1
|
Liu Q, Gan Y, Hu X, Liu W, Liao X, Zhang J, Li X, Zhou J, Wang B. KDM6B preferentially promotes bone formation over resorption to facilitate postnatal bone mass accrual through collagen triple helix repeat containing 1-mediated PKCδ/MAPKs signaling. J Bone Miner Res 2025; 40:671-687. [PMID: 39961019 DOI: 10.1093/jbmr/zjaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/29/2025] [Accepted: 02/08/2025] [Indexed: 05/26/2025]
Abstract
Lysine demethylase 6B (KDM6B) plays a role in regulating osteoblast differentiation and fetal bone ossification. Nevertheless, its involvement in regulating postnatal bone homeostasis and bone mass accrual remains unclear. In this study, we generated mice lacking Kdm6b gene specifically in mesenchyme and osteoprogenitor cells using a conditional strategy. The adult mice of both mutant strains had decreased cancellous bone mass. The absence of Kdm6b in mesenchyme led to decreased numbers of osteoblasts and osteoclasts, increased marrow adipocytes, as well as repressed bone formation and resorption. Additionally, Kdm6b-deficient bone marrow stromal cells (BMSCs) displayed impaired osteogenic differentiation and exerted an inhibitory effect on osteoclastogenesis. RNA-seq combined with gene expression analysis uncovered downregulation of collagen triple helix repeat containing 1 (CTHRC1) and a lower RANKL/osteoprotegerin (OPG) ratio in BMSCs of the mutant mice. Further mechanistic explorations demonstrated that KDM6B epigenetically upregulated CTHRC1 expression by removing the repressive H3K27me3 mark from its promoter, thereby triggering PKCδ/MAPKs signaling to facilitate osteoblast differentiation. CTHRC1 was able to mitigate the dysregulated osteogenic and adipogenic differentiation induced by Kdm6b deficiency. This study provides evidence that KDM6B regulates postnatal bone homeostasis through balancing osteoblast and osteoclast differentiation. Given its predominant promotion of osteoblastic bone formation over osteoclastic bone resorption, KDM6B tends to promote postnatal bone mass accrual.
Collapse
Affiliation(s)
- Qian Liu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Ying Gan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Xingli Hu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Wei Liu
- Department of Microbiology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoxia Liao
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Jingyun Zhang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Li
- Department of Microbiology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
2
|
Barnea-Zohar M, Stein M, Reuven N, Winograd-Katz S, Lee S, Addadi Y, Arman E, Tuckermann J, Geiger B, Elson A. SNX10 regulates osteoclastogenic cell fusion and osteoclast size in mice. J Bone Miner Res 2024; 39:1503-1517. [PMID: 39095084 DOI: 10.1093/jbmr/zjae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Bone-resorbing osteoclasts (OCLs) are formed by differentiation and fusion of monocyte precursor cells, generating large multinucleated cells. Tightly regulated cell fusion during osteoclastogenesis leads to formation of resorption-competent OCLs, whose sizes fall within a predictable physiological range. The molecular mechanisms that regulate the onset of OCL fusion and its subsequent arrest are, however, largely unknown. We have previously shown that OCLs cultured from mice homozygous for the R51Q mutation in the vesicle trafficking-associated protein sorting nexin 10, a mutation that induces autosomal recessive osteopetrosis in humans and in mice, display deregulated and continuous fusion that generates gigantic, inactive OCLs. Fusion of mature OCLs is therefore arrested by an active, genetically encoded, cell-autonomous, and SNX10-dependent mechanism. To directly examine whether SNX10 performs a similar role in vivo, we generated SNX10-deficient (SKO) mice and demonstrated that they display massive osteopetrosis and that their OCLs fuse uncontrollably in culture, as do homozygous R51Q SNX10 (RQ/RQ) mice. OCLs that lack SNX10 exhibit persistent presence of DC-STAMP protein at their periphery, which may contribute to their uncontrolled fusion. To visualize endogenous SNX10-mutant OCLs in their native bone environment, we genetically labeled the OCLs of WT, SKO, and RQ/RQ mice with enhanced Green Fluorescent Protein (EGFP), and then visualized the 3D organization of resident OCLs and the pericellular bone matrix by 2-photon, confocal, and second harmonics generation microscopy. We show that the volumes, surface areas and, in particular, the numbers of nuclei in the OCLs of both mutant strains were on average 2-6-fold larger than those of OCLs from WT mice, indicating that deregulated, excessive fusion occurs in the mutant mice. We conclude that the fusion of OCLs, and consequently their size, is regulated in vivo by SNX10-dependent arrest of fusion of mature OCLs.
Collapse
Affiliation(s)
- Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabina Winograd-Katz
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm 89081, Germany
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Choi JW, Lim S, Jung SE, Jeong S, Moon H, Song BW, Kim IK, Lee S, Hwang KC, Kim SW. Enhanced Osteocyte Differentiation: Cathepsin D and L Secretion by Human Adipose-Derived Mesenchymal Stem Cells. Cells 2023; 12:2852. [PMID: 38132172 PMCID: PMC10742070 DOI: 10.3390/cells12242852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have the potential to differentiate into bone, cartilage, fat, and neural cells and promote tissue regeneration and healing. It is known that they can have variable responses to hypoxic conditions. In the present study, we aimed to explore diverse changes in the cells and secretome of ASCs under a hypoxic environment over time and to present the possibility of ASCs as therapeutic agents from a different perspective. The expression differences of proteins between normoxic and hypoxic conditions (6, 12, or 24 h) were specifically investigated in human ASCs using 2-DE combined with MALDI-TOF MS analysis, and secreted proteins in ASC-derived conditioned media (ASC-derived CM) were examined by an adipokine array. In addition, genetic and/or proteomic interactions were assessed using a DAVID and miRNet functional annotation bioinformatics analysis. We found that 64 and 5 proteins were differentially expressed in hypoxic ASCs and in hypoxic ASC-derived CM, respectively. Moreover, 7 proteins among the 64 markedly changed spots in hypoxic ASCs were associated with bone-related diseases. We found that two proteins, cathepsin D (CTSD) and cathepsin L (CTSL), identified through an adipokine array independently exhibited significant efficacy in promoting osteocyte differentiation in bone-marrow-derived mesenchymal stem cells (BM-MSCs). This finding introduces a promising avenue for utilizing hypoxia-preconditioned ASC-derived CM as a potential therapeutic approach for bone-related diseases.
Collapse
Affiliation(s)
- Jung-Won Choi
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (J.-W.C.); (S.E.J.)
| | - Soyeon Lim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Seung Eun Jung
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (J.-W.C.); (S.E.J.)
| | - Seongtae Jeong
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul 03722, Republic of Korea;
| | - Byeong-Wook Song
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Il-Kwon Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Ki-Chul Hwang
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| | - Sang Woo Kim
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Incheon Metropolitan City 22711, Republic of Korea; (S.L.); (B.-W.S.); (I.-K.K.); (S.L.); (K.-C.H.)
| |
Collapse
|
4
|
Zou N, Liu R, Li C. Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Front Cell Dev Biol 2022; 10:818462. [PMID: 35912093 PMCID: PMC9326176 DOI: 10.3389/fcell.2022.818462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K (Ctsk) is a cysteine protease of the papain superfamily initially identified in differentiated osteoclasts; it plays a critical role in degrading the bone matrix. However, subsequent in vivo and in vitro studies based on animal models elucidate novel subpopulations of Ctsk-expressing cells, which display markers and properties of mesenchymal stem/progenitor cells. This review introduces the function, identity, and role of Ctsk+ cells and their therapeutic implications in related preclinical osseous disorder models. It also summarizes the available in vivo models for studying Ctsk+ cells and their progeny. Further investigations of detailed properties and mechanisms of Ctsk+ cells in transgenic models are required to guide potential therapeutic targets in multiple diseases in the future.
Collapse
Affiliation(s)
- Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Changjun Li,
| |
Collapse
|
5
|
Vesela B, Killinger M, Rihova K, Benes P, Svandová E, Kratochvilová A, Trcka F, Kleparnik K, Matalova E. Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways. Front Cell Dev Biol 2022; 10:794407. [PMID: 35372363 PMCID: PMC8964645 DOI: 10.3389/fcell.2022.794407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Caspase-8 is the key component of the receptor-mediated (extrinsic) apoptotic pathway. Immunological localization of active caspase-8 showed its presence in osteoblasts, including non-apoptotic ones. Further in vivo exploration of caspase-8 functions in the bone is hindered by the fact that the caspase-8 knock-out is lethal prenatally. Examinations were thus performed using individual cell populations in vitro. In this study, caspase-8 was eliminated by the CRISPR/cas9 technology in MC3T3-E1 cells, the most common in vitro model of osteoblastic populations. The aim of the work was to specify the consequences of caspase-8 deficiency on non-apoptotic pathways. The impact on the osteogenic gene expression of the osteoblastic cells along with alterations in proliferation, caspase cascades and rapamycin induced autophagy response were evaluated. Osteogenic differentiation of caspase-8 deficient cells was inhibited as these cells displayed a decreased level of mineralization and lower activity of alkaline phosphatase. Among affected osteogenic genes, based on the PCR Array, major changes were observed for Ctsk, as down-regulated, and Gdf10, as up-regulated. Other significantly down-regulated genes included those coding osteocalcin, bone morphogenetic proteins (-3, -4 and -7), collagens (-1a1, -14a1) or Phex. The formation of autophagosomes was not altered in rapamycin-treated caspase-8 deficient cells, but expression of some autophagy-related genes, including Tnfsf10, Cxcr4, Dapk1 and Igf1, was significantly downregulated. These data provide new insight into the effects of caspase-8 on non-apoptotic osteogenic pathways.
Collapse
Affiliation(s)
- Barbora Vesela
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- *Correspondence: Barbora Vesela,
| | - Michael Killinger
- Faculty of Science, Masaryk University, Brno, Czechia
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czechia
| | - Kamila Rihova
- Faculty of Science, Masaryk University, Brno, Czechia
| | - Petr Benes
- Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Eva Svandová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Adela Kratochvilová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Trcka
- Faculty of Science, Masaryk University, Brno, Czechia
| | - Karel Kleparnik
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czechia
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences Brno, Brno, Czechia
| |
Collapse
|
6
|
Texturized P(VDF-TrFE)/BT membrane enhances bone neoformation in calvaria defects regardless of the association with photobiomodulation therapy in ovariectomized rats. Clin Oral Investig 2021; 26:1053-1065. [PMID: 34370100 DOI: 10.1007/s00784-021-04089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The purpose of this investigation was to evaluate in vivo the response of bone tissue to photobiomodulation when associated with texturized P(VDF-TrFE)/BT in calvaria defects of ovariectomized rats. MATERIALS AND METHODS Wistar Hannover rats were submitted to ovariectomy/control surgery. Calvaria bone defects of 5-mm diameter were performed after 90 days of ovariectomy. The animals were divided into OVX (without laser (L) and membrane), OVX + P(VDF-TrFE)/BT, OVX + P(VDF-TrFE)/BT + L, and OVX + PTFE + L. It was utilized a low-intensity gallium-aluminum-arsenide laser (GaAlAs) with 780-nm wavelength and 30-J/cm2 energy density in 12 sessions (120 s). Thirty days after the bone defect the animals were euthanized for histological, microtomographic, and molecular evaluation. Quantitative analysis was analyzed by statistical software for p < 0.05. RESULTS Histological parameters showed bone tissue formation at the borders of all group defects. The association of photobiomodulation and texturized P(VDF-TrFE)/BT was not synergistic and did not show significant changes in morphometric analysis and biomarkers gene expression. Nevertheless, texturized P(VDF-TrFE)/BT membrane enhanced bone repair regardless of the association with photobiomodulation therapy, with an increase of connectivity density when compared to the OVX + PTFE + L group. The association of photobiomodulation therapy and PTFE was synergistic, increasing the expression of Runx2, Alp, Bsp, Bglap, Sp7, and Rankl, even though not enough to reflect significance in the morphometric parameters. CONCLUSIONS The utilization of texturized P (VDF-TrFE)/BT, regardless of the association with photobiomodulation therapy, enhanced bone repair in an experimental model of osteoporosis.
Collapse
|
7
|
Zhang W, Dong Z, Li D, Li B, Liu Y, Zheng X, Liu H, Zhou H, Hu K, Xue Y. Cathepsin K deficiency promotes alveolar bone regeneration by promoting jaw bone marrow mesenchymal stem cells proliferation and differentiation via glycolysis pathway. Cell Prolif 2021; 54:e13058. [PMID: 34053135 PMCID: PMC8249792 DOI: 10.1111/cpr.13058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives To clarify the possible role and mechanism of Cathepsin K (CTSK) in alveolar bone regeneration mediated by jaw bone marrow mesenchymal stem cells (JBMMSC). Materials and Methods Tooth extraction models of Ctsk knockout mice (Ctsk‐/‐) and their wildtype (WT) littermates were used to investigate the effect of CTSK on alveolar bone regeneration. The influences of deletion or inhibition of CTSK by odanacatib (ODN) on proliferation and osteogenic differentiation of JBMMSC were assessed by CCK‐8, Western blot and alizarin red staining. To explore the differently expressed genes, RNA from WT and Ctsk‐/‐ JBMMSC was sent to RNA‐seq. ECAR, glucose consumption and lactate production were measured to identify the effect of Ctsk deficiency or inhibition on glycolysis. At last, we explored whether Ctsk deficiency or inhibition promoted JBMMSC proliferation and osteogenic differentiation through glycolysis. Results We found out that Ctsk knockout could promote alveolar bone regeneration in vivo. In vitro, we confirmed that both Ctsk knockout and inhibition by ODN could promote proliferation of JBMMSC, up‐regulate expression of Runx2 and ALP, and enhance matrix mineralization. RNA‐seq results showed that coding genes of key enzymes in glycolysis were significantly up‐regulated in Ctsk‐/‐ JBMMSC, and Ctsk deficiency or inhibition could promote glycolysis in JBMMSC. After blocking glycolysis by 3PO, the effect of Ctsk deficiency or inhibition on JBMMSC’s regeneration was blocked subsequently. Conclusions Our findings revealed that Ctsk knockout or inhibition could promote alveolar bone regeneration by enhancing JBMMSC regeneration via glycolysis. These results shed new lights on the regulatory mechanism of CTSK on bone regeneration.
Collapse
Affiliation(s)
- Wuyang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhiwei Dong
- State Key Laboratory of Military Stomatology, Xi'an, China
| | - Dengke Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xueni Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hui Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hongzhi Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kaijin Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Gao LH, Li SS, Yue H, Zhang ZL. Associations of Serum Cathepsin K and Polymorphisms in CTSK Gene With Bone Mineral Density and Bone Metabolism Markers in Postmenopausal Chinese Women. Front Endocrinol (Lausanne) 2020; 11:48. [PMID: 32117071 PMCID: PMC7031211 DOI: 10.3389/fendo.2020.00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cathepsin K plays an important role in bone resorption. The reports of the association of serum cathepsin K with bone mineral density (BMD) and bone turnover markers are conflicting and the role of serum cathepsin K as a bone turnover marker is unclear. The aims of the study were as follows: (1) to investigate the association of serum cathepsin K with BMD and markers of bone turnover and (2) to evaluate the correlations of single-nucleotide polymorphisms (SNPs) within the CTSK gene with serum cathepsin K, BMD, and markers of bone metabolism in postmenopausal Chinese women. A cross-sectional study was conducted with 1752 postmenopausal Chinese women. Four tagging SNPs (rs12085336, rs12746973, rs4379678, and rs10847) of the CTSK gene were genotyped. Serum cathepsin K of 768 and markers of bone metabolism of 1752 including serum intact PTH, 25-hydroxyvitamin D [25(OH)D], procollagen type 1 N-terminal propeptide (P1NP), and β-CrossLaps of type I collagen containing cross- linked C-telopeptide (β-CTX) were measured. The BMD of the lumbar spine and proximal femur were measured by dual-energy X-ray absorptiometry (DXA). No significant relationship was detected between serum cathepsin K and age, BMI, BMD or bone metabolic markers (all P > 0.05) after adjustment for age and BMI. We failed to identify any significant association between the genotypes or haplotypes of CTSK and BMD, bone turnover markers, or serum cathepsin K. Neither serum cathepsin K nor CTSK gene polymorphisms was correlated with BMD or bone turnover markers. Genetic polymorphisms of CTSK may not be a major contributor to variations in the serum cathepsin K or BMD in postmenopausal Chinese women. The results implied that serum cathepsin K may not be viewed as a substitute for bone turnover markers.
Collapse
|
9
|
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: The Action in and Beyond Bone. Front Cell Dev Biol 2020; 8:433. [PMID: 32582709 PMCID: PMC7287012 DOI: 10.3389/fcell.2020.00433] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, CatK is among the most attractive targets for anti-osteoporosis drug development. Although many pharmaceutical companies are working on the development of selective inhibitors for CatK, there is no FDA approved drug till now. Odanacatib (ODN) developed by Merck & Co. is the only CatK inhibitor candidate which demonstrated high therapeutic efficacy in patients with postmenopausal osteoporosis in Phase III clinical trials. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. Therefore, it arouses concerns on the undesirable CatK inhibition in non-bone sites. It is known that CatK has far-reaching actions throughout various organs besides bone. Many studies have also demonstrated the involvement of CatK in various diseases beyond the musculoskeletal system. This review not only summarized the functional roles of CatK in bone and beyond bone, but also discussed the potential relevance of the CatK action beyond bone to the adverse effects of inhibiting CatK in non-bone sites.
Collapse
Affiliation(s)
- Rongchen Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Jin Liu,
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- Ge Zhang,
| |
Collapse
|
10
|
Pathak JL, Bravenboer N, Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne) 2020; 11:405. [PMID: 32733380 PMCID: PMC7360678 DOI: 10.3389/fendo.2020.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Osteocytes are the most abundant (~95%) cells in bone with the longest half-life (~25 years) in humans. In the past osteocytes have been regarded as vestigial cells in bone, since they are buried inside the tough bone matrix. However, during the last 30 years it has become clear that osteocytes are as important as bone forming osteoblasts and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell body and dendritic processes reside in bone in a complex lacuno-canalicular system, which allows the direct networking of osteocytes to their neighboring osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing of osteocytes translates the applied mechanical force on bone to cellular signaling and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly efficient in transferring external mechanical force on bone to the osteocyte cell body and dendritic processes via displacement of fluid in the lacuno-canalicular space. Osteocyte mechanotransduction regulates the formation and function of the osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts, DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity. Various genetic abnormality-associated rare bone diseases are related to disrupted osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during the last 15 years on disrupted osteocyte function in rare bone diseases guided for the development of various novel therapeutic agents to treat bone diseases. Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van Buchem disease revealed a role for sclerostin in bone homeostasis, which led to the development of the sclerostin antibody to treat osteoporosis and other bone degenerative diseases. The mechanism of many other rare bone diseases and the role of the osteocyte in the development of such conditions still needs to be investigated. In this review, we mainly discuss the knowledge obtained during the last 30 years on the role of the osteocyte in rare bone diseases. We speculate about future research directions to develop novel therapeutic drugs targeting osteocyte functions to treat both common and rare bone diseases.
Collapse
Affiliation(s)
- Janak L. Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenneke Klein-Nulend
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend
| |
Collapse
|
11
|
Zhao J, Mu L, Wang Z, Fang X, He X, Zhang X, Xu X. The potential roles of circular RNAs in osteonecrosis of the femoral head (Review). Mol Med Rep 2019; 21:533-539. [PMID: 31974613 PMCID: PMC6947852 DOI: 10.3892/mmr.2019.10866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are categorized as non-coding RNAs that, unlike widely known canonical linear RNAs, form a covalently closed continuous loop without 5′ or 3′ polarities, which enables them to resist digestion by RNA exonucleases. Although the functions of circRNAs remain largely unknown, accumulated evidence has demonstrated that circRNAs can act as microRNA sponges, which allows them to regulate numerous biological processes and disease mechanisms, including apoptosis, angiogenesis, invasion, metastasis and stem cell differentiation. Although research into circRNAs is in its infancy, studies have identified critical roles for circRNAs in the initiation and progression of disease. The present study delineated the characteristics and functions of circRNAs, and focused on the potential relationship between circRNAs and osteonecrosis of the femoral head (ONFH). CircRNAs represent a novel avenue for studying the mechanisms underlying ONFH as well as possible treatments.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Long Mu
- Department of Orthopaedics, Harbin Fifth Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Zhengchun Wang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiangchun Fang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xuefeng He
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaofeng Zhang
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xilin Xu
- Department of Orthopaedics, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
12
|
Soliman SA, Kamal BM, Abd-Elhafeez HH. Cellular Invasion and Matrix Degradation, a Different Type of Matrix-Degrading Cells in the Cartilage of Catfish ( Clarias gariepinus) and Japanese Quail Embryos ( Coturnix coturnix japonica). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1283-1292. [PMID: 31583991 DOI: 10.1017/s1431927619014892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We previously studied the phenomena of the mesenchymal cell-dependent mode of cartilage growth in quail and catfish. Thus, we selected the two cartilage models in which mesenchymal cells participate in their growth. In such models, cartilage degradation occurred to facilitate cellular invasion. The studies do not explain the nature of the cartilage degrading cells. The current study aims to explore the nature of the cartilage-degrading cells using transmission electron microscopy (TEM) and immunohistochemistry. Samples of cartilage have been isolated from the air-breathing organ of catfish and the cartilage of the prospective occipital bone of quail embryos. Samples have been processed for TEM and immunohistochemistry. We found that two different cell types are involved in cartilage degradation; the macrophage in the cartilage of catfish and mesenchymal cells in the cartilage of the quail. Areas of cellular invasion in both catfish cartilage and quail embryo cartilage had an immunological affinity for MMP-9. In catfish, cartilage-degrading cells had identical morphological features of macrophages, whereas in quail embryos, cartilage-degrading cells were mesenchymal-like cells which had cell processes rich in vesicles and expressed CD117. Further study should consider the role of macrophage and mesenchymal cells during cartilage degradation. This could be valuable to be applied to remove the defective cartilage matrix formed in osteoarthritic patients to improve cartilage repair strategies.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Basma Mohamed Kamal
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Sadat-City University, Sadat City, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Anatomy, Embryology and Histology, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
13
|
Wang S, Li GX, Tan CC, He R, Kang LJ, Lu JT, Li XQ, Wang QS, Liu PF, Zhai QL, Feng YM. FOXF2 reprograms breast cancer cells into bone metastasis seeds. Nat Commun 2019; 10:2707. [PMID: 31222004 PMCID: PMC6586905 DOI: 10.1038/s41467-019-10379-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/08/2019] [Indexed: 01/03/2023] Open
Abstract
Bone metastases occur in most advanced breast cancer patients and cause serious skeletal-related complications. The mechanisms by which bone metastasis seeds develop in primary tumors and specifically colonize the bone remain to be elucidated. Here, we show that forkhead box F2 (FOXF2) functions as a master transcription factor for reprogramming cancer cells into an osteomimetic phenotype by pleiotropic transactivation of the BMP4/SMAD1 signaling pathway and bone-related genes that are expressed at early stages of bone differentiation. The epithelial-to-osteomimicry transition regulated by FOXF2 confers a tendency on cancer cells to metastasize to bone which leads to osteolytic bone lesions. The BMP antagonist Noggin significantly inhibits FOXF2-driven osteolytic bone metastasis of breast cancer cells. Thus, targeting the FOXF2-BMP/SMAD axis might be a promising therapeutic strategy to manage bone metastasis. The role of FOXF2 in transactivating bone-related genes implies a biological function of FOXF2 in regulating bone development and remodeling.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Gui-Xi Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Cong-Cong Tan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Rui He
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Li-Juan Kang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Jun-Tao Lu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Pei-Fang Liu
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Qiong-Li Zhai
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
14
|
Hussein H, Boyaka P, Dulin J, Russell D, Smanik L, Azab M, Bertone AL. Cathepsin K Localizes to Equine Bone In Vivo and Inhibits Bone Marrow Stem and Progenitor Cells Differentiation In Vitro. J Stem Cells Regen Med 2017. [PMID: 29391749 PMCID: PMC5786646 DOI: 10.46582/jsrm.1302008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective inhibition of Cathepsin K (CatK) has a promising therapeutic potential for diseases associated with bone loss and osseous inflammation, such as osteoarthritis, periodontitis, and osteoporosis. In horses, stress-related bone injuries are common and accompanied by bone pain and inflammation resulting in excessive bone resorption and periostitis. VEL-0230 is a highly selective inhibitor of CatK that significantly decreased bone resorption and increased bone formation biomarkers. The goal of this study was to demonstrate the presence of CatK in equine bone and a simultaneous influence on the bone marrow cellular components including function and differentiation. Our objectives were: 1) to investigate the tissue localization of CatK protein in equine bone using immunohistochemistry, and 2) to determine the effect of CatK inhibition on osteoclastogenic, chondrogenic and osteogenic differentiation potential of equine stem and progenitor cells in vitro using histochemical staining and differentiation-related gene expression analyses. Bone biopsies, harvested from the tuber coxae and proximal phalanx of six healthy horses, were processed for immunostaining against CatK. Sternal bone marrow aspirates were cultured in 0, 1, 10, or 100 μM of VEL-0230 and subsequent staining scoring and gene expression analyses performed. All cells morphologically characterized as osteoclasts and moderate number of active bone lining osteoblasts stained positive for CatK. Histochemical staining and gene expression analyses revealed a significant increase in the osteoclastogenic, chondrogenic and osteogenic differentiation potential of equine bone marrow cells, which was VEL-0230-concentration dependent for the latter two. These results suggested that CatK inhibition may have anabolic effects on bone and cartilage regeneration that may be explained as a feedback response to CatK depletion. In conclusion, the use of CatK inhibition to reduce inflammation and associated bone resorption in equine osseous disorders may offer advantages to other therapeutics that would require further study.
Collapse
Affiliation(s)
- Hayam Hussein
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Prosper Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jennifer Dulin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Duncan Russell
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Lauren Smanik
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mohamed Azab
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Alicia L Bertone
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Both T, van de Peppel HJ, Zillikens MC, Koedam M, van Leeuwen JPTM, van Hagen PM, van Daele PLA, van der Eerden BCJ. Hydroxychloroquine decreases human MSC-derived osteoblast differentiation and mineralization in vitro. J Cell Mol Med 2017; 22:873-882. [PMID: 28975700 PMCID: PMC5783866 DOI: 10.1111/jcmm.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
We recently showed that patients with primary Sjögren Syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favourable effects on BMD. To study the direct effects of HCQ on human MSC‐derived osteoblast activity. Osteoblasts were cultured from human mesenchymal stromal cells (hMSCs). Cultures were treated with different HCQ doses (control, 1 and 5 µg/ml). Alkaline phosphatase activity and calcium measurements were performed to evaluate osteoblast differentiation and activity, respectively. Detailed microarray analysis was performed in 5 µg/ml HCQ‐treated cells and controls followed by qPCR validation. Additional cultures were performed using the cholesterol synthesis inhibitor simvastatin (SIM) to evaluate a potential mechanism of action. We showed that HCQ inhibits both MSC‐derived osteoblast differentiation and mineralization in vitro. Microarray analysis and additional PCR validation revealed a highly significant up‐regulation of the cholesterol biosynthesis, lysosomal and extracellular matrix pathways in the 5 µg/ml HCQ‐treated cells compared to controls. Besides, we demonstrated that 1 µM SIM also decreases MSC‐derived osteoblast differentiation and mineralization compared to controls. It appears that the positive effect of HCQ on BMD cannot be explained by a stimulating effect on the MSC‐derived osteoblast. The discrepancy between high BMD and decreased MSC‐derived osteoblast function due to HCQ treatment might be caused by systemic factors that stimulate bone formation and/or local factors that reduce bone resorption, which is lacking in cell cultures.
Collapse
Affiliation(s)
- Tim Both
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Jeroen van de Peppel
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marijke Koedam
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johannes P T M van Leeuwen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul L A van Daele
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Jähn K, Kelkar S, Zhao H, Xie Y, Tiede-Lewis LM, Dusevich V, Dallas SL, Bonewald LF. Osteocytes Acidify Their Microenvironment in Response to PTHrP In Vitro and in Lactating Mice In Vivo. J Bone Miner Res 2017; 32:1761-1772. [PMID: 28470757 PMCID: PMC5550338 DOI: 10.1002/jbmr.3167] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/04/2017] [Accepted: 05/01/2017] [Indexed: 11/10/2022]
Abstract
Osteocytes appear to mobilize calcium within minutes in response to PTH injections; we have previously shown that osteocytes remove their perilacunar matrix during lactation through activation of the PTH type 1 receptor. Mechanisms utilized by osteocytes to mobilize calcium are unknown but we hypothesized that the molecular components may be similar to those used by osteoclasts. Here we show, using IDG-SW3 cells that ATP6V0D2, an essential component of vacuolar ATPase in osteoclasts, and other genes associated with osteoclastic bone resorption, increase with osteoblast to osteocyte differentiation. Furthermore, PTHrP increases ATP6V0D2 expression and induces proton generation by primary osteocytes, which is blocked by bafilomycin, a vacuolar ATPase inhibitor. These in vitro proton measurements raised the question of osteocyte viability in an acidic environment. Interestingly, osteocytes, showed enhanced viability at pH as low as 5 compared to osteoblasts and fibroblasts in vitro. To study in vivo acidification by osteocytes, virgin and lactating CD1 mice on a low calcium diet were injected with the pH indicator dye, acridine orange, and their osteocyte lacuno-canalicular system imaged by confocal microscopy. Lower pH was observed in lactating compared to virgin animals. In addition, a novel transgenic mouse line with a topaz variant of green fluorescent protein (GFPtpz)-tagged collagen α2(I) chain was used. Instead of the expected reduction in GFP-fluorescence only in the perilacunar matrix, reduced fluorescence was observed in the entire bone matrix of lactating mice. Based on our experiments showing quenching of GFP in vitro, we propose that the observed reduction in GFP fluorescence in lactating mice is due to quenching of GFP by the acidic pH generated by osteocytes. Together these findings provide novel mechanistic insight into how osteocytes remove calcium from their perilacunar/pericanalicular matrices through active acidification of their microenvironment and show that osteocytes, like osteoclasts, are resistant to the negative effects of acid on viability. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Katharina Jähn
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Shilpa Kelkar
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Hong Zhao
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
17
|
Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr Rev 2017; 38:325-350. [PMID: 28651365 PMCID: PMC5546879 DOI: 10.1210/er.2015-1114] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Cathepsin K is a cysteine protease member of the cathepsin lysosomal protease family. Although cathepsin K is highly expressed in osteoclasts, lower levels of cathepsin K are also found in a variety of other tissues. Secretion of cathepsin K from the osteoclast into the sealed osteoclast-bone cell interface results in efficient degradation of type I collagen. The absence of cathepsin K activity in humans results in pycnodysostosis, characterized by increased bone mineral density and fractures. Pharmacologic cathepsin K inhibition leads to continuous increases in bone mineral density for ≤5 years of treatment and improves bone strength at the spine and hip. Compared with other antiresorptive agents, cathepsin K inhibition is nearly equally efficacious for reducing biochemical markers of bone resorption but comparatively less active for reducing bone formation markers. Despite multiple efforts to develop cathepsin K inhibitors, potential concerns related to off-target effects of the inhibitors against other cathepsins and cathepsin K inhibition at nonbone sites, including skin and perhaps cardiovascular and cerebrovascular sites, prolonged the regulatory approval process. A large multinational randomized, double-blind phase III study of odanacatib in postmenopausal women with osteoporosis was recently completed. Although that study demonstrated clinically relevant reductions in fractures at multiple sites, odanacatib was ultimately withdrawn from the regulatory approval process after it was found to be associated with an increased risk of cerebrovascular accidents. Nonetheless, the underlying biology and clinical effects of cathepsin K inhibition remain of considerable interest and could guide future therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Matthew T. Drake
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Bart L. Clarke
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Merry Jo Oursler
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
18
|
Bonnet N, Brun J, Rousseau JC, Duong LT, Ferrari SL. Cathepsin K Controls Cortical Bone Formation by Degrading Periostin. J Bone Miner Res 2017; 32:1432-1441. [PMID: 28322464 DOI: 10.1002/jbmr.3136] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 11/12/2022]
Abstract
Although inhibitors of bone resorption concomitantly reduce bone formation because of the coupling between osteoclasts and osteoblasts, inhibition or deletion of cathepsin k (CatK) stimulates bone formation despite decreasing resorption. The molecular mechanisms responsible for this increase in bone formation, particularly at periosteal surfaces where osteoclasts are relatively poor, remain unclear. Here we show that CatK pharmacological inhibition or deletion (Ctsk-/- mice) potentiates mechanotransduction signals mediating cortical bone formation. We identify periostin (Postn) as a direct molecular target for degradation by CatK and show that CatK deletion increases Postn and β-catenin expression in vivo, particularly at the periosteum. In turn, Postn deletion selectively abolishes cortical, but not trabecular, bone formation in CatK-deficient mice. Taken together, these data indicate that CatK not only plays a major role in bone remodeling but also modulates modeling-based cortical bone formation by degrading periostin and thereby moderating Wnt-β-catenin signaling. These findings provide novel insights into the role of CatK on bone homeostasis and the mechanisms of increased cortical bone volume with CatK mutations and pharmacological inhibitors. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | - Julia Brun
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| | | | - Le T Duong
- Department of Bone Biology, Merck & Co., Kenilworth, NJ, USA
| | - Serge L Ferrari
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital & Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
19
|
Corrado A, Maruotti N, Cantatore FP. Osteoblast Role in Rheumatic Diseases. Int J Mol Sci 2017; 18:ijms18061272. [PMID: 28617323 PMCID: PMC5486094 DOI: 10.3390/ijms18061272] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
Alterations in osteoblast growth, differentiation and activity play a role in the pathogenesis of several rheumatic diseases, such as rheumatoid arthritis, spondyloarthritides, osteoarthritis, and osteoporosis. In fact, in these rheumatic diseases, abnormal activity of Wnt signaling, receptor activator of nuclear factor-κB (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) signaling, bone morphogenetic proteins (BMPs) pathway and other mechanisms have been described in osteoblasts. This review article is focused on current knowledge on the role of osteoblast dysregulation occurring in rheumatic diseases.
Collapse
Affiliation(s)
- Addolorata Corrado
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, 71122 Foggia, Italy.
| | - Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, 71122 Foggia, Italy.
| | - Francesco Paolo Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, 71122 Foggia, Italy.
| |
Collapse
|
20
|
Maruotti N, Corrado A, Cantatore FP. Osteoblast role in osteoarthritis pathogenesis. J Cell Physiol 2017; 232:2957-2963. [PMID: 28425564 PMCID: PMC5575507 DOI: 10.1002/jcp.25969] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023]
Abstract
Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| | - Addolorata Corrado
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| | - Francesco P Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School, Foggia, Italy
| |
Collapse
|
21
|
Strazic Geljic I, Melis N, Boukhechba F, Schaub S, Mellier C, Janvier P, Laugier J, Bouler J, Verron E, Scimeca J. Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial. J Tissue Eng Regen Med 2017; 12:e854-e866. [DOI: 10.1002/term.2396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Ivana Strazic Geljic
- Université Nice Sophia AntipolisCNRS, Inserm, iBV Nice France
- GRAFTYS SA Aix en Provence France
| | - Nicolas Melis
- Université Nice Sophia AntipolisCNRS, Inserm, iBV Nice France
| | - Florian Boukhechba
- Université Nice Sophia AntipolisCNRS, Inserm, iBV Nice France
- GRAFTYS SA Aix en Provence France
| | | | | | | | | | | | - Elise Verron
- LIOADUniversité de Nantes Inserm UMR791 BP84215 Nantes France
| | | |
Collapse
|
22
|
Altmann B, Rabel K, Kohal RJ, Proksch S, Tomakidi P, Adolfsson E, Bernsmann F, Palmero P, Fürderer T, Steinberg T. Cellular transcriptional response to zirconia-based implant materials. Dent Mater 2017; 33:241-255. [PMID: 28087075 DOI: 10.1016/j.dental.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To adequately address clinically important issues such as osseointegration and soft tissue integration, we screened for the direct biological cell response by culturing human osteoblasts and gingival fibroblasts on novel zirconia-based dental implant biomaterials and subjecting them to transcriptional analysis. METHODS Biomaterials used for osteoblasts involved micro-roughened surfaces made of a new type of ceria-stabilized zirconia composite with two different topographies, zirconium dioxide, and yttria-stabilized zirconia (control). For fibroblasts smooth ceria- and yttria-stabilized zirconia surface were used. The expression of 90 issue-relevant genes was determined on mRNA transcription level by real-time PCR Array technology after growth periods of 1 and 7 days. RESULTS Generally, modulation of gene transcription exhibited a dual dependence, first by time and second by the biomaterial, whereas biomaterial-triggered changes were predominantly caused by the biomaterials' chemistry rather than surface topography. Per se, modulated genes assigned to regenerative tissue processes such as fracture healing and wound healing and in detail included colony stimulating factors (CSF2 and CSF3), growth factors, which regulate bone matrix properties (e.g. BMP3 and TGFB1), osteogenic BMPs (BMP2/4/6/7) and transcription factors (RUNX2 and SP7), matrix collagens and osteocalcin, laminins as well as integrin ß1 and MMP-2. SIGNIFICANCE With respect to the biomaterials under study, the screening showed that a new zirconia-based composite stabilized with ceria may be promising to provide clinically desired periodontal tissue integration. Moreover, by detecting biomarkers modulated in a time- and/or biomaterial-dependent manner, we identified candidate genes for the targeted analysis of cell-implant bioresponse during biomaterial research and development.
Collapse
Affiliation(s)
- Brigitte Altmann
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Kerstin Rabel
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Ralf J Kohal
- Department of Prosthetic Dentistry, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Pascal Tomakidi
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | | | - Falk Bernsmann
- NTTF Coatings GmbH, Maarweg 30, 53619 Rheinbreitbach, Germany
| | - Paola Palmero
- Department of Applied Science and Technology, INSTM R.U. PoliTO, LINCE Lab., Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Tobias Fürderer
- MOESCHTER GROUP Holding GmbH & Co. KG, Hesslingsweg 65-67, 44309 Dortmund, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| |
Collapse
|
23
|
Mukherjee K, Chattopadhyay N. Pharmacological inhibition of cathepsin K: A promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol 2016; 117:10-9. [DOI: 10.1016/j.bcp.2016.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
|
24
|
Pérez-Tanoira R, Han X, Soininen A, Aarnisalo AA, Tiainen VM, Eklund KK, Esteban J, Kinnari TJ. Competitive colonization of prosthetic surfaces by staphylococcus aureus and human cells. J Biomed Mater Res A 2016; 105:62-72. [PMID: 27513443 DOI: 10.1002/jbm.a.35863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/26/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
Implantation of a biomaterial provides an adhesion substratum both to host cell integration and to contaminating bacteria. We studied simultaneous competitive adhesion of Staphylococcus aureus in serial 1:10 dilutions of 108 colony forming units (CFU)/mL and human osteogenic sarcoma (SaOS-2) or primary osteoblast (hOB) cells, both 1x105 cells/mL, to the surfaces of titanium, polydimethylsiloxane and polystyrene. The bacterial adherence and human cell proliferation, cytotoxicity and production of reactive oxygen species (ROS) were studied using fluorometric (fluorescent microscopy and flow cytometry) and colorimetric methods (MTT, LDH and crystal violet). The bacterial cell viability was also evaluated using the drop plate method. The presence of bacteria resulted in reduced adherence of human cells to the surface of the biomaterials, increased production of ROS, and into increased apoptosis. On the other hand, the presence of either type of human cells was associated with a reduction of bacterial colonization of the biomaterial with Staphylococcus aureus. These results suggest that increasing colonization of the biomaterial surface in vitro by one negatively affects colonization by the other. Host cell integration to an implant surface reduces bacterial contamination, which opens novel opportunities for the design of infection-resistant biomaterials in current implantology and future regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 62-72, 2017.
Collapse
Affiliation(s)
- Ramón Pérez-Tanoira
- Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Xia Han
- Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Soininen
- ORTON Research Institute, Helsinki, Finland.,ORTON Orthopedic Hospital, Helsinki, Finland
| | - Antti A Aarnisalo
- Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Veli-Matti Tiainen
- ORTON Research Institute, Helsinki, Finland.,ORTON Orthopedic Hospital, Helsinki, Finland
| | - Kari K Eklund
- Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaime Esteban
- Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Teemu J Kinnari
- Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins. Oncotarget 2016; 6:7424-37. [PMID: 25823658 PMCID: PMC4480690 DOI: 10.18632/oncotarget.3232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor beta (TGFbeta) plays an essential role in bone homeostasis and deregulation of TGFbeta occurs in bone pathologies. Patients affected by Mandibuloacral Dysplasia (MADA), a progeroid disease linked to LMNA mutations, suffer from an osteolytic process. Our previous work showed that MADA osteoblasts secrete excess amount of TGFbeta 2, which in turn elicits differentiation of human blood precursors into osteoclasts. Here, we sought to determine how altered lamin A affects TGFbeta signaling. Our results show that wild-type lamin A negatively modulates TGFbeta 2 levels in osteoblast-like U2-OS cells, while the R527H mutated prelamin A as well as farnesylated prelamin A do not, ultimately leading to increased secretion of TGFbeta 2. TGFbeta 2 in turn, triggers the Akt/mTOR pathway and upregulates osteoprotegerin and cathepsin K. TGFbeta 2 neutralization rescues Akt/mTOR activation and the downstream transcriptional effects, an effect also obtained by statins or RAD001 treatment. Our results unravel an unexpected role of lamin A in TGFbeta 2 regulation and indicate rapamycin analogs and neutralizing antibodies to TGFbeta 2 as new potential therapeutic tools for MADA.
Collapse
|
26
|
Khan MP, Singh AK, Singh AK, Shrivastava P, Tiwari MC, Nagar GK, Bora HK, Parameswaran V, Sanyal S, Bellare JR, Chattopadhyay N. Odanacatib Restores Trabecular Bone of Skeletally Mature Female Rabbits With Osteopenia but Induces Brittleness of Cortical Bone: A Comparative Study of the Investigational Drug With PTH, Estrogen, and Alendronate. J Bone Miner Res 2016; 31:615-29. [PMID: 26391310 DOI: 10.1002/jbmr.2719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 11/08/2022]
Abstract
Cathepsin K (CK), a lysosomal cysteine protease, is highly expressed in mature osteoclasts and degrades type 1 collagen. Odanacatib (ODN) is a selective and reversible CK inhibitor that inhibits bone loss in preclinical and clinical studies. Although an antiresorptive, ODN does not suppress bone formation, which led us to hypothesize that ODN may display restorative effect on the osteopenic bones. In a curative study, skeletally mature New Zealand rabbits were ovarectomized (OVX) and after induction of bone loss were given a steady-state exposure of ODN (9 mM/d) for 14 weeks. Sham-operated and OVX rabbits treated with alendronate (ALD), 17b-estradiol (E2), or parathyroid hormone (PTH) served as various controls. Efficacy was evaluated by assessing bone mineral density (BMD), bone microarchitecture (using micro-computed tomography), fluorescent labeling of bone, and biomechanical strength. Skeletal Ca/P ratio was measured by scanning electron microscopy (SEM) with X-ray microanalysis, crystallinity by X-ray diffraction, and bone mineral density distribution (tissue mineralization) by backscattered SEM. Between the sham and ODN-treated osteopenic groups, lumbar and femur metaphyseal BMD, Ca/P ratio, trabecular microstructure and geometric indices, vertebral compressive strength, trabecular lining cells, cortical parameters (femoral area and thickness and periosteal deposition), and serum P1NP were largely comparable. Skeletal improvements in ALD-treated or E2-treated groups fell significantly short of the sham/ODN/PTH group. However, the ODN group displayed reduced ductility and enhanced brittleness of central femur, which might have been contributed by higher crytallinity and tissue mineralization. Rabbit bone marrow stromal cells expressed CK and when treated with ODN displayed increased formation of mineralized nodules and decreased apoptosis in serum-deficient medium compared with control. In vivo, ODN did not suppress remodeling but inhibited osteoclast activity more than ALD. Taken together, we show that ODN reverses BMD, skeletal architecture, and compressive strength in osteopenic rabbits; however, it increases crystallinity and tissue mineralization, thus leading to increased cortical bone brittleness.
Collapse
Affiliation(s)
- Mohd Parvez Khan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Atul Kumar Singh
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai, India
| | | | - Pragya Shrivastava
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai, India
| | - Mahesh Chandra Tiwari
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Geet Kumar Nagar
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Himangshu Kousik Bora
- Department of Laboratory Animal, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jayesh R Bellare
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
27
|
Schiro A, Wilkinson FL, Weston R, Smyth JV, Serracino-Inglott F, Alexander MY. Elevated levels of endothelial-derived microparticles, and serum CXCL9 and SCGF-β are associated with unstable asymptomatic carotid plaques. Sci Rep 2015; 5:16658. [PMID: 26564003 PMCID: PMC4643236 DOI: 10.1038/srep16658] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
Endothelial microparticles (EMPs) are released from dysfunctional endothelial cells. We hypothesised that patients with unstable carotid plaque have higher levels of circulating microparticles compared to patients with stable plaques, and may correlate with serum markers of plaque instability and inflammation. Circulating EMPs, platelet MPs (PMPs) and inflammatory markers were measured in healthy controls and patients undergoing carotid endarterectomy. EMP/PMPs were quantified using flow cytometry. Bioplex assays profiled systemic inflammatory and bone-related proteins. Immunohistological analysis detailed the contribution of differentially-regulated systemic markers to plaque pathology. Alizarin red staining showed calcification. EMPs and PMPs were significantly higher in patients with carotid stenosis (≥70%) compared to controls, with no differences between asymptomatic vs symptomatic patients. Asymptomatic patients with unstable plaques exhibited higher levels of EMPs, CXCL9 and SCGF-β compared to those with stable plaques. CXCL9, and SCGF-β were detected within all plaques, suggesting a contribution to both localised and systemic inflammation. Osteopontin and osteoprotegerin were significantly elevated in the symptomatic vs asymptomatic group, while osteocalcin was higher in asymptomatic patients with stable plaque. All plaques exhibited calcification, which was significantly greater in asymptomatic patients. This may impact on plaque stability. These data could be important in identifying patients at most benefit from intervention.
Collapse
Affiliation(s)
- Andrew Schiro
- Regional Vascular and Endovascular Unit, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK, M13 9WL.,Institute of Cardiovascular Science, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, UK, M13 9NT
| | - Fiona L Wilkinson
- Translational Science, Healthcare Science Research Institute, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, UK, M1 5GD
| | - Ria Weston
- Translational Science, Healthcare Science Research Institute, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, UK, M1 5GD
| | - J Vincent Smyth
- Regional Vascular and Endovascular Unit, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK, M13 9WL
| | - Ferdinand Serracino-Inglott
- Regional Vascular and Endovascular Unit, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester, UK, M13 9WL.,Institute of Cardiovascular Science, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, UK, M13 9NT.,Translational Science, Healthcare Science Research Institute, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, UK, M1 5GD
| | - M Yvonne Alexander
- Institute of Cardiovascular Science, Manchester Academic Health Science Centre, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, UK, M13 9NT.,Translational Science, Healthcare Science Research Institute, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, UK, M1 5GD
| |
Collapse
|
28
|
Improved fracture healing in patients with concomitant traumatic brain injury: proven or not? Mediators Inflamm 2015; 2015:204842. [PMID: 25873754 PMCID: PMC4385630 DOI: 10.1155/2015/204842] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
Over the last 3 decades, scientific evidence advocates an association between traumatic brain injury (TBI) and accelerated fracture healing. Multiple clinical and preclinical studies have shown an enhanced callus formation and an increased callus volume in patients, respectively, rats with concomitant TBI. Over time, different substances (cytokines, hormones, etc.) were in focus to elucidate the relationship between TBI and fracture healing. Until now, the mechanism behind this relationship is not fully clarified and a consensus on which substance plays the key role could not be attained in the literature. In this review, we will give an overview of current concepts and opinions on this topic published in the last decade and both clinical and pathophysiological theories will be discussed.
Collapse
|
29
|
Che Y, Bing C, Akhtar J, Tingting Z, Kezhou Y, Rong W. Lanthanum carbonate prevents accelerated medial calcification in uremic rats: role of osteoclast-like activity. J Transl Med 2013; 11:308. [PMID: 24330832 PMCID: PMC3878800 DOI: 10.1186/1479-5876-11-308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arterial medial calcification (AMC) is frequent prevalence in patients with end stage renal disease. Evidence about hyperphosphatemia induced anabolic crosstalk between osteoblast and osteoclast in AMC of uremia is rare. Lanthanum carbonate as an orally administered phosphate-binding agent to reduce phosphate load and ameliorate AMC, but direct evidence is missing. METHODS Detailed time-course studies were conducted of Sprague-Dawley rats fed with adenine and high phosphate diet to imitate the onset and progression of AMC of uremia. Calcification in great arteries was evaluated by VonKossa's and Masson's trichrome staining. Osteoblast (Runx2, Osteocalcin) and osteoclast (RANKL, Cathepsin K, TRAP) related genes were analyzed by Immunohistochemistry and qRT-PCR. Serum PTH, RANKL and OPG levels were detected by ELISA kit. RESULTS Serum phosphate was markedly increased in CRF group (6.94 ± 0.97 mmol/L) and 2%La group (5.12 ± 0.84 mmol/L) at week 4, while the latter group diminished significantly (2.92 ± 0.73 mmol/L vs CRF Group 3.48 ± 0.69, p < 0.01) at week 10. The rats that did not receive 2%La treatment had extensive von kossa staining for medial calcification in CRF group. In contrast, the rats in 2%La group just exhibit mild medial calcification. Inhibitory effect on progression of AMC was reflected by down regulated osteogenic genes and altered osteoclast-like genes. RANKL/OPG ratio in local calcification area was declined in 2%La group (vs CRF group, p <0.01), whereas marginal difference in serum among the three groups. In contrast to the robust expression of cathepsinK in calcified area, TRAP expression was not found. CONCLUSIONS Abnormal phosphate homeostasis, induction of osteogenic conversion and osteoclast suppression were contributed to the current mechanisms of uremia associated arterial medial calcification based on our studies. Beneficial effects of Lanthanum carbonate could be mainly due to the decreased phosphate retention and cross-talk between osteoblast and osteoclast-like cell, both of which can be the therapeutic target for uremia associated with AMC.
Collapse
Affiliation(s)
| | | | | | | | | | - Wang Rong
- Department of Nephrology, Provincial Hospital Affiliated to Shandong University, Shandong 250021, P, R, China.
| |
Collapse
|
30
|
Duong LT. Inhibition of cathepsin K: blocking osteoclast bone resorption and more. ACTA ACUST UNITED AC 2013. [DOI: 10.1038/bonekey.2013.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Zerbini CAF, McClung MR. Odanacatib in postmenopausal women with low bone mineral density: a review of current clinical evidence. Ther Adv Musculoskelet Dis 2013; 5:199-209. [PMID: 23904864 DOI: 10.1177/1759720x13490860] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human bones are in a continuous process of remodeling that ensures renovation and maintenance of the skeletal mass. Bone remodeling has two phases that are normally coupled and balanced: bone resorption mediated by osteoclasts and bone formation mediated by osteoblasts. An increase in bone resorption over bone formation results in a progressive loss of bone mass and impairment of bone microarchitecture leading to osteoporosis and its associated fractures. Recent advances in the understanding of the molecular and cellular mechanisms involved in the remodeling process have allowed the development of new targets for osteoporosis treatment. Cathepsin K, a cysteine protease, is found in osteoclasts along the bone resorption surfaces and very efficiently degrades type I collagen, the major component of the organic bone matrix. Inhibition of cathepsin K reduces bone resorption but does not impair bone formation particularly at cortical sites. Odanacatib, a potent and highly selective cathepsin K inhibitor, showed prevention of bone loss without reduction of bone formation in preclinical and clinical trials (phase I and II). Odanacatib is currently in a phase III fracture outcome international trial for the treatment of postmenopausal osteoporosis.
Collapse
|
32
|
Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Lüth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest 2013; 123:666-81. [PMID: 23321671 DOI: 10.1172/jci64840] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/15/2012] [Indexed: 12/21/2022] Open
Abstract
Cathepsin K (CTSK) is secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption. Global deletion of Ctsk in mice decreases bone resorption, leading to osteopetrosis, but also increases the bone formation rate (BFR). To understand how Ctsk deletion increases the BFR, we generated osteoclast- and osteoblast-targeted Ctsk knockout mice using floxed Ctsk alleles. Targeted ablation of Ctsk in hematopoietic cells, or specifically in osteoclasts and cells of the monocyte-osteoclast lineage, resulted in increased bone volume and BFR as well as osteoclast and osteoblast numbers. In contrast, targeted deletion of Ctsk in osteoblasts had no effect on bone resorption or BFR, demonstrating that the increased BFR is osteoclast dependent. Deletion of Ctsk in osteoclasts increased their sphingosine kinase 1 (Sphk1) expression. Conditioned media from Ctsk-deficient osteoclasts, which contained elevated levels of sphingosine-1-phosphate (S1P), increased alkaline phosphatase and mineralized nodules in osteoblast cultures. An S1P1,3 receptor antagonist inhibited these responses. Osteoblasts derived from mice with Ctsk-deficient osteoclasts had an increased RANKL/OPG ratio, providing a positive feedback loop that increased the number of osteoclasts. Our data provide genetic evidence that deletion of CTSK in osteoclasts enhances bone formation in vivo by increasing the generation of osteoclast-derived S1P.
Collapse
Affiliation(s)
- Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Suoranta S, Manninen H, Koskenkorva P, Könönen M, Laitinen R, Lehesjoki AE, Kälviäinen R, Vanninen R. Thickened skull, scoliosis and other skeletal findings in Unverricht-Lundborg disease link cystatin B function to bone metabolism. Bone 2012; 51:1016-24. [PMID: 23010349 DOI: 10.1016/j.bone.2012.08.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/25/2012] [Accepted: 08/14/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE Unverricht-Lundborg disease (EPM1) is a rare type of inherited progressive myoclonic epilepsy resulting from mutations in the cystatin B gene, CSTB, which encodes a cysteine cathepsin inhibitor. Cystatin B, cathepsin K, and altered osteoclast bone resorption activity are interconnected in vitro. This study evaluated the skeletal characteristics of patients with EPM1. METHODS Sixty-six genetically verified EPM1 patients and 50 healthy controls underwent head MRI. Skull dimensions and regional calvarial thickness was measured perpendicular to each calvarial bone from T1-weighted 3-dimensional images using multiple planar reconstruction tools. All clinical X-ray files of EPM1 patients were collected and reviewed by an experienced radiologist. A total of 337 X-ray studies were analyzed, and non-traumatic structural anomalies, dysplasias and deformities were registered. RESULTS EPM1 patients exhibited significant thickening in all measured cranial bones compared to healthy controls. The mean skull thickness was 10.0±2.0mm in EPM1 patients and 7.6±1.2mm in healthy controls (p<0.001). The difference was evident in all age groups and was not explained by former phenytoin use. Observed abnormalities in other skeletal structures in EPM1 patients included thoracic scoliosis (35% of EPM1 patients) and lumbar spine scoliosis (35%), large paranasal sinuses (27%), accessory ossicles of the foot, and arachnodactyly (18%). CONCLUSIONS Skull thickening and an increased prevalence of abnormal findings in skeletal radiographs of patients with EPM1 suggest that this condition is connected to defective cystatin B function. These findings further emphasize the role of cystatin B in bone metabolism in humans.
Collapse
Affiliation(s)
- Sanna Suoranta
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Duong LT. Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. BONEKEY REPORTS 2012; 1:67. [PMID: 23951460 DOI: 10.1038/bonekey.2012.67] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/08/2012] [Indexed: 01/12/2023]
Abstract
Osteoporosis is a disease of high bone remodeling with an imbalance of bone resorption over bone formation, resulting in decreased bone mineral density and deterioration of bone microarchitecture. From the emerging understandings of the molecular and cellular regulators of bone remodeling, potential new targets for therapeutic intervention for this disease have been identified. Cathepsin K (CatK), a cysteine protease produced by osteoclasts, is the primary enzyme mediating the degradation of the demineralized bone matrix. Current genetic and pharmacological evidence from studies in multiple preclinical species have consistently demonstrated that inhibition of CatK results in the reduction of bone resorption while allowing bone formation to continue. Early results from clinical studies with several investigational CatK inhibitors indicate that the impact of CatK inhibition on bone formation is distinct from that of either the bisphosphonates or the anti-receptor activator of nuclear factor-κB ligand antibody, denosumab. Odanacatib, a highly selective, reversible and potent inhibitor of CatK, is currently in phase III clinical trials for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Le T Duong
- Department of Bone Biology, Merck Research Laboratories , West Point, PA, USA
| |
Collapse
|
35
|
Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, Duong LT. Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 2012; 27:524-37. [PMID: 22113921 DOI: 10.1002/jbmr.1477] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Odanacatib (ODN) is a selective and reversible inhibitor of cathepsin K (CatK). Previously, ODN was shown to increase bone mineral density (BMD) and maintained normal bone strength at the spine in ovariectomized (OVX) rhesus monkeys. Here, we further characterize the effects of ODN on BMD, bone strength, and dynamic histomorphometric analyses of the hip from the same monkeys. Animals were treated for 21 months with vehicle, 6 or 30 mg/kg ODN (p.o., q.d.). ODN increased femoral neck (FN) BMD by 11% and 15% (p < 0.07) and ultimate load by 25% (p < 0.05) and 30% (p < 0.01) versus vehicle. Treatment-related increases in ultimate load positively correlated with the increased FN BMD, bone mineral content (BMC), and cortical thickness. Histomorphometry of FN and proximal femur (PF) revealed that ODN reduced trabecular and intracortical bone formation rate (BFR) but did not affect long-term endocortical BFR. Moreover, ODN stimulated long-term FN and PF periosteal BFR by 3.5-fold and 6-fold with the 30 mg/kg dose versus vehicle, respectively. Osteoclast surfaces were either unaffected or trended higher (~twofold) in endocortical and trabecular surfaces in the ODN group. Lastly, ODN increased cortical thickness of FN by 21% (p = 0.08) and PF by 19% (p < 0.05) versus vehicle after 21 months of treatment. Together, both doses of ODN increased bone mass and improved bone strength at the hip. Unlike conventional antiresorptives, ODN displayed site-specific effects on trabecular versus cortical bone formation. The drug provided marked increases in periosteal bone formation and cortical thickness in OVX monkeys, suggesting that CatK inhibition may represent a novel therapeutic approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tara Cusick
- Bone Biology Group, Merck Sharp & Dohme Corp., West Point, PA 19486, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Staudt ND, Maurer A, Spring B, Kalbacher H, Aicher WK, Klein G. Processing of CXCL12 by different osteoblast-secreted cathepsins. Stem Cells Dev 2012; 21:1924-35. [PMID: 22066471 DOI: 10.1089/scd.2011.0307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are known to reside in specialized niches at the endosteum in the trabecular bone. Osteoblasts are the major cell type of the endosteal niche. It is well established that secreted proteases are involved in cytokine-induced mobilization processes that release stem cell from their niches. However, migratory processes such as the regular trafficking of HSPCs between their niches and the periphery are not fully understood. In the current study we analyzed whether osteoblast-secreted cysteine cathepsins are able to reduce the direct interaction of HSPCs with bone-forming osteoblasts. Isolated human osteoblasts were shown to secrete proteolytically active cysteine cathepsins, such as cathepsins B, K, L, and X. All of these cathepsins were able to digest, although with different efficacy, the chemokine CXCL12, which is known to be important for retaining HSPCs in their niches. Of the 4 identified cathepsins, only cathepsin X was able to reduce binding of HSPCs to osteoblasts. Interestingly, nonactivated pro-cathepsin X and mature cathepsin X did not interfere with HSPC-osteoblast interactions. Only pro-cathepsin X treated with dithiothreitol, which unfolds but does not lead to full maturation of cathepsin X, significantly reduced HSPC adhesion to osteoblasts. These observations argue for a role of the accessible cathepsin X prodomain in diminishing cell binding. Our findings strongly suggest that the cysteine cathepsins B, K, and L constitutively secreted by osteoblasts are part of the fine-tuned regulation of CXCL12 in the bone marrow, whereas pro-cathepsin X with its prodomain can affect HSPC trafficking in the niche.
Collapse
Affiliation(s)
- Nicole D Staudt
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University Medical Clinic, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Schmit J, Pondenis H, Barger A, Borst L, Garrett L, Wypij J, Neumann Z, Fan T. Cathepsin K Expression and Activity in Canine Osteosarcoma. J Vet Intern Med 2011; 26:126-34. [DOI: 10.1111/j.1939-1676.2011.00834.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/26/2011] [Accepted: 10/05/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- J.M. Schmit
- From the Department of Veterinary Clinical Medicine
| | | | - A.M. Barger
- Department of Pathobiology; University of Illinois; Urbana; IL
| | - L.B. Borst
- Department of Population Health and Pathobiology; North Carolina State University; Raleigh; NC
| | - L.D. Garrett
- From the Department of Veterinary Clinical Medicine
| | - J.M. Wypij
- From the Department of Veterinary Clinical Medicine
| | - Z.L. Neumann
- From the Department of Veterinary Clinical Medicine
| | - T.M. Fan
- From the Department of Veterinary Clinical Medicine
| |
Collapse
|
38
|
Leung P, Pickarski M, Zhuo Y, Masarachia PJ, Duong LT. The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking. Bone 2011; 49:623-35. [PMID: 21718816 DOI: 10.1016/j.bone.2011.06.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022]
Abstract
Odanacatib (ODN) is a selective, potent and reversible inhibitor of cathepsin K (CatK) that inhibits bone loss in postmenopausal osteoporosis. Evidence from osteoclast (OC) formation from bone marrow of CatK(-/-) mice or human OC progenitors treated with ODN, demonstrated that CatK inhibition has no effect on osteoclastogenesis or survival of OCs. Although having no impact on OC activation, ODN reduces resorption activity as measured by CTx release (IC(50)=9.4 nM) or resorption area (IC(50)=6.5 nM). While untreated cells generate deep trail-like resorption lacunae, treated OCs form small discrete shallow pits. ODN leads to significant accumulation of intracellular vesicles intensely stained for CatK and TRAP. CatK (+) vesicles localize toward the basolateral and functional secretory membranes of the polarized OC and TRAP(+) vesicles evenly distribute in the cytoplasm, suggesting that ODN disrupts multiple vesicular trafficking pathways. Intracellular levels of both precursor and mature TRAP were increased by 2-fold and the pre-pro and mature CatK by 6- and 2-fold in ODN-treated OCs compared to untreated controls. ODN treated OC accumulates labeled degraded bone matrix proteins in CatK containing vesicles. In summary, ODN treatment inhibits bone resorption by blocking degradation of demineralized collagen in the resorption lacunae, and retarding transcytosis for further processing of degraded proteins.
Collapse
Affiliation(s)
- P Leung
- Merck Sharp, & Dohme Corp., P.O. Box 100, Whitehouse Station, NJ 08889, USA
| | | | | | | | | |
Collapse
|
39
|
Interventional value of total flavonoids from Rhizoma Drynariae on Cathepsin K, a potential target of osteoporosis. Chin J Integr Med 2011; 17:556-60. [PMID: 21725884 DOI: 10.1007/s11655-010-0792-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Indexed: 10/18/2022]
Abstract
Osteoporosis, the sixth most common disease in the world, is bringing increasingly serious harm to people's health. Cathepsin K, which plays an important role in bone resorption, is a potential target in the treatment of osteoporosis. Total flavonoids, the active ingredients in Rhizoma Drynariae, have shown obvious, therapeutic effect on osteoporosis. In previous studies, it was presumed that the mechanism for the therapeutic effect was through inhibiting the expression of Cathepsin K. However, there are still no detailed reports on some key issues such as the specific inhibitory results of total flavonoids on Cathepsin K and the pathway of inhibition and so on. Based on previous studies on total flavonoids from Rhizoma Drynariae, the pathway for the effect of, total flavonoids inhibiting Cathepsin K and their interventional value on Cathepsin K were analyzed in this paper, so as to explore the interventional feasibility and value of total flavonoids in Rhizoma Drynariae on Cathepsin K.
Collapse
|
40
|
Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol 2011; 7:447-56. [PMID: 21670768 DOI: 10.1038/nrrheum.2011.77] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone remodeling consists of two phases--bone resorption and bone formation--that are normally balanced. When bone resorption exceeds bone formation, pathologic processes, such as osteoporosis, can result. Cathepsin K is a member of the papain family of cysteine proteases that is highly expressed by activated osteoclasts. Cathepsin K readily degrades type I collagen, the major component of the organic bone matrix. With such a major role in the initial process of bone resorption, cathepsin K has become a therapeutic target in osteoporosis. The antiresorptive properties of cathepsin K inhibitors have been studied in phase I and phase II clinical trials. Phase III studies are currently underway for odanacatib, a selective cathepsin K inhibitor.
Collapse
Affiliation(s)
- Aline G Costa
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Fernandes H, Mentink A, Bank R, Stoop R, van Blitterswijk C, de Boer J. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells. Tissue Eng Part A 2010; 16:1693-702. [PMID: 20038205 DOI: 10.1089/ten.tea.2009.0341] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix mainly composed of collagen type I. Here we assessed the potential role of endogenous collagen synthesis in hMSC differentiation and stem cell maintenance. We observed a sharp reduction in proliferation rate of hMSCs in the absence of ascorbic acid, concomitant with a reduction in osteogenesis in vitro and bone formation in vivo. In line with a positive role for collagen type I in osteogenesis, gene expression profiling of hMSCs cultured in the absence of ascorbic acid demonstrated increased expression of genes involved in adipogenesis and chondrogenesis and a reduction in expression of osteogenic genes. We also observed that matrix remodeling and anti-osteoclastogenic signals were high in the presence of ascorbic acid. The presence of collagen type I during the expansion phase of hMSCs did not affect their osteogenic and adipogenic differentiation potential. In conclusion, the collagenous matrix supports both proliferation and differentiation of osteogenic hMSCs but, on the other hand, presents signals stimulating matrix remodeling and inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Hugo Fernandes
- Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Ilmer M, Karow M, Geissler C, Jochum M, Neth P. Human osteoblast-derived factors induce early osteogenic markers in human mesenchymal stem cells. Tissue Eng Part A 2009; 15:2397-409. [PMID: 19292682 DOI: 10.1089/ten.tea.2008.0427] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capacity of human mesenchymal stem cells (hMSC) for self-renewal and differentiation is a tightly regulated process within their microenvironment--the stem cell niche. For future therapeutic applications of hMSC within the frame of tissue engineering, it is of major importance to understand the factors involved in triggering differentiation cascades of hMSC. Using either osteoblast-conditioned medium or an indirect coculture system, we investigated whether soluble factors from human osteoblasts (hOB) are sufficient to induce early osteogenic markers in hMSC. Thereby, we detected an induction of several osteogenic markers like alkaline phosphatase, bone sialoprotein 2, leptin receptor, decorin, and cathepsin K in hMSC as indicators of the onset of early osteogenesis. Further, because Wnt signaling has been reported to play an important role in osteogenesis, we performed RNAi against the main Wnt mediator beta-catenin and the low-density lipoprotein receptor-related protein 5 as a major Wnt co-receptor in hMSC. Whereas alkaline phosphatase was significantly downregulated with this approach, the other osteogenic markers showed a markedly upregulation. These observations suggest that hOB-secreted factors could induce early osteogenic markers in hMSC. Thus, with regard to a therapeutic setting, these findings may pave the way for a more in vivo-related differentiation procedure for the generation of osteoblast-like cells.
Collapse
Affiliation(s)
- Matthias Ilmer
- Division of Clinical Chemistry and Clinical Biochemistry, Department of Surgery, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
44
|
Gautschi OP, Cadosch D, Frey SP, Skirving AP, Filgueira L, Zellweger R. Serum-mediated osteogenic effect in traumatic brain-injured patients. ANZ J Surg 2009; 79:449-55. [DOI: 10.1111/j.1445-2197.2008.04803.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Robinson LJ, Yaroslavskiy BB, Griswold RD, Zadorozny EV, Guo L, Tourkova IL, Blair HC. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-alpha with BCAR1 and Traf6. Exp Cell Res 2009; 315:1287-301. [PMID: 19331827 PMCID: PMC2765696 DOI: 10.1016/j.yexcr.2009.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/28/2008] [Accepted: 01/16/2009] [Indexed: 01/08/2023]
Abstract
The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at approximately 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-beta-estradiol. Estrogen receptor-alpha (ERalpha) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ERalpha. However, ERalpha was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ERalpha in the presence of estrogen, was abundant. Immunoprecipitation showed rapid (approximately 5 min) estrogen-dependent formation of ERalpha-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-kappaB activity, precipitated with this complex. Reduction of NF-kappaB nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of IkappaB in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ERalpha.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Miller SC, Pan H, Wang D, Bowman BM, Kopecková P, Kopecek J. Feasibility of using a bone-targeted, macromolecular delivery system coupled with prostaglandin E(1) to promote bone formation in aged, estrogen-deficient rats. Pharm Res 2008; 25:2889-95. [PMID: 18758923 PMCID: PMC2727931 DOI: 10.1007/s11095-008-9706-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 08/06/2008] [Indexed: 11/26/2022]
Abstract
PURPOSE Macromolecular delivery systems have therapeutic uses because of their ability to deliver and release drugs to specific tissues. The uptake and localization of HPMA copolymers using Asp(8) as the bone-targeting moiety was determined in aged, ovariectomized (ovx) rats. PGE(1) was attached via a cathepsin K-sensitive linkage to HPMA copolymer-Asp(8) conjugate and was tested to determine if it could promote bone formation. MATERIALS AND METHODS The uptake of FITC-labeled HPMA copolymer-Asp(8) conjugate (P-Asp(8)-FITC) on bone surfaces was compared with the mineralization marker, tetracycline. Then a targeted PGE(1)-HPMA copolymer conjugate (P-Asp(8)-FITC-PGE(1)) was given as a single injection and its effects on bone formation were measured 4 weeks later. RESULTS P-Asp(8)-FITC preferentially deposited on resorption surfaces, unlike tetracycline. A single injection of P-Asp(8)-FITC-PGE(1) resulted in greater indices of bone formation in aged, ovx rats. CONCLUSIONS HPMA copolymers can be targeted to bone surfaces using Asp(8), with preferential uptake on resorption surfaces. Additionally, PGE(1) attached to the Asp(8)-targeted HPMA copolymers and given by a single injection resulted in greater bone formation measured 4 weeks later. This initial in vivo study suggests that macromolecular delivery systems targeted to bone may offer some therapeutic opportunities and advantages for the treatment of skeletal diseases.
Collapse
Affiliation(s)
- S C Miller
- Division of Radiobiology, University of Utah, Salt Lake City, UT 4108, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Pan H, Liu J, Dong Y, Sima M, Kopečková P, Brandi ML, Kopeček J. Release of prostaglandin E(1) from N-(2-hydroxypropyl)methacrylamide copolymer conjugates by bone cells. Macromol Biosci 2008; 8:599-605. [PMID: 18401866 PMCID: PMC4605216 DOI: 10.1002/mabi.200700338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bone-targeting N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-PGE(1) conjugates, containing cathepsin K sensitive spacers, were incubated with induced osteoclasts and osteoblasts, their precursors, and control non-skeletal cells. The release of PGE(1) was monitored by an HPLC assay. In both murine and human cell lines, osteoclasts appeared to be the most active cells in the cleavage (PGE(1) release). Incubation with osteoblasts also resulted in fast PGE(1) release, whereas precursor and control cells released PGE(1) with a substantially slower rate than bone cells (apparently through ester bond cleavage). Experiments in the presence of inhibitors revealed that other enzymes, in addition to cathepsin K, were participating in the cleavage of the conjugate. Confocal fluorescence studies exposed internalization of the conjugate by endocytosis with ultimate localization in the lysosomal/endosomal compartment.
Collapse
Affiliation(s)
- Huaizhong Pan
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jihua Liu
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yuanyi Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Monika Sima
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
| | - Pavla Kopečková
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Maria Luisa Brandi
- Department of Clinical Physiopathology, University of Firenze, 50139 Firenze, Italy
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry/CCCD, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
48
|
Reyes García R, Muñoz-Torres M. Catepsina K: aspectos biológicos y posibilidades terapéuticas. Med Clin (Barc) 2008; 131:218-20. [DOI: 10.1157/13124608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Rengel Y, Ospelt C, Gay S. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Res Ther 2008; 9:221. [PMID: 18001502 PMCID: PMC2212555 DOI: 10.1186/ar2304] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteinases are involved in essential steps in cartilage and bone homeostasis. Consequently, efforts have been made to establish their potential role in the pathology of rheumatic conditions such as rheumatoid arthritis, osteoarthritis and spondyloarthritis. Matrix metalloproteinases (MMPs) are sensitive markers of disease severity and response to treatment, and therefore they have potential in the assessment of rheumatic diseases. Despite disappointing early results with synthetic inhibitors of MMPs, there is still much scope for developing effective and safe MMPs inhibitors, and consequently to deliver new options to inhibit joint destruction.
Collapse
Affiliation(s)
- Yvonne Rengel
- Center of Experimental Rheumatology, University Hospital Zürich, Gloriastrasse, CH-8091 Zurich, Switzerland
| | | | | |
Collapse
|
50
|
Husmann K, Muff R, Bolander ME, Sarkar G, Born W, Fuchs B. Cathepsins and osteosarcoma: Expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 2008; 47:66-73. [PMID: 17683065 DOI: 10.1002/mc.20362] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteosarcoma is the most frequent malignant bone tumor with a poor survival rate for patients with metastasis. Previous studies have shown that beside other proteases, distinct sets of cathepsins are involved in the process of metastasis of different tumors. In this study we investigated the expression of cathepsin proteases in human osteosarcoma metastasis. First, the mRNA expression of 14 human cathepsins was studied in SAOS-2 osteosarcoma cells and the highly metastatic LM5 and LM7 sublines by reverse transcriptase (RT)-polymerase chain reaction (PCR). The expression of cathepsin D, K, and L mRNA was found upregulated and that of cathepsin F, H, and V downregulated in the highly metastatic LM5 and LM7 cells. A subgroup of the cathepsin proteases was further studied at the protein level by Western blot analysis of cell extracts. The expression of cathepsin B and H was decreased and that of cathepsin D, K, and L was increased in the highly metastatic cell lines as compared to the SAOS-2 cell line. Diagnostic relevance of cathepsin K expression in osteosarcoma was revealed upon correlation of survival and metastasis with immunohistochemical cathepsin K staining of biopsies collected from 92 patients prior to chemotherapy. Patients with metastatic high-grade osteosarcoma and low cathepsin K expression at diagnosis had a better prognosis than those with high expression. Thus, it appears that cathepsin K expression is of predictive prognostic value for patients with high-grade tumors and metastasis at diagnosis.
Collapse
Affiliation(s)
- Knut Husmann
- Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|