1
|
Polyzos SA, Anastasilakis K, Cundy T, Kita M. Long-Term Denosumab Treatment in Adults with Juvenile Paget Disease. Calcif Tissue Int 2025; 116:60. [PMID: 40223037 PMCID: PMC11994531 DOI: 10.1007/s00223-025-01370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Juvenile Paget disease (JPD) is a very rare disease, mainly caused by biallelic inactivating mutations in the TNFRSF11B gene that encodes osteoprotegerin. Owing to its rarity, the treatment of JPD is largely empirical. Accelerated bone turnover as assessed by biochemical markers, such as alkaline phosphatase (ALP), can be suppressed by bisphosphonate treatment, but it relapses if bisphosphonate treatment is discontinued. In this report, we describe our experience with long-term denosumab treatment in two adults with JPD, homozygous for the "Balkan" mutation (966_969delTGACinsCTT) in TNFRSF11B. Subject 1 started denosumab in age 35 and subject 2 in age 34. Both continue treatment until today, for 13.5 and 12 years, respectively. ALP was steadily normalized in both. Bone pain decreased and mobility improved. Hearing did not further deteriorate and no new fracture occurred. Vision remained unchanged in subject 2, but subject 1 experienced sudden vision loss of the right eye at age 46, which was successfully managed with intravitreal treatment with anti-vascular endothelial growth factor medications. In conclusion, long-term denosumab administration in adults with JPD, who had been previously treated with bisphosphonates, was safe and effective in terms of the skeletal disease, but it may not prevent the emergence of retinopathy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Tim Cundy
- Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Marina Kita
- Department of Endocrinology, Ippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Luo Y, Li M, Xu D. Biochemical characterization of a disease-causing human osteoprotegerin variant. Sci Rep 2022; 12:15279. [PMID: 36088403 PMCID: PMC9464236 DOI: 10.1038/s41598-022-19522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, a human mutation of OPG was identified to be associated with familial forms of osteoarthritis. This missense mutation (c.1205A = > T; p.Stop402Leu) occurs on the stop codon of OPG, which results in a 19-residue appendage to the C-terminus (OPG+19). The biochemical consequence of this unusual sequence alteration remains unknown. Here we expressed OPG+19 in 293 cells and the mutant OPG was purified to homogeneity by heparin affinity chromatography and size exclusion chromatography. We found that in sharp contrast to wildtype OPG, which mainly exists in dimeric form, OPG+19 had a strong tendency to form higher-order oligomers. To our surprise, the hyper-oligomerization of OPG+19 had no impact on how it binds cell surface heparan sulfate, how it inhibits RANKL-induced osteoclastogenesis and TRAIL-induced chondrocytes apoptosis. Our data suggest that in biological contexts where OPG is known to play a role, OPG+19 functions equivalently as wildtype OPG. The disease-causing mechanism of OPG+19 likely involves an unknown function of OPG in cartilage homeostasis and mineralization. By demonstrating the biochemical nature of this disease-causing OPG mutant, our study will likely help elucidating the biological roles of OPG in cartilage biology.
Collapse
Affiliation(s)
- Yin Luo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, SUNY, Buffalo, NY 14214, USA
| | - Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, SUNY, Buffalo, NY 14214, USA
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, SUNY, Buffalo, NY 14214, USA.
| |
Collapse
|
3
|
Höppner J, Steff K, Lobert F, Heyer CM, Hauffa BP, Grasemann C. Rhizomelia and Impaired Linear Growth in a Girl with Juvenile Paget Disease: The Natural History of the Condition. Horm Res Paediatr 2022; 94:151-158. [PMID: 34261073 DOI: 10.1159/000517164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
In ultra-rare bone diseases, information on growth during childhood is sparse. Juvenile Paget disease (JPD) is an ultra-rare disease, characterized by loss of function of osteoprotegerin (OPG). OPG inhibits osteoclast activation via the receptor activator of nuclear factor-κB (RANK) pathway. In JPD, overactive osteoclasts result in inflammatory-like bone disease due to grossly elevated bone resorption. Knowledge on the natural history of JPD, including final height and growth, is limited. Most affected children receive long-term antiresorptive treatment, mostly with bisphosphonates, to contain bone resorption, which may affect growth. In this study, we report the follow-up of height, growth velocity, and skeletal maturation in a 16-year-old female patient with JPD. The patient was treated with cyclic doses of pamidronate starting at 2.5 years of age and with 2 doses of denosumab at the age of 8 years, when pamidronate was paused. In the following years, a sustainable decline in a height z-score and a stunted pubertal growth spurt; despite appropriate maturation of the epiphyseal plates of the left hand, the proximal right humerus and both femora were observed. Whether this reflects the growth pattern in JPD or might be associated to the antiresorptive treatments is unclear, since there is very limited information available on the effect of bisphosphonates and denosumab on growth and the growth plate in pediatric patients. Studies are needed to understand the natural history of an ultra-rare bone disease and to assess the effects of antiresorptive treatment on the growing skeleton.
Collapse
Affiliation(s)
- Jakob Höppner
- Center for Rare Diseases Ruhr CeSER, Ruhr-University Bochum and Witten/Herdecke University, Bochum, Germany
| | - Katja Steff
- Department of Pediatrics II, University Hospital Essen and University of Duisburg-Essen, Essen, Germany.,Department of Pediatrics, St. Vinzenz -Hospital Dinslaken, Dinslaken, Germany
| | - Felix Lobert
- Technische Universität Dresden, Dresden, Germany
| | - Christoph M Heyer
- Institute of Pediatric Radiology, St.-Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Berthold P Hauffa
- Department of Pediatrics II, University Hospital Essen and University of Duisburg-Essen, Essen, Germany
| | - Corinna Grasemann
- Center for Rare Diseases Ruhr CeSER, Ruhr-University Bochum and Witten/Herdecke University, Bochum, Germany.,Department of Pediatrics, St.-Josef Hospital Bochum, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Ralston SH, Taylor JP. Rare Inherited forms of Paget's Disease and Related Syndromes. Calcif Tissue Int 2019; 104:501-516. [PMID: 30756140 PMCID: PMC6779132 DOI: 10.1007/s00223-019-00520-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Several rare inherited disorders have been described that show phenotypic overlap with Paget's disease of bone (PDB) and in which PDB is a component of a multisystem disorder affecting muscle and the central nervous system. These conditions are the subject of this review article. Insertion mutations within exon 1 of the TNFRSF11A gene, encoding the receptor activator of nuclear factor kappa B (RANK), cause severe PDB-like disorders including familial expansile osteolysis, early-onset familial PDB and expansile skeletal hyperphosphatasia. The mutations interfere with normal processing of RANK and cause osteoclast activation through activation of nuclear factor kappa B (NFκB) independent of RANK ligand stimulation. Recessive, loss-of-function mutations in the TNFRSF11B gene, which encodes osteoprotegerin, cause juvenile PDB and here the bone disease is due to unopposed activation of RANK by RANKL. Multisystem proteinopathy is a disorder characterised by myopathy and neurodegeneration in which PDB is often an integral component. It may be caused by mutations in several genes including VCP, HNRNPA1, HNRNPA2B1, SQSTM1, MATR3, and TIA1, some of which are involved in classical PDB. The mechanisms of osteoclast activation in these conditions are less clear but may involve NFκB activation through sequestration of IκB. The evidence base for management of these disorders is somewhat limited due to the fact they are extremely rare. Bisphosphonates have been successfully used to gain control of elevated bone remodelling but as yet, no effective treatment exists for the treatment of the muscle and neurological manifestations of MSP syndromes.
Collapse
Affiliation(s)
- Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - J Paul Taylor
- Howard Hughes Medical Institute and Department of Cell and Molecular Biology, St Jude's Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Abstract
Juvenile Paget disease (JPD) is a rare disorder, mainly caused by mutations in the gene TNFRSF11B that encodes osteoprotegerin (OPG). Loss of OPG action causes generalized, extremely rapid bone turnover. The clinical manifestations are both skeletal - progressive skeletal deformity that develops in childhood - and extra-skeletal, including hearing loss, retinopathy, vascular calcification and internal carotid artery aneurysm formation. The severity of the phenotype seems to be related to the severity of TNFRSF11B gene deactivation. JPD is characterized biochemically by very high alkaline phosphatase activity, as well as other bone turnover markers. Bisphosphonates are commonly used to reduce the greatly accelerated bone turnover and can ameliorate the skeletal phenotype, if started early enough in childhood and continued at least until growth is complete. Limited evidence from patients treated with recombinant OPG or denosumab also provided favorable results. Recombinant OPG would represent a replacement treatment, but it is unavailable for clinical use. It seems that life-long treatment with anti-resorptives is required, since the disease is reactivated after treatment discontinuation. An international collaborating network for the continuous registration and follow-up of JPD patients could be helpful in the future.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Tim Cundy
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Grasemann C, Unger N, Hövel M, Arweiler-Harbeck D, Herrmann R, Schündeln MM, Müller O, Schweiger B, Lausch E, Meissner T, Kiewert C, Hauffa BP, Shaw NJ. Loss of Functional Osteoprotegerin: More Than a Skeletal Problem. J Clin Endocrinol Metab 2017; 102:210-219. [PMID: 27809640 DOI: 10.1210/jc.2016-2905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/31/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Juvenile Paget's disease (JPD), an ultra-rare, debilitating bone disease due to loss of functional osteoprotegerin (OPG), is caused by recessive mutations in TNFRFSF11B. A genotype-phenotype correlation spanning from mild to very severe forms is described. AIM This study aimed to describe the complexity of the human phenotype of OPG deficiency in more detail and to investigate heterozygous mutation carriers for clinical signs of JPD. PATIENTS We investigated 3 children with JPD from families of Turkish, German, and Pakistani descent and 19 family members (14 heterozygous). RESULTS A new disease-causing 4 bp-duplication in exon 1 was detected in the German patient, and a microdeletion including TNFRFSF11B in the Pakistani patient. Skeletal abnormalities in all affected children included bowing deformities and fractures, contractures, short stature and skull involvement. Complex malformation of the inner ear and vestibular structures (2 patients) resulted in early deafness. Patients were found to be growth hormone deficient (2), displayed nephrocalcinosis (1), and gross motor (3) and mental (1) retardation. Heterozygous family members displayed low OPG levels (12), elevated bone turnover markers (7), and osteopenia (6). Short stature (1), visual impairment (2), and hearing impairment (1) were also present. CONCLUSION Diminished OPG levels cause complex changes affecting multiple organ systems, including pituitary function, in children with JPD and may cause osteopenia in heterozygous family members. Diagnostic and therapeutic measures should aim to address the complex phenotype.
Collapse
Affiliation(s)
- Corinna Grasemann
- Pediatric Endocrinology and Diabetology, Klinik für Kinderheilkunde II and
- Center for Rare Bone Diseases, EZSE and Departments of
| | - Nicole Unger
- Center for Rare Bone Diseases, EZSE and Departments of
- Endocrinology, Diabetology, and Metabolism
| | - Matthias Hövel
- Center for Rare Bone Diseases, EZSE and Departments of
- Orthopedics and Trauma Surgery
| | | | - Ralf Herrmann
- Pediatric Neonatology, Klinik für Kinderheilkunde I and
| | - Michael M Schündeln
- Pediatric Hematology and Oncology, Klinik für Kinderheilkunde III and Departments of
| | | | - Bernd Schweiger
- Radiology and Neuroradiology, University Hospital Essen and The University of Duisburg-Essen, 45122 Essen, Germany
| | - Ekkehart Lausch
- Pediatric Genetics, Children's Hospital, University of Freiburg, 79106 Freiburg, Germany
| | - Thomas Meissner
- Department of General Paediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Cordula Kiewert
- Pediatric Endocrinology and Diabetology, Klinik für Kinderheilkunde II and
| | - Berthold P Hauffa
- Pediatric Endocrinology and Diabetology, Klinik für Kinderheilkunde II and
| | - Nick J Shaw
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham B4 6 NH, United Kingdom; and
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B4 6 NH, United Kingdom
| |
Collapse
|
7
|
How rare bone diseases have informed our knowledge of complex diseases. BONEKEY REPORTS 2016; 5:839. [PMID: 27688878 DOI: 10.1038/bonekey.2016.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/22/2016] [Indexed: 02/07/2023]
Abstract
Rare bone diseases, generally defined as monogenic traits with either autosomal recessive or dominant patterns of inheritance, have provided a rich database of genes and associated pathways over the past 2-3 decades. The molecular genetic dissection of these bone diseases has yielded some major surprises in terms of the causal genes and/or involved pathways. The discovery of genes/pathways involved in diseases such as osteopetrosis, osteosclerosis, osteogenesis imperfecta and many other rare bone diseases have all accelerated our understanding of complex traits. Importantly these discoveries have provided either direct validation for a specific gene embedded in a group of genes within an interval identified through a complex trait genome-wide association study (GWAS) or based upon the pathway associated with a monogenic trait gene, provided a means to prioritize a large number of genes for functional validation studies. In some instances GWAS studies have yielded candidate genes that fall within linkage intervals associated with monogenic traits and resulted in the identification of causal mutations in those rare diseases. Driving all of this discovery is a complement of technologies such as genome sequencing, bioinformatics and advanced statistical analysis methods that have accelerated genetic dissection and greatly reduced the cost. Thus, rare bone disorders in partnership with GWAS have brought us to the brink of a new era of personalized genomic medicine in which the prevention and management of complex diseases will be driven by the molecular understanding of each individuals contributing genetic risks for disease.
Collapse
|
8
|
Donáth J, Speer G, Kósa JP, Árvai K, Balla B, Juhász P, Lakatos P, Poór G. Polymorphisms of CSF1 and TM7SF4 genes in a case of mild juvenile Paget's disease found using next-generation sequencing. Croat Med J 2015; 56:145-51. [PMID: 25891874 PMCID: PMC4410173 DOI: 10.3325/cmj.2015.56.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Juvenile Paget’s disease (JPD) is a rare autosomal-recessive condition. It is diagnosed in young children and characterized by a generalized increase in bone turnover, bone pain, and skeletal deformity. Our patient was diagnosed after a pathological fracture when she was 11 years old. When we first examined her at the age of 30 she had bone pain and deformity in both the femur and tibia. Serum alkaline phosphatase (ALP) level, radiology, bone scintigraphy, and densitometry were monitored. Next generation sequencing (NGS) technology, namely semiconductor sequencing, was used to determine the genetic background of JPD. Seven target genes and regions were selected and analyzed after literature review (TM7SF4, SQSTM1, TNFRSF11A, TNFRSF11B, OPTN, CSF1, VCP). No clear pathogenic mutation was found, but we detected missense polymorphisms in CSF1 and TM7SF4 genes. After treatment with zoledronic acid, infusion bone pain and ALP level decreased. We can conclude that intravenous zoledronic acid therapy is effective and safe for suppressing bone turnover and improving symptoms in JPD, but the long-term effects on clinical outcomes are unclear. Our findings also suggest that NGS may help explore the pathogenesis and aid the diagnosis of JPD.
Collapse
Affiliation(s)
- Judit Donáth
- Judit Donáth, National Institute of Rheumatology and Physiotherapy, Frankel-Leó u. 38-40, Budapest, H-1023, Hungary,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Naot D, Choi A, Musson DS, Simsek Kiper PÖ, Utine GE, Boduroglu K, Peacock M, DiMeglio LA, Cundy T. Novel homozygous mutations in the osteoprotegerin gene TNFRSF11B in two unrelated patients with juvenile Paget's disease. Bone 2014; 68:6-10. [PMID: 25108083 DOI: 10.1016/j.bone.2014.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
Most patients with juvenile Paget's disease (JPD) are homozygous for mutations in the gene TNFRSF11B that result in deficiency of osteoprotegerin (OPG) - a key regulator of bone turnover. So far, about 10 different OPG mutations have been described. The current study presents two novel OPG mutations in JPD patients. Patient 1 was diagnosed at the age of 9months when he presented with inability to sit up, slow growth, marked bone pain and very high levels of serum alkaline phosphatase. Patient 2 presented a milder phenotype. He was initially diagnosed with osteogenesis imperfecta, and although he had numerous fractures and bone deformity, he was still independently mobile at the age of 19years, when a diagnosis of JPD was confirmed. Sequence analysis of DNA samples from the patients determined two novel homozygous mutations in TNFSRF11B. Patient 1 (severe phenotype) had a large (245-251kbp) homozygous deletion beginning in intron 1 that resulted in loss of 4 of the 5 exons of TNFSRF11B, including the whole ligand-binding domain. Patient 2 had a homozygous missense mutation resulting in a Thr>Pro change in exon 2 of TNFSRF11B that is predicted to disrupt the OPG ligand-binding domain. Taken in conjunction with other published cases, these results are consistent with the hypothesis that the most severe phenotypes in JPD are seen in patients with major gene deletions or mutations affecting cysteine residues in the ligand-binding domain.
Collapse
Affiliation(s)
- Dorit Naot
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Ally Choi
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - David Shaun Musson
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Pelin Özlem Simsek Kiper
- Pediatric Genetics Unit, Hacettepe University, Ihsan Doğramaci Children's Hospital, Ankara, Turkey.
| | - Gulen Eda Utine
- Pediatric Genetics Unit, Hacettepe University, Ihsan Doğramaci Children's Hospital, Ankara, Turkey.
| | - Koray Boduroglu
- Pediatric Genetics Unit, Hacettepe University, Ihsan Doğramaci Children's Hospital, Ankara, Turkey.
| | - Munro Peacock
- Department of Medicine, IN University School of Medicine, IN, USA.
| | - Linda A DiMeglio
- Department of Pediatrics, Riley Hospital for Children, IN University School of Medicine, IN, USA.
| | - Tim Cundy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
10
|
Polyzos SA, Singhellakis PN, Naot D, Adamidou F, Malandrinou FC, Anastasilakis AD, Polymerou V, Kita M. Denosumab treatment for juvenile Paget's disease: results from two adult patients with osteoprotegerin deficiency ("Balkan" mutation in the TNFRSF11B gene). J Clin Endocrinol Metab 2014; 99:703-7. [PMID: 24433001 DOI: 10.1210/jc.2013-3762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Most patients with juvenile Paget's disease (JPD) have homozygous loss-of-function mutations in the TNFRSF11B gene resulting in osteoprotegerin deficiency. Because recombinant osteoprotegerin is not available for clinical use, an alternative therapeutic approach could be denosumab, which acts on the same pathway. MAIN OBJECTIVE The aim was to study the effect of denosumab on bone turnover markers in two adult patients with JPD ("Balkan" mutation) previously treated with calcitonin and bisphosphonates. SETTING The study was conducted at two tertiary hospitals in Greece. PATIENTS Patient 1 (a 36-year-old woman) developed a severe and long-term hypocalcemia after a single dose (3.5 mg) of zoledronic acid. Her bone disease remained active despite treatment. Patient 2 (a 67-year-old man) had satisfactorily controlled bone disease with only intermittent risedronate treatment during the last 10 years, but suffered from progressive loss of hearing and vision. Low doses (20-40 mg) of denosumab every 3-6 months were administered in both patients. RESULTS Bone markers (including total and bone-specific alkaline phosphatase, procollagen I N-terminal peptide, and osteocalcin) were reduced to normal levels in both patients, with nadir observed 2-4 months after each denosumab injection. Retinal and hearing involvement remained unchanged, but patient 2 developed a rapid progression of cataract in the right eye. CONCLUSIONS Low-dose denosumab every 3-6 months for about 2 years in two patients with JPD successfully controlled their bone disease. The long-term effect of denosumab on the nonskeletal complications remains to be elucidated.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Department of Endocrinology (S.A.P., F.A., M.K.), Ippokration General Hospital, 546 42 Thessaloniki, Greece; Department of Endocrinology, Metabolism, and Diabetes Mellitus (P.N.S., F.C.M.), St Savvas Cancer Hospital, 151 22 Athens, Greece; Department of Medicine (D.N.), Faculty of Medical & Health Sciences, University of Auckland, Auckland 1142, New Zealand; Department of Endocrinology (A.D.A.), 424 General Military Hospital, 564 29 Thessaloniki, Greece; and Biomedicine Laboratories (V.P.), 157 80 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Saki F, Karamizadeh Z, Nasirabadi S, Mumm S, McAlister WH, Whyte MP. Juvenile paget's disease in an Iranian kindred with vitamin D deficiency and novel homozygous TNFRSF11B mutation. J Bone Miner Res 2013; 28:1501-8. [PMID: 23322328 PMCID: PMC3663917 DOI: 10.1002/jbmr.1868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/29/2012] [Accepted: 12/26/2012] [Indexed: 12/17/2022]
Abstract
Juvenile Paget's disease (JPD) is a rare heritable osteopathy characterized biochemically by markedly increased serum alkaline phosphatase (ALP) activity emanating from generalized acceleration of skeletal turnover. Affected infants and children typically suffer bone pain and fractures and deformities, become deaf, and have macrocranium. Some who survive to young adult life develop blindness from retinopathy engendered by vascular microcalcification. Most cases of JPD are caused by osteoprotegerin (OPG) deficiency due to homozygous loss-of-function mutations within the TNFRSF11B gene that encodes OPG. We report a 3-year-old Iranian girl with JPD and craniosynostosis who had vitamin D deficiency in infancy. She presented with fractures during the first year-of-life followed by bone deformities, delayed development, failure-to-thrive, and pneumonias. At 1 year-of-age, biochemical studies of serum revealed marked hyperphosphatasemia together with low-normal calcium and low inorganic phosphate and 25-hydroxyvitamin D levels. Several family members in previous generations of this consanguineous kindred may also have had JPD and vitamin D deficiency. Mutation analysis showed homozygosity for a unique missense change (c.130T>C, p.Cys44Arg) in TNFRSF11B that would compromise the cysteine-rich domain of OPG that binds receptor activator of NF-κB ligand (RANKL). Both parents were heterozygous for this mutation. The patient's serum OPG level was extremely low and RANKL level markedly elevated. She responded well to rapid oral vitamin D repletion followed by pamidronate treatment given intravenously. Our patient is the first Iranian reported with JPD. Her novel mutation in TNFRSF11B plus vitamin D deficiency in infancy was associated with severe JPD uniquely complicated by craniosynostosis. Pamidronate treatment with vitamin D sufficiency can be effective therapy for the skeletal disease caused by the OPG deficiency form of JPD.
Collapse
Affiliation(s)
- Forough Saki
- Department of Pediatric Endocrinology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
12
|
Brunetti G, Marzano F, Colucci S, Ventura A, Cavallo L, Grano M, Faienza MF. Genotype-phenotype correlation in juvenile Paget disease: role of molecular alterations of the TNFRSF11B gene. Endocrine 2012; 42:266-71. [PMID: 22638612 DOI: 10.1007/s12020-012-9705-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/11/2012] [Indexed: 12/23/2022]
Abstract
Juvenile Paget disease (JPD) {MIM 239000} is a rare inherited bone disease that affects children. The patients affected with JPD present an altered bone turnover, therefore, show a phenotype characterized by progressive bone deformities, fractures, and short stature. Deletions or missense mutations of the TNFRSN11B gene are common in these children. This gene encodes a soluble protein, the osteoprotegerin, which leads to uncontrolled osteoclastogenesis when mutated. JPD is characterized by a strong genotype-phenotype correlation, so depending on the alteration of the TNFRSN11B gene, the phenotype is variable. This review describes the different clinical features which are characteristic of JPD and the correspondence with the different molecular alterations of the TNFRSN11B gene.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic Medical Sciences, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Chung PYJ, Van Hul W. Paget's Disease of Bone: Evidence for Complex Pathogenetic Interactions. Semin Arthritis Rheum 2012; 41:619-41. [DOI: 10.1016/j.semarthrit.2011.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/25/2011] [Accepted: 07/08/2011] [Indexed: 11/28/2022]
|
14
|
|
15
|
CREB5 Computational Regulation Network Construction and Analysis Between Frontal Cortex of HIV Encephalitis (HIVE) and HIVE-Control Patients. Cell Biochem Biophys 2010; 60:199-207. [DOI: 10.1007/s12013-010-9140-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Huang JX, Wang L, Jiang MH. TNFRSF11B computational development network construction and analysis between frontal cortex of HIV encephalitis (HIVE) and HIVE-control patients. JOURNAL OF INFLAMMATION-LONDON 2010; 7:50. [PMID: 20920282 PMCID: PMC2959006 DOI: 10.1186/1476-9255-7-50] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND TNFRSF11B computational development network construction and analysis of frontal cortex of HIV encephalitis (HIVE) is very useful to identify novel markers and potential targets for prognosis and therapy. METHODS By integration of gene regulatory network infer (GRNInfer) and the database for annotation, visualization and integrated discovery (DAVID) we identified and constructed significant molecule TNFRSF11B development network from 12 frontal cortex of HIVE-control patients and 16 HIVE in the same GEO Dataset GDS1726. RESULTS Our result verified TNFRSF11B developmental process only in the downstream of frontal cortex of HIVE-control patients (BST2, DGKG, GAS1, PDCD4, TGFBR3, VEZF1 inhibition), whereas in the upstream of frontal cortex of HIVE (DGKG, PDCD4 activation) and downstream (CFDP1, DGKG, GAS1, PAX6 activation; BST2, PDCD4, TGFBR3, VEZF1 inhibition). Importantly, we datamined that TNFRSF11B development cluster of HIVE is involved in T-cell mediated immunity, cell projection organization and cell motion (only in HIVE terms) without apoptosis, plasma membrane and kinase activity (only in HIVE-control patients terms), the condition is vital to inflammation, brain morphology and cognition impairment of HIVE. Our result demonstrated that common terms in both HIVE-control patients and HIVE include developmental process, signal transduction, negative regulation of cell proliferation, RNA-binding, zinc-finger, cell development, positive regulation of biological process and cell differentiation. CONCLUSIONS We deduced the stronger TNFRSF11B development network in HIVE consistent with our number computation. It would be necessary of the stronger TNFRSF11B development function to inflammation, brain morphology and cognition of HIVE.
Collapse
Affiliation(s)
- Ju X Huang
- Biomedical Center, School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - L Wang
- Biomedical Center, School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Ming H Jiang
- Lab of Computational Linguistics, School of Humanities and Social Sciences, Tsinghua Univ., Beijing, 100084, China
| |
Collapse
|
17
|
Eversole R, Su L, ElMofty S. Benign fibro-osseous lesions of the craniofacial complex. A review. Head Neck Pathol 2008; 2:177-202. [PMID: 20614314 PMCID: PMC2807558 DOI: 10.1007/s12105-008-0057-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Benign fibro-osseous lesions of the craniofacial complex are represented by a variety of disease processes that are characterized by pathologic ossifications and calcifications in association with a hypercellular fibroblastic marrow element. The current classification includes neoplasms, developmental dysplastic lesions and inflammatory/reactive processes. The definitive diagnosis can rarely be rendered on the basis of histopathologic features alone; rather, procurement of a final diagnosis is usually dependent upon assessment of microscopic, clinical and imaging features together. Fibrous dysplasia and osteitis deformans constitute two dysplastic lesions in which mutations have been uncovered. Other dysplastic bone diseases of the craniofacial complex include florid osseous dysplasia, focal cemento-osseous dysplasia and periapical cemental dysplasia, all showing a predilection for African descent individuals; although no specific genetic alterations in DNA coding have yet to be uncovered and most studies have been derived from predominant high African descent populations. Ossifying fibromas are neoplastic lesions with four subtypes varying with regard to behavior and propensity for recurrence after surgical excision. The clinicopathologic and molecular features of this unique yet heterogeneous group of diseases are reviewed.
Collapse
Affiliation(s)
- Roy Eversole
- Department of Pathology and Medicine, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| | | | | |
Collapse
|
18
|
Pathophysiological roles of osteoprotegerin (OPG). Eur J Cell Biol 2008; 88:1-17. [PMID: 18707795 DOI: 10.1016/j.ejcb.2008.06.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 12/11/2022] Open
Abstract
Osteoprotegerin (OPG) is a secreted glycoprotein central to bone turnover via its role as a decoy receptor for the receptor activator of nuclear factor kappaB ligand (RANKL) and has traditionally been linked to a number of bone-related diseases. However, there is additional evidence that OPG can promote cell survival by inhibiting TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. As a result, a number of in vitro, in vivo and clinical studies have been performed assessing the role of OPG in tumourigenesis. Similar studies have been performed regarding vascular pathologies, resulting from observations of expression and regulation of OPG in the vasculature. This review aims to provide an update on this area and assess the potential protective or detrimental role of OPG in both vascular pathologies and tumourigenesis.
Collapse
|
19
|
Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys 2008; 473:172-82. [DOI: 10.1016/j.abb.2008.02.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 12/20/2022]
|
20
|
Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29:155-92. [PMID: 18057140 PMCID: PMC2528846 DOI: 10.1210/er.2007-0014] [Citation(s) in RCA: 563] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/15/2007] [Indexed: 12/13/2022]
Abstract
Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone. Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle. Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture. Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor kappaB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling. The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK. Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength. RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis. Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Ann E Kearns
- Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
21
|
Ralston SH. Juvenile Paget's disease, familial expansile osteolysis and other genetic osteolytic disorders. Best Pract Res Clin Rheumatol 2008; 22:101-11. [DOI: 10.1016/j.berh.2007.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Whyte MP, Singhellakis PN, Petersen MB, Davies M, Totty WG, Mumm S. Juvenile Paget's disease: the second reported, oldest patient is homozygous for the TNFRSF11B "Balkan" mutation (966_969delTGACinsCTT), which elevates circulating immunoreactive osteoprotegerin levels. J Bone Miner Res 2007; 22:938-46. [PMID: 17352649 DOI: 10.1359/jbmr.070307] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The oldest person (60 yr) with juvenile Paget's disease is homozygous for the TNFRSF11B mutation 966_969delTGACinsCTT. Elevated circulating levels of immunoreactive OPG and soluble RANKL accompany this genetic defect that truncates the OPG monomer, preventing formation of OPG homodimers. INTRODUCTION Juvenile Paget's disease (JPD), a rare autosomal recessive disorder, features skeletal pain, fracture, and deformity from extremely rapid bone turnover. Deafness and sometimes retinopathy also occur. Most patients have diminished osteoprotegerin (OPG) inhibition of osteoclastogenesis caused by homozygous loss-of-function defects in TNFRSF11B, the gene that encodes OPG. Circulating immunoreactive OPG (iOPG) is undetectable with complete deletion of TNFRSF11B but normal with a 3-bp in-frame deletion. MATERIALS AND METHODS We summarize the clinical course of a 60-yr-old Greek man who is the second reported, oldest JPD patient, including his response to two decades of bisphosphonate therapy. Mutation analysis involved sequencing all exons and adjacent mRNA splice sites of TNFRSF11B. Over the past 4 yr, we used ELISAs to quantitate his serum iOPG and soluble RANKL (sRANKL) levels. RESULTS Our patient suffered progressive deafness and became legally blind, although elevated markers of bone turnover have been normal for 6 yr. He carries the same homozygous mutation in TNFRSF11B (966_969delTGACinsCTT) reported in a seemingly unrelated Greek boy and Croatian man who also have relatively mild JPD. This frame-shift deletes 79 carboxyterminal amino acids from the OPG monomer, including a cysteine residue necessary for homodimerization. Nevertheless, serum iOPG and sRANKL levels are persistently elevated. CONCLUSIONS Homozygosity for the TNFRSF11B "Balkan" mutation (966_969delTGACinsCTT) causes JPD in the second reported, oldest patient. Elevated circulating iOPG and sRANKL levels complement evidence that this deletion/insertion omits a cysteine residue at the carboxyterminus needed for OPG homodimerization.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St Louis, Missouri 63131, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Helfrich MH, Crockett JC, Hocking LJ, Coxon FP. The pathogenesis of osteoclast diseases: Some knowns, but still many unknowns. ACTA ACUST UNITED AC 2007. [DOI: 10.1138/20060249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Lucas GJA, Daroszewska A, Ralston SH. Contribution of genetic factors to the pathogenesis of Paget's disease of bone and related disorders. J Bone Miner Res 2006; 21 Suppl 2:P31-7. [PMID: 17229006 DOI: 10.1359/jbmr.06s206] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Paget's disease of bone (PDB) is a common condition with a strong genetic component that is characterized by focal increases in bone turnover, leading to bone deformity, pathological fractures, and various other complications. Several rare disorders have also been described that show phenotypic overlap with PDB. Genome-wide searches have identified several susceptibility loci for PDB and PDB-like disorders, and mutations that cause these disorders have now been identified in four genes, all of which are involved in the RANK-NF-kappaB signaling pathway. Mutations in SQSTM1, which encodes an important scaffold protein in this pathway, have been found to be a common cause of classical PDB. Thus far, all disease-causing mutations in SQSTM1 affect the ubiquitin-associated (UBA) domain of the gene product and cause loss of ubiquitin binding. The rare PDB-like disorders of familial expansile osteolysis, early-onset familial PDB, and expansile skeletal hyperphosphatasia are caused by duplication mutations in exon 1 of the TNFRSF11A gene, which encodes the RANK receptor. This gene does not seem to be involved in the pathogenesis of classical PDB. Inactivating mutations in the TNFRSF11B gene, which encodes osteoprotegerin, cause juvenile PDB, and TNFRSF11B polymorphisms seem to increase the risk of classical PDB. The rare syndrome of hereditary inclusion body myopathy, PDB, and frontotemporal dementia (IBMPFD) is caused by mutations in the VCP gene, which is involved in regulating I-kappaB degradation by the proteasome. The disease-causing mutations in VCP cluster in and around a domain involved in ubiquitin binding. Whereas SQSTM1 has emerged as an important gene for classical PDB, most kindreds with familial PDB do not carry SQSTM1 mutations, indicating that additional genes for PDB remain to be discovered. In light of the molecular defects that have been identified thus far, it seems likely that these genes will also be involved in the RANK-NF-kappaB signaling pathway or its interactions with the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Gavin J A Lucas
- Rheumatic Diseases Unit, Molecular Medicine Centre, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
25
|
Kanzaki S, Ito M, Takada Y, Ogawa K, Matsuo K. Resorption of auditory ossicles and hearing loss in mice lacking osteoprotegerin. Bone 2006; 39:414-9. [PMID: 16564235 DOI: 10.1016/j.bone.2006.01.155] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 01/16/2006] [Accepted: 01/31/2006] [Indexed: 11/26/2022]
Abstract
Bones conduct sound in the middle ear. The three ossicles-the malleus, incus, and stapes-form a chain that transmits vibrations from the tympanic membrane to the oval window of the inner ear. Little is known about bone remodeling events in these ossicles and about potential effects of osteoporosis on hearing loss. Osteoclastic bone resorption is enhanced in Opg(-/-) mice lacking osteoprotegerin, which is a soluble decoy receptor for the osteoclastogenic cytokine RANKL. We asked whether auditory ossicles are resorbed in Opg(-/-) mice, and whether these mice suffer from impaired auditory function. All three ossicles in Opg(-/-) mice showed thinning, especially at the malleal manubrium and incus body. Most notably, unlike in the case in wild-type mice, the junction between the stapes and the otic capsule was fixed in Opg(-/-) mice, and the stapedial footplate was thinner and broader. Radiological analyses revealed that malleal cortical thickness was positively correlated with tibial bone mineral density in Opg(-/-) and control littermate mice. Furthermore, progressive hearing loss was detected in Opg(-/-) mice starting at 6 to 15 weeks of age. These data suggest that osteoprotegerin plays a crucial role in hearing by protecting the auditory ossicles and otic capsule from osteoclastic bone resorption.
Collapse
Affiliation(s)
- Sho Kanzaki
- Department of Otolaryngology, School of Medicine, Keio University, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
26
|
Kantaputra PN, Limwongse C, Koolvisoot A, Ausawamongkolkul A, Tayavitit S. A newly recognized polyosteolysis/hyperostosis syndrome. Am J Med Genet A 2006; 140:2640-5. [PMID: 17001672 DOI: 10.1002/ajmg.a.31373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report a newly recognized bone disorder consisting of polyostotic expansile osteolysis affecting long bones and iliac bones; hyperostosis of the skull, thoracic cage, and medial portion of both clavicles; pectus carinatum; gigantiform synovial masses of the elbows and knees; atrial septal defect; cardiomegaly; unilateral cryptorchidism; and mental deficiency. Affected bones can be grouped into four general types of skeletal pathology: (1) expansile osteolysis, (2) osteolysis without expansion, (3) expansion without osteolysis, and (4) hyperostosis. Some bones remained unaffected. We have named the condition "polyosteolysis/hyperostosis syndrome." It is clearly at variance with any previously reported bone disorder, including familial expansile osteolysis, juvenile Paget disease, and McCune-Albright syndrome (and polyostotic fibrous dysplasia). Because our patient shared some features in common with juvenile Paget disease, we thought that mutational analysis of TNFRSF11B was indicated, even though our patient had some manifestations not found in juvenile Paget disease. Direct sequencing failed to identify a TNFRSF11B mutation. Because the parents of our propositus were first cousins suggests that polyosteolysis/hyperostosis syndrome may possibly have autosomal recessive inheritance.
Collapse
Affiliation(s)
- Piranit N Kantaputra
- Department of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | |
Collapse
|
27
|
|