1
|
George WT, Debopadhaya S, Stephen SJ, Botti BA, Burr DB, Vashishth D. Stress fracture of bone under physiological multiaxial cyclic loading: Activity-based predictive models. Bone 2024; 190:117279. [PMID: 39393595 DOI: 10.1016/j.bone.2024.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
While it is known that excessive accumulation of fatigue damage from daily activities contributes to fracture, a model of bone failure under physiologically relevant multiaxial cyclic loading needs to be developed in order to develop effective management strategies for stress or fatigue fractures. The role of strain-induced damage from repetitive loading is a strong candidate for such a model, as cycles of mechanical loading leading to failure can be measured directly. However, this approach has been limited by the restrictions of uniaxial loading models, which often overestimates the fatigue life of bone and suggests that bone will only break well beyond the realistic limits of exercise. To address this gap and develop a physiologically relevant model, our study leverages the power of four commonly used engineering failure criteria as a model for multiaxial loading using a cohort of human tibiae from cadaveric donors (age range 21-85 years old). Four failure criteria (Von Mises, Tsai-Wu, Findley critical plane, and maximum shear strain) were found to be effective in vitro models of tibial fracture when age groups of donors were combined (r2 > 0.84) and stratified (younger: 21-52-years-old versus older: 57-85-years-old) (r2 > 0.83) (p < 0.001). Each failure criterion displayed distinctly lower fatigue curves for the older age group. The maximum shear strain model was used to determine the efficacy of this approach to predict fatigue fractures in humans using published in vivo data from human volunteers. Consistent with in vivo observations in general population, the model demonstrated failure at 5000 to 200,000 loading cycles depending on activities such as jumping, sprinting, and walking, with a 3-fold reduction of fatigue life in older donors. These findings dramatically improve estimates of fatigue life under repetitive loading and demonstrate how age-related changes in bone significantly increase its propensity for fatigue-induced fractures.
Collapse
Affiliation(s)
- Winson T George
- Bryr Mawr Family Practice, Bryn Mawr, PA 19010, USA; Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shayom Debopadhaya
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Albany Medical College, Albany, NY 12008, USA
| | - Samuel J Stephen
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - David B Burr
- Dept. of Anatomy, Cell Biology, and Physiology, Indiana Center for Musculoskeletal Research Indiana University School of Medicine, USA
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Rensselaer-Icahn School of Medicine Center for Engineering and Precision Medicine, New York, NY 10029, USA.
| |
Collapse
|
2
|
Walker EM, Hunt NL, Holcomb AE, Fitzpatrick CK, Brown TN. Effect of age on ankle biomechanics and tibial compression during stair descent. Gait Posture 2024; 112:140-146. [PMID: 38781789 PMCID: PMC11193625 DOI: 10.1016/j.gaitpost.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Stress fracture is a concern among older adults, as age-related decrements in ankle neuromuscular function may impair their ability to attenuate tibial compressive forces experienced during daily locomotor tasks, such as stair descent. Yet, it is unknown if older adults exhibit greater tibial compression than their younger counterparts when descending stairs. RESEARCH QUESTION Do older adults exhibit differences in ankle biomechanics that alter their tibial compression during stair descent compared to young adults, and is there a relation between tibial compression and specific changes in ankle biomechanics? METHODS Thirteen young (18-25 years) and 13 older (> 65 years) adults had ankle joint biomechanics and tibial compression quantified during a stair descent. Discrete ankle biomechanics (peak joint angle and moment, and joint stiffness) and tibial compression (maximum and impulse) measures were submitted to an independent t-test, while ankle joint angle and moment, and tibial compression waveforms were submitted to an independent statistical parametric mapping t-test to determine group differences. Pearson correlation coefficients (r) determined the relation between discrete ankle biomechanics and tibial compression measures for all participants, and each group. RESULTS Older adults exhibited smaller maximum tibial compression (p = 0.004) from decreases in peak ankle joint angle and moment between 17 % and 34 % (p = 0.035), and 20-31 % of stance (p < 0.001) than young adults. Ankle biomechanics exhibited a negligible to weak correlation with tibial compression for all participants, with peak ankle joint moment and maximum tibial compression (r = -0.48 ± 0.32) relation the strongest. Older adults typically exhibited a stronger relation between ankle biomechanics and tibial compression (e.g., r = -0.48 ± 0.47 vs r = -0.27 ± 0.52 between peak ankle joint moment and maximum tibial compression). SIGNIFICANCE Older adults altered ankle biomechanics and decreased maximum tibial compression to safely execute the stair descent. Yet, specific alterations in ankle biomechanics could not be identified as a predictor of changes in tibial compression.
Collapse
Affiliation(s)
- Elijah M Walker
- Dept. of Kinesiology, Boise State University, Boise, ID, USA
| | - Nicholas L Hunt
- Dept. of Kinesiology, Boise State University, Boise, ID, USA
| | - Amy E Holcomb
- Dept. of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Clare K Fitzpatrick
- Dept. of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Tyler N Brown
- Dept. of Kinesiology, Boise State University, Boise, ID, USA.
| |
Collapse
|
3
|
Bailey S, Poundarik AA, Sroga GE, Vashishth D. Structural role of osteocalcin and its modification in bone fracture. APPLIED PHYSICS REVIEWS 2023; 10:011410. [PMID: 36915902 PMCID: PMC9999293 DOI: 10.1063/5.0102897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Osteocalcin (OC), an abundant non-collagenous protein in bone extracellular matrix, plays a vital role in both its biological and mechanical function. OC undergoes post-translational modification, such as glycation; however, it remains unknown whether glycation of OC affects bone's resistance to fracture. Here, for the first time, we demonstrate the formation of pentosidine, an advanced glycation end-product (AGE) cross-link on mouse OC analyzed by ultra-performance liquid chromatography. Next, we establish that the presence of OC in mouse bone matrix is associated with lower interlamellar separation (distance) and thicker bridges spanning the lamellae, both of which are critical for maintaining bone's structural integrity. Furthermore, to determine the impact of modification of OC by glycation on bone toughness, we glycated bone samples in vitro from wild-type (WT) and osteocalcin deficient (Oc-/-) mice, and compared the differences in total fluorescent AGEs and fracture toughness between the Oc -/- glycated and control mouse bones and the WT glycated and control mouse bones. We determined that glycation resulted in significantly higher AGEs in WT compared to Oc-/- mouse bones (delta-WT > delta-OC, p = 0.025). This observed change corresponded to a significant decrease in fracture toughness between WT and Oc-/- mice (delta-WT vs delta-OC, p = 0.018). Thus, we propose a molecular deformation and fracture mechanics model that corroborates our experimental findings and provides evidence to support a 37%-90% loss in energy dissipation of OC due to formation of pentosidine cross-link by glycation. We anticipate that our study will aid in elucidating the effects of a major non-collagenous bone matrix protein, osteocalcin, and its modifications on bone fragility and help identify potential therapeutic targets for maintaining skeletal health.
Collapse
Affiliation(s)
| | | | - Grazyna E. Sroga
- Department of Biomedical Engineering, Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
4
|
Iafrate L, Benedetti MC, Donsante S, Rosa A, Corsi A, Oreffo ROC, Riminucci M, Ruocco G, Scognamiglio C, Cidonio G. Modelling skeletal pain harnessing tissue engineering. IN VITRO MODELS 2022; 1:289-307. [PMID: 36567849 PMCID: PMC9766883 DOI: 10.1007/s44164-022-00028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022]
Abstract
Bone pain typically occurs immediately following skeletal damage with mechanical distortion or rupture of nociceptive fibres. The pain mechanism is also associated with chronic pain conditions where the healing process is impaired. Any load impacting on the area of the fractured bone will stimulate the nociceptive response, necessitating rapid clinical intervention to relieve pain associated with the bone damage and appropriate mitigation of any processes involved with the loss of bone mass, muscle, and mobility and to prevent death. The following review has examined the mechanisms of pain associated with trauma or cancer-related skeletal damage focusing on new approaches for the development of innovative therapeutic interventions. In particular, the review highlights tissue engineering approaches that offer considerable promise in the application of functional biomimetic fabrication of bone and nerve tissues. The strategic combination of bone and nerve tissue engineered models provides significant potential to develop a new class of in vitro platforms, capable of replacing in vivo models and testing the safety and efficacy of novel drug treatments aimed at the resolution of bone-associated pain. To date, the field of bone pain research has centred on animal models, with a paucity of data correlating to the human physiological response. This review explores the evident gap in pain drug development research and suggests a step change in approach to harness tissue engineering technologies to recapitulate the complex pathophysiological environment of the damaged bone tissue enabling evaluation of the associated pain-mimicking mechanism with significant therapeutic potential therein for improved patient quality of life. Graphical abstract Rationale underlying novel drug testing platform development. Pain detected by the central nervous system and following bone fracture cannot be treated or exclusively alleviated using standardised methods. The pain mechanism and specificity/efficacy of pain reduction drugs remain poorly understood. In vivo and ex vivo models are not yet able to recapitulate the various pain events associated with skeletal damage. In vitro models are currently limited by their inability to fully mimic the complex physiological mechanisms at play between nervous and skeletal tissue and any disruption in pathological states. Robust innovative tissue engineering models are needed to better understand pain events and to investigate therapeutic regimes.
Collapse
Affiliation(s)
- Lucia Iafrate
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Cristina Benedetti
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| |
Collapse
|
5
|
Schurman CA, Verbruggen SW, Alliston T. Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-β signaling. Proc Natl Acad Sci U S A 2021; 118:e2023999118. [PMID: 34161267 PMCID: PMC8237574 DOI: 10.1073/pnas.2023999118] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal fragility in the elderly does not simply result from a loss of bone mass. However, the mechanisms underlying the concurrent decline in bone mass, quality, and mechanosensitivity with age remain unclear. The important role of osteocytes in these processes and the age-related degeneration of the intricate lacunocanalicular network (LCN) in which osteocytes reside point to a primary role for osteocytes in bone aging. Since LCN complexity severely limits experimental dissection of these mechanisms in vivo, we used two in silico approaches to test the hypothesis that LCN degeneration, due to aging or an osteocyte-intrinsic defect in transforming growth factor beta (TGF-β) signaling (TβRIIocy-/-), is sufficient to compromise essential osteocyte responsibilities of mass transport and exposure to mechanical stimuli. Using reconstructed confocal images of bone with fluorescently labeled osteocytes, we found that osteocytes from aged and TβRIIocy-/- mice had 33 to 45% fewer, and more tortuous, canaliculi. Connectomic network analysis revealed that diminished canalicular density is sufficient to impair diffusion even with intact osteocyte numbers and overall LCN architecture. Computational fluid dynamics predicts that the corresponding drop in shear stress experienced by aged or TβRIIocy-/- osteocytes is highly sensitive to canalicular surface area but not tortuosity. Simulated expansion of the osteocyte pericellular space to mimic osteocyte perilacunar/canalicular remodeling restored predicted shear stress for aged osteocytes to young levels. Overall, these models show how loss of LCN volume through LCN pruning may lead to impaired fluid dynamics and osteocyte exposure to mechanostimulation. Furthermore, osteocytes emerge as targets of age-related therapeutic efforts to restore bone health and function.
Collapse
Affiliation(s)
- Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| | - Stefaan W Verbruggen
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom, E1 4NS
- Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- The Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom, S1 3JD
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, NY 10027
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143;
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143
| |
Collapse
|
6
|
Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater 2021; 6:1491-1511. [PMID: 33294729 PMCID: PMC7680706 DOI: 10.1016/j.bioactmat.2020.11.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Successful regeneration of large segmental bone defects remains a major challenge in clinical orthopedics, thus it is of important significance to fabricate a suitable alternative material to stimulate bone regeneration. Due to their excellent biocompatibility, sufficient mechanical strength, and similar structure and composition of natural bone, the mineralized collagen scaffolds (MCSs) have been increasingly used as bone substitutes via tissue engineering approaches. Herein, we thoroughly summarize the state of the art of MCSs as tissue-engineered scaffolds for acceleration of bone repair, including their fabrication methods, critical factors for osteogenesis regulation, current opportunities and challenges in the future. First, the current fabrication methods for MCSs, mainly including direct mineral composite, in-situ mineralization and 3D printing techniques, have been proposed to improve their biomimetic physical structures in this review. Meanwhile, three aspects of physical (mechanics and morphology), biological (cells and growth factors) and chemical (composition and cross-linking) cues are described as the critical factors for regulating the osteogenic feature of MCSs. Finally, the opportunities and challenges associated with MCSs as bone tissue-engineered scaffolds are also discussed to point out the future directions for building the next generation of MCSs that should be endowed with satisfactorily mimetic structures and appropriately biological characters for bone regeneration.
Collapse
Affiliation(s)
- Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, PR China
- Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, PR China
| |
Collapse
|
7
|
Bailey S, Vashishth D. Mechanical Characterization of Bone: State of the Art in Experimental Approaches-What Types of Experiments Do People Do and How Does One Interpret the Results? Curr Osteoporos Rep 2018; 16:423-433. [PMID: 29915968 PMCID: PMC8078087 DOI: 10.1007/s11914-018-0454-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The mechanical integrity of bone is determined by the direct measurement of bone mechanical properties. This article presents an overview of the current, most common, and new and upcoming experimental approaches for the mechanical characterization of bone. The key outcome variables of mechanical testing, as well as interpretations of the results in the context of bone structure and biology are also discussed. RECENT FINDINGS Quasi-static tests are the most commonly used for determining the resistance to structural failure by a single load at the organ (whole bone) level. The resistance to crack initiation or growth by fracture toughness testing and fatigue loading offers additional and more direct characterization of tissue material properties. Non-traditional indentation techniques and in situ testing are being increasingly used to probe the material properties of bone ultrastructure. Destructive ex vivo testing or clinical surrogate measures are considered to be the gold standard for estimating fracture risk. The type of mechanical test used for a particular investigation depends on the length scale of interest, where the outcome variables are influenced by the interrelationship between bone structure and composition. Advancement in the sensitivity of mechanical characterization techniques to detect changes in bone at the levels subjected to modifications by aging, disease, and/or pharmaceutical treatment is required. As such, a number of techniques are now available to aid our understanding of the factors that contribute to fracture risk.
Collapse
Affiliation(s)
- Stacyann Bailey
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA.
| |
Collapse
|
8
|
Abstract
The mechanical properties of bone are fundamental to the ability of our skeletons to support movement and to provide protection to our vital organs. As such, deterioration in mechanical behavior with aging and/or diseases such as osteoporosis and diabetes can have profound consequences for individuals' quality of life. This article reviews current knowledge of the basic mechanical behavior of bone at length scales ranging from hundreds of nanometers to tens of centimeters. We present the basic tenets of bone mechanics and connect them to some of the arcs of research that have brought the field to recent advances. We also discuss cortical bone, trabecular bone, and whole bones, as well as multiple aspects of material behavior, including elasticity, yield, fracture, fatigue, and damage. We describe the roles of bone quantity (e.g., density, porosity) and bone quality (e.g., cross-linking, protein composition), along with several avenues of future research.
Collapse
Affiliation(s)
- Elise F Morgan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| | - Ginu U Unnikrisnan
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| | - Amira I Hussein
- Orthopaedic and Developmental Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA;
| |
Collapse
|
9
|
Silva FGA, de Moura MFSF, Dourado N, Xavier J, Pereira FAM, Morais JJL, Dias MIR. Mixed-mode I+II fracture characterization of human cortical bone using the Single Leg Bending test. J Mech Behav Biomed Mater 2015; 54:72-81. [PMID: 26433088 DOI: 10.1016/j.jmbbm.2015.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
Mixed-mode I+II fracture characterization of human cortical bone was analyzed in this work. A miniaturized version of the Single Leg Bending test (SLB) was used owing to its simplicity. A power law criterion was verified to accurately describe the material fracture envelop under mixed-mode I+II loading. The crack tip opening displacements measured by digital image correlation were used in a direct method to determine the cohesive law mimicking fracture behavior of cortical bone. Cohesive zone modeling was used for the sake of validation. Several fracture quantities were compared with the experimental results and the good agreement observed proves the appropriateness of the proposed procedure for fracture characterization of human bone under mixed-mode I+II loading.
Collapse
Affiliation(s)
- F G A Silva
- INEGI - Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal
| | - M F S F de Moura
- Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Mecânica, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - N Dourado
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - J Xavier
- INEGI - Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - F A M Pereira
- Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Mecânica, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - J J L Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - M I R Dias
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
10
|
Milgrom C, Burr DB, Finestone AS, Voloshin A. Understanding the etiology of the posteromedial tibial stress fracture. Bone 2015; 78:11-4. [PMID: 25933941 DOI: 10.1016/j.bone.2015.04.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage.
Collapse
Affiliation(s)
- Charles Milgrom
- Hebrew University School of Medicine, Tsameret, Ein Kerem, Jerusalem, Israel.
| | - David B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aharon S Finestone
- Department of Orthopaedics, Assaf HaRofeh Medical Center, Zerrifen and Tel Aviv Medical School, Tel Aviv, Israel
| | - Arkady Voloshin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
11
|
Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study. Ann Biomed Eng 2015; 43:2487-502. [DOI: 10.1007/s10439-015-1305-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/19/2015] [Indexed: 11/26/2022]
|
12
|
Yang PF, Sanno M, Ganse B, Koy T, Brüggemann GP, Müller LP, Rittweger J. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running. PLoS One 2014; 9:e94525. [PMID: 24732724 PMCID: PMC3986088 DOI: 10.1371/journal.pone.0094525] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 03/17/2014] [Indexed: 11/18/2022] Open
Abstract
Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.
Collapse
Affiliation(s)
- Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
- * E-mail:
| | - Maximilian Sanno
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Bergita Ganse
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Timmo Koy
- Department of Orthopaedic and Trauma Surgery, University of Cologne, Cologne, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Lars Peter Müller
- Department of Orthopaedic and Trauma Surgery, University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
13
|
Bone fracture characterization under mixed-mode I+II loading using the single leg bending test. Biomech Model Mechanobiol 2014; 13:1331-9. [PMID: 24715503 DOI: 10.1007/s10237-014-0575-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
Abstract
Fracture under mixed-mode I+II was induced in bovine cortical bone tissue using a developed miniaturized version of the single leg bending test (SLB). Due to the difficulty in crack length monitoring in the course of the test, an equivalent crack method based on specimen compliance and beam theory was adopted as a data reduction scheme. The method was applied to the experimental results in order to obtain the Resistance curves in each loading mode. The determined fracture energy is well described by an energetic power law whose exponent is below one, which means that the linear energetic criterion is not applicable to this material. The proposed procedure was numerically validated by means of a cohesive mixed-mode I+II damage model with bilinear softening. It was concluded that the miniaturized version of the SLB test is adequate for mixed-mode I+II fracture characterization of bone for a constant mode ratio.
Collapse
|
14
|
Havaldar R, Pilli SC, Putti BB. Insights into the effects of tensile and compressive loadings on human femur bone. Adv Biomed Res 2014; 3:101. [PMID: 24800190 PMCID: PMC4007336 DOI: 10.4103/2277-9175.129375] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 01/14/2013] [Indexed: 12/03/2022] Open
Abstract
Background: Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Materials and Methods: Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. Results: The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. Conclusion: The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.
Collapse
Affiliation(s)
- Raviraj Havaldar
- Department of Biomedical Engineering, Karnataka Lingayat Education Society's College of Engineering and Technology, Belgaum, India
| | - S C Pilli
- Department of Mechanical Engineering, Karnataka Lingayat Education Society's College of Engineering and Technology, Belgaum, India
| | - B B Putti
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Karnataka Lingayat Education University, Belgaum, India
| |
Collapse
|
15
|
Rumpler M, Würger T, Roschger P, Zwettler E, Peterlik H, Fratzl P, Klaushofer K. Microcracks and osteoclast resorption activity in vitro. Calcif Tissue Int 2012; 90:230-8. [PMID: 22271249 PMCID: PMC3282896 DOI: 10.1007/s00223-011-9568-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/28/2011] [Indexed: 01/10/2023]
Abstract
During bone remodeling osteoclasts resorb bone, thus removing material, e.g., damaged by microcracks, which arises as a result of physiological loading and could reduce bone strength. Such a process needs targeted bone resorption exactly at damaged sites. Osteocytic signaling plays a key role in this process, but it is not excluded that osteoclasts per se may possess toposensitivity to recognize and resorb damaged bone since it has been shown that resorption spaces are associated with microcracks. To address this question, we used an in vitro setup of a pure osteoclast culture and mineralized substrates with artificially introduced microcracks and microscratches. Histomorphometric analyses and statistical evaluation clearly showed that these defects had no effect on osteoclast resorption behavior. Osteoclasts did not resorb along microcracks, even when resorption started right beside these damages. Furthermore, quantification of resorption on three different mineralized substrates, cortical bone, bleached bone (bone after partial removal of the organic matrix), and dentin, revealed lowest resorption on bone, significantly higher resorption on bleached bone, and highest resorption on dentin. The difference between native and bleached bone may be interpreted as an inhibitory impact of the organic matrix. However, the collagen-based matrix could not be the responsible part as resorption was highest on dentin, which contains collagen. It seems that osteocytic proteins, stored in bone but not present in dentin, affect osteoclastic action. This demonstrates that osteoclasts per se do not possess a toposensitivity to remove microcracks but may be influenced by components of the organic bone matrix.
Collapse
Affiliation(s)
- Monika Rumpler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Tanja Würger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Elisabeth Zwettler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| |
Collapse
|
16
|
Hamilton RT, Walsh ME, Van Remmen H. Mouse Models of Oxidative Stress Indicate a Role for Modulating Healthy Aging. ACTA ACUST UNITED AC 2012; Suppl 4. [PMID: 25300955 DOI: 10.4172/2161-0681.s4-005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is a complex process that affects every major system at the molecular, cellular and organ levels. Although the exact cause of aging is unknown, there is significant evidence that oxidative stress plays a major role in the aging process. The basis of the oxidative stress hypothesis is that aging occurs as a result of an imbalance between oxidants and antioxidants, which leads to the accrual of damaged proteins, lipids and DNA macromolecules with age. Age-dependent increases in protein oxidation and aggregates, lipofuscin, and DNA mutations contribute to age-related pathologies. Many transgenic/knockout mouse models over expressing or deficient in key antioxidant enzymes have been generated to examine the effect of oxidative stress on aging and age-related diseases. Based on currently reported lifespan studies using mice with altered antioxidant defense, there is little evidence that oxidative stress plays a role in determining lifespan. However, mice deficient in antioxidant enzymes are often more susceptible to age-related disease while mice overexpressing antioxidant enzymes often have an increase in the amount of time spent without disease, i.e., healthspan. Thus, by understanding the mechanisms that affect healthy aging, we may discover potential therapeutic targets to extend human healthspan.
Collapse
Affiliation(s)
- Ryan T Hamilton
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; GRECC, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
17
|
Resmini G, Migliaccio S, Dalle Carbonare L, Sala U, Brama M, Fornari R, Maggi S, Siviero P, Malavolta N, Iolascon G. Differential characteristics of bone quality and bone turnover biochemical markers in patients with hip fragility fractures and hip osteoarthritis: results of a clinical pilot study. Aging Clin Exp Res 2011; 23:99-105. [PMID: 21743289 DOI: 10.1007/bf03351075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Bone density and quality alterations worsen the ability of osteoporotic bone to support prosthetic implants. The aim of our study was to evaluate potential differences in bone quality and bone turnover markers in aged individuals undergoing surgery for hip fragility fracture or hip osteoarthritis. METHODS Eighteen subjects with hip fragility fractures (Hip Fracture Group), 35 subjects with osteoarthritis of the hip (Hip Osteoarthritis Group) and 19 subjects with normal femoral bone mineral density (Control Group) were evaluated. Serum and urinary bone markers were assayed preoperatively in all surgical patients, and within 48 hours after fracture in the Hip Fracture, Osteoarthritis and Control groups. Histomorphometric analysis was performed on surgical samples. RESULTS A significant alteration in calcium and PTH serum levels with hyperparathyroidism was observed in the Hip Fracture Group compared with Hip Osteoarthritis and Control Groups. C-Terminal telopeptides of type I-collagen (CTx) and tartrate resistant-acid phosphatase (TRAP), markers of bone resorption, were increased in the Hip Fracture Group compared with both Osteoarthritis and Control Groups (CTx: p<0.0007 and p<0.0039 respectively; TRAP: p<0.002 and p<0.0007). All subjects were vitamin D3-deficient, but no differences were found among the different groups. In addition, histomorphometric data showed better maintained connectivity in the Osteoarthritis Group compared with the Hip Fracture Group (p<0.0001). CONCLUSIONS Our data show significant differences in bone turnover markers in patients undergoing hip prosthesis for fragility fractures, compared with patients operated for hip osteoarthritis.
Collapse
|
18
|
Nelson ES, Lewandowski B, Licata A, Myers JG. Development and validation of a predictive bone fracture risk model for astronauts. Ann Biomed Eng 2009; 37:2337-59. [PMID: 19707874 DOI: 10.1007/s10439-009-9779-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 08/04/2009] [Indexed: 01/04/2023]
Abstract
There are still many unknowns in the physiological response of human beings to space, but compelling evidence indicates that accelerated bone loss will be a consequence of long-duration spaceflight. Lacking phenomenological data on fracture risk in space, we have developed a predictive tool based on biomechanical and bone loading models at any gravitational level of interest. The tool is a statistical model that forecasts fracture risk, bounds the associated uncertainties, and performs sensitivity analysis. In this paper, we focused on events that represent severe consequences for an exploration mission, specifically that of spinal fracture resulting from a routine task (lifting a heavy object up to 60 kg), or a spinal, femoral or wrist fracture due to an accidental fall or an intentional jump from 1 to 2 m. We validated the biomechanical and bone fracture models against terrestrial studies of ground reaction forces, skeletal loading, fracture risk, and fracture incidence. Finally, we predicted fracture risk associated with reference missions to the moon and Mars that represented crew activities on the surface. Fracture was much more likely on Mars due to compromised bone integrity. No statistically significant gender-dependent differences emerged. Wrist fracture was the most likely type of fracture, followed by spinal and hip fracture.
Collapse
Affiliation(s)
- Emily S Nelson
- Bioscience and Technology Branch, NASA Glenn Research Center, Cleveland, OH 44135, USA.
| | | | | | | |
Collapse
|
19
|
Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res 2008; 23:1194-203. [PMID: 18348694 DOI: 10.1359/jbmr.080311] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inbred strains of mice make useful models to study bone properties. Our aim was to compare bone competence and cortical morphometric parameters of two inbred strains to better determine the role of bone structure and geometry in the process of bone failure. Morphometric analysis was performed on 20 murine femora with a low bone mass (C57BL/6J; B6) and 20 murine femora with a high bone mass (C3H/HeJ; C3H) using desktop microCT. The bones were tested under three-point bending to measure their mechanical properties. Results showed that the C3H strain is a more reproducible model regarding bone morphometric and mechanical phenotypes than the B6 strain. Bone strength, stiffness, yield force, yield displacement, and toughness, as well as morphometric traits, were all significantly different between the two strains, whereas postyield displacement was not. It was found that bone volume, cortical thickness, and cross-sectional area predicted almost 80% (p < 0.05) of bone stiffness, strength, and yield force. Nevertheless, cortical bone postyield properties such as bone toughness could not be explained by morphometry, but postyield whitening was observed in that phase. In conclusion, we found that morphometric parameters are strong predictors of preyield but not postyield properties. The lack of morphometric influence on bone competence in the postyield phase in combination with the observed postyield whitening confirmed the important contribution of ultrastructure and microdamage in the process of overall bone failure behavior, especially in the postyield phase.
Collapse
|
20
|
Dendorfer S, Maier H, Taylor D, Hammer J. Anisotropy of the fatigue behaviour of cancellous bone. J Biomech 2008; 41:636-41. [DOI: 10.1016/j.jbiomech.2007.09.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/24/2022]
|
21
|
Diab T, Vashishth D. Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone 2007; 40:612-8. [PMID: 17097933 PMCID: PMC2013741 DOI: 10.1016/j.bone.2006.09.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 09/05/2006] [Accepted: 09/28/2006] [Indexed: 11/16/2022]
Abstract
In vivo, microdamage occurs in the form of linear microcracks and diffuse damage. However, it is unknown whether the age-related changes in bone quality predispose bone to form one type of damage morphology over the other during in vivo loading. In this study, histological and histomorphometrical analyses were conducted on transverse cross sections, obtained from the tibiae of aging human bone (age 19 to 89), to investigate the in vivo accumulation and localization of damage morphologies. The results demonstrate that old donor bone (83+/-3 years) contains more linear microcracks than younger donor bone in the cortices predominantly subjected to compressive (p<0.01) and tensile loading (p<0.01). In contrast, young donor bone (40+/-10 years) contains more diffuse damage than older donor bone in the cortex predominantly subjected to tensile loading (p<0.01). The formation of damage morphology showed no correlation with bone geometry parameters and exhibited distinct preferences with bone microstructure. Linear microcracks formed in the interstitial bone (p<0.01) and were either trapped or arrested by the microstructural interfaces (cement line and lamellar interface) (p<0.05). Areas of diffuse damage, however, were preferentially associated with secondary osteonal bone (p<0.01) and had no relationship with the microstructural interfaces (p<0.01). Based upon these findings, we conclude that age-related changes in bone microstructure, but not bone geometry, play a key role in the propensity of old donors to form linear microcrack over diffuse damage under in vivo loading conditions.
Collapse
Affiliation(s)
- Tamim Diab
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
22
|
Kaptoge S, Jakes RW, Dalzell N, Wareham N, Khaw KT, Loveridge N, Beck TJ, Reeve J. Effects of physical activity on evolution of proximal femur structure in a younger elderly population. Bone 2007; 40:506-15. [PMID: 17098489 DOI: 10.1016/j.bone.2006.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
INTRODUCTION For a fixed weight, a wider bone of standardised length is stiffer. But moving the cortices away from the centre of mass risks creating structural (elastic) instability, and hip fractures have been postulated to occur as a consequence of buckling of the thinned supero-lateral femoral neck cortex during a fall. We hypothesised that stereotyped physical activity (e.g., walking) may help conserve bending resistance (section modulus, Z) through redistribution of bone tissue, but it might be at the expense of supero-lateral cortical stability. METHODS Hip structural analysis (HSA) software applied to DXA scans was used to derive measurements of section modulus and distances of a cross-section's centre of mass from the supero-lateral cortical margin (lateral distance, in cm). DXA scans were obtained on 1361 men and women in the EPIC-Norfolk population-based prospective cohort study. Up to 4 repeat DXA scans were done in 8 years of follow-up. Weight, height and activities of daily living were assessed on each occasion. A detailed physical activity and lifestyle questionnaire was administered at baseline. The lateral distance was measured on three narrow cross-sections with good precision: narrow neck (NN, coefficient of variation 2.6%), intertrochanter (IT) and shaft (S). A linear mixed model was used to assess associations with predictors. RESULTS Ageing was associated with medial shifting of the centre of mass, so that lateral distance increased. Both greater weight and height were associated with greater lateral distance (P<0.0001). Among physical activity-related variables, walking/cycling for >1 h/day (P=0.025), weekly time spent on moderate impact activity (P=0.003), forced expiratory volume in 1 s (NN and IT, P<0.026) and lifetime physical activity (IT, P<0.0001) were associated with higher lateral distance. However, after adjusting for these variables, activities of daily living scores (NN, P<0.0001) and weekly time spent on low impact hip flexing activities were associated with shorter lateral distance (P=0.001). Greater baseline lateral distance was significantly associated with increased risk of subsequent hip fracture (n=26) in females (P<0.05, all regions) independently of age, height and bone mineral content. CONCLUSION The age-related shift medially of the centre of mass of the femoral neck and trochanter may have adverse effects on fracture resistance in the event of a fall, so compromising the beneficial effects of walking on fitness, strength and risk of falling. The role of more diverse physical activity patterns in old age that impose loading on the supero-lateral cortex of the femur, involving for example hip flexion and stretching, needs investigation for their ability to correct this medial shifting of the centre of mass.
Collapse
Affiliation(s)
- S Kaptoge
- Institute of Public Health, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sierpowska J, Hakulinen MA, Töyräs J, Day JS, Weinans H, Kiviranta I, Jurvelin JS, Lappalainen R. Interrelationships between electrical properties and microstructure of human trabecular bone. Phys Med Biol 2006; 51:5289-303. [PMID: 17019039 DOI: 10.1088/0031-9155/51/20/014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microstructural changes, such as reduction of trabecular thickness and number, are characteristic signs of osteoporosis leading to diminished bone strength. Electrical and dielectric parameters might provide diagnostically valuable information on trabecular bone microstructure not extractable from bone mineral density measurements. In this study, structural properties of human trabecular bone samples (n=26) harvested from the distal femur and proximal tibia were investigated using the computed microtomography (microCT) technique. Quantitative parameters, e.g. structural model index (SMI) or trabecular bone volume fraction (BV/TV), were calculated. In addition, the samples were examined electrically over a wide frequency range (50 Hz-5 MHz) using a two-electrode impedance spectroscopy set-up. Relative permittivity, loss factor, conductivity, phase angle, specific impedance and dissipation factor were determined. Significant linear correlations were obtained between the dissipation factor and BV/TV or SMI (|r| 0.70, p<0.01, n=26). Principal component analyses, conducted on electrical and structural parameters, revealed that the high frequency principal component of the dissipation factor was significantly related to SMI (r=0.72, p<0.01, n=26). The linear combination of high and low frequency relative permittivity predicted 73% of the variation in BV/TV. To conclude, electrical and dielectric parameters of trabecular bone, especially relative permittivity and dissipation factor, were significantly and specifically related to a trabecular microstructure as characterized with microCT. The data gathered in this study constitute a useful basis for theoretical and experimental work towards the development of impedance spectroscopy techniques for detection of bone quality in vitro or in special cases of open surgery.
Collapse
Affiliation(s)
- J Sierpowska
- Department of Physics, University of Kuopio, PO Box 1627, FI-70211, Kuopio University Hospital, Finland.
| | | | | | | | | | | | | | | |
Collapse
|