applied in designing of the target compounds. Compounds 13c and 13d showed the highest activity with IC50 values equal to 0.471 and 0.363 µM, respectively. Molecular docking studies of the synthesized compounds showed comparable binding interactions with the lead compound. Structure activity relationship study was performed to show the effects of structural modifications on the inhibitory activities on BCL-2.
Collapse
Affiliation(s)
- Hoda S Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amira Khalil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt.
| | - Rabah A Taha
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
El-Gazzar MGM, Ghorab MM, Amin MA, Korany M, Khedr MA, El-Gazzar MG, Sakr TM. Computational, in vitro and radiation-based in vivo studies on acetamide quinazolinone derivatives as new proposed purine nucleoside phosphorylase inhibitors for breast cancer. Eur J Med Chem 2023; 248:115087. [PMID: 36610250 DOI: 10.1016/j.ejmech.2023.115087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
The present work describes a quinazolinone-based lead optimization for the development of novel purine nucleoside phosphorylase (PNP) inhibitors with quinazolinone scaffold. Nineteen compounds were proposed and docked against PNP, the best 14 compounds with highest docking and affinity scores and low RMSD values were synthesized. Synthesis of new quinazolinone derivatives with variable acetamide substituents on two positions on quinazoline ring was performed. The structures assigned to the products were concordant with the microanalytical and spectral data. In vitro cytotoxicity on human breast cancer cell line (MCF7) was performed and identified compound 6g as the most potent with IC50 (0.99 ± 0.11 μM) which was further tested against five different breast cancer cell lines in addition to normal breast cell to determine the selectivity. Compound 6g was subjected to molecular dynamic simulation study, radiolabelling and biodistribution study to investigate its stability and selectivity toward breast cancers. The in vitro PNP inhibition results were aligned with the in silico, cytotoxicity, and biodistribution results where 6g showed the most potent PNP inhibitory activity with IC50 (0.159 ± 0.007 μM) when compared to Peldesine (BCX-34) IC50 (0.041 ± 0.002 μM).
Collapse
Affiliation(s)
- Mostafa G M El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt.
| | - Mohamed A Amin
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed Korany
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohammed A Khedr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
7
|
Pérez-Fehrmann M, Kesternich V, Puelles A, Quezada V, Salazar F, Christen P, Castillo J, Cárcamo JG, Castro-Alvarez A, Nelson R. Synthesis, antitumor activity, 3D-QSAR and molecular docking studies of new iodinated 4-(3 H)-quinazolinones 3 N-substituted. RSC Adv 2022; 12:21340-21352. [PMID: 35975048 PMCID: PMC9344282 DOI: 10.1039/d2ra03684c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
A novel series of 6-iodo-2-methylquinazolin-4-(3H)-one derivatives, 3a–n, were synthesized and evaluated for their in vitro cytotoxic activity. Compounds 3a, 3b, 3d, 3e, and 3h showed remarkable cytotoxic activity on specific human cancer cell lines when compared to the anti-cancer drug, paclitaxel. Compound 3a was found to be particularly effective on promyelocytic leukaemia HL60 and non-Hodgkin lymphoma U937, with IC50 values of 21 and 30 μM, respectively. Compound 3d showed significant activity against cervical cancer HeLa (IC50 = 10 μM). The compounds 3e and 3h were strongly active against glioblastoma multiform tumour T98G, with IC50 values of 12 and 22 μM, respectively. These five compounds showed an interesting cytotoxic activity on four human cancer cell types of high incidence. The molecular docking results reveal a good correlation between experimental activity and calculated binding affinity on dihydrofolate reductase (DHFR). Docking studies proved 3d as the most potent compound. In addition, the three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis exhibited activities that may indicate the existence of electron-withdrawing and lipophilic groups at the para-position of the phenyl ring and hydrophobic interactions of the quinazolinic ring in the DHFR active site. New iodinated 4-(3H)-quinazolinones 3N-substituted with antitumor activity and 3D-QSAR and molecular docking studies as dihydrofolate reductase (DHFR) inhibitors.![]()
Collapse
Affiliation(s)
- Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Arturo Puelles
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Fernanda Salazar
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Philippe Christen
- School of Pharmaceutical Sciences University of Geneva 1211 Geneva 4 Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva 1211 Geneva 4 Switzerland
| | - Jonathan Castillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR) Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera Av. Francisco Salazar 01145 Temuco 4780000 Chile.,Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| |
Collapse
|
8
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|