1
|
Hsu SH, Chen LR, Chen KH. Primary Osteoporosis Induced by Androgen and Estrogen Deficiency: The Molecular and Cellular Perspective on Pathophysiological Mechanisms and Treatments. Int J Mol Sci 2024; 25:12139. [PMID: 39596206 PMCID: PMC11593909 DOI: 10.3390/ijms252212139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Primary osteoporosis is closely linked to hormone deficiency, which disrupts the balance of bone remodeling. It affects postmenopausal women but also significantly impacts older men. Estrogen can promote the production of osteoprotegerin, a decoy receptor for RANKL, thereby preventing RANKL from activating osteoclasts. Furthermore, estrogen promotes osteoblast survival and function via activation of the Wnt signaling pathway. Likewise, androgens play a critical role in bone metabolism, primarily through their conversion to estrogen in men. Estrogen deficiency accelerates bone resorption through a rise in pro-inflammatory cytokines (IL-1, IL-6, TNF-α) and RANKL, which promote osteoclastogenesis. In the classic genomic pathway, estrogen binds to estrogen receptors in the cytoplasm, forming a complex that migrates to the nucleus and binds to estrogen response elements on DNA, regulating gene transcription. Androgens can be defined as high-affinity ligands for the androgen receptor; their combination can serve as a ligand-inducible transcription factor. Hormone replacement therapy has shown promise but comes with associated risks and side effects. In contrast, the non-genomic pathway involves rapid signaling cascades initiated at the cell membrane, influencing cellular functions without directly altering gene expression. Therefore, the ligand-independent actions and rapid signaling pathways of estrogen and androgen receptors can be harnessed to develop new drugs that provide bone protection without the side effects of traditional hormone therapies. To manage primary osteoporosis, other pharmacological treatments (bisphosphonates, teriparatide, RANKL inhibitors, sclerostin inhibitors, SERMs, and calcitonin salmon) can ameliorate osteoporosis and improve BMD via actions on different pathways. Non-pharmacological treatments include nutritional support and exercise, as well as the dietary intake of antioxidants and natural products. The current study reviews the processes of bone remodeling, hormone actions, hormone receptor status, and therapeutic targets of primary osteoporosis. However, many detailed cellular and molecular mechanisms underlying primary osteoporosis seem complicated and unexplored and warrant further investigation.
Collapse
Affiliation(s)
- Shao-Heng Hsu
- Department of Medical Education, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan;
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
2
|
Jackson E, Lara-Castillo N, Akhter MP, Dallas M, Scott JM, Ganesh T, Johnson ML. Osteocyte Wnt/β-catenin pathway activation upon mechanical loading is altered in ovariectomized mice. Bone Rep 2021; 15:101129. [PMID: 34584905 PMCID: PMC8455641 DOI: 10.1016/j.bonr.2021.101129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Estrogen levels decline in both sexes with age, but more dramatically in females. Activation of the Wnt/β-catenin signaling pathway is central to the regulation of bone mass accrual and maintenance and in response to mechanical loading. Using the ovariectomized mouse model we examined the effect of estrogen loss on the osteocyte's ability to activate the Wnt/β-catenin pathway following mechanical loading. Female TOPGAL mice underwent ovariectomy (OVX) (n = 10) or sham surgery (n = 10) at 16 weeks of age. Four weeks post-surgery, a single loading session (global strain of 2200 με for 100 cycles at 2 Hz) was performed on the right forearm with the left as a non-loaded control. Mice (n = 5) were sacrificed at 1 or 24 hr post-load. Ulnae were stained for β-catenin activation, femurs were used for μCT and 3-pt bending/biomechanical testing, and tibiae were used for histology analysis and to determine osteocyte lacunar size using SEM and high resolution micro-XCT. A 2.2-fold increase in β-catenin signaling activation was observed 24 hr post-load in the Sham group but did not occur in the OVX group. The OVX group versus control had significant losses (p < 0.05) in trabecular BMD (−8%), BV/TV (−35%) and thickness (−23%), along with cortical thickness (−6%) and periosteal perimeter (−4%). The OVX group had significantly higher trabecular bone osteoclast numbers (63%), OCS/BS (77%) and N.OC/BPm (94%) and a significant decrease in osteoblast number (53%), OBS/BS (37%) and N.OB/BPm (40%) compared to the sham group (p < 0.05). Cortical bone lacunar number/lacunar volume and bone biomechanical properties did not change between groups. Given that the ulna is a cortical bone loading model and the lack of changes in osteocyte lacunar number/volume in cortical bone, which would alter strains experienced by osteocytes, these data suggest the absence of estrogen resulted in intrinsic changes in the ability of the osteocyte to respond to mechanical load, rather than changes in the biomechanical and architectural properties of bone. In vivo mechanical loading activates β-catenin signaling in osteocytes. Ovariectomy induced estrogen loss attenuates in vivo loading induced β-catenin signaling in osteocytes. Changes in bone material and architectural properties do not appear to explain attenuated pathway activation. Our data suggests estrogen loss alters the intrinsic ability of the osteocyte to respond to mechanical load.
Collapse
Affiliation(s)
- Erica Jackson
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | | | - Mohammed P. Akhter
- Creighton University, Osteoporosis Research Center, Omaha, NE 68122, United States of America
| | - Mark Dallas
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | - JoAnna M. Scott
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
| | - Thiagarajan Ganesh
- UMKC, School of Computing and Engineering, Kansas City, MO 64110, United States of America
| | - Mark L. Johnson
- UMKC, School of Dentistry, Kansas City, MO 64108, United States of America
- Corresponding author.
| |
Collapse
|
3
|
Mantri AV, Allaway HCM, Brezicha JE, Hogan HA, Bloomfield SA. Oral Estradiol Impact on Mitigating Unloading-Induced Bone Loss in Ovary-Intact Rats. Aerosp Med Hum Perform 2021; 92:65-74. [PMID: 33468286 DOI: 10.3357/amhp.5668.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: The impact of the spaceflight environment on endogenous estrogen production in female crewmembers and the resulting impact on other adaptations, like bone loss, is an under-investigated topic. Hence, we investigated the interaction of exogenous 17- estradiol (E2) treatment and disuse to test the hypothesis that E2 treatment would mitigate disuse-induced bone loss.METHODS: There were 40 virgin female Sprague-Dawley rats (5 mo old) randomized to placebo (PL; 0 ppm E2) or estrogen (E2; 10 ppm E2) treatments, delivered via custom-made rodent diets; half of each group was randomized to either weightbearing (WB) or hindlimb unloading (HU) for 39 d.RESULTS: We observed expected lower values after HU (615%) in volumetric BMD and cross-sectional areas at the proximal tibia metaphysis (PTM, by pQCT), 20% lower %BV/TV (nonsignificant) at the PTM, and 11% lower femoral neck maximal load; none of these HU-induced impacts were modified by E2. Impaired PTM periosteal expansion was observed in all E2-treated rats, with smaller (13 to 18%) cross-sectional areas. Midshaft tibial geometry was unaffected by E2 treatment, but large reductions (73 to 81%) in periosteal bone formation indices were observed in E2-treated rats.DISCUSSION: In summary, modest supplementation of exogenous E2 did not mitigate decrements in volumetric BMD, PTM cross-sectional geometry, or femoral neck strength observed with HU. However, numerous independent impacts of E2 treatment were observed, with significant suppression of periosteal bone formation indices. If maintained over time, this might impact negatively on cortical bone integrity during prolonged nonweightbearing.Mantri AV, Allaway HCM, Brezicha JE, Hogan HA, Bloomfield SA. Oral estradiol impact on mitigating unloading-induced bone loss in ovary-intact rats. Aerosp Med Hum Perform. 2021; 92(2):6574.
Collapse
|
4
|
Ireland A, Mittag U, Degens H, Felsenberg D, Ferretti JL, Heinonen A, Koltai E, Korhonen MT, McPhee JS, Mekjavic I, Piasecki J, Pisot R, Radak Z, Simunic B, Suominen H, Wilks DC, Winwood K, Rittweger J. Greater maintenance of bone mineral content in male than female athletes and in sprinting and jumping than endurance athletes: a longitudinal study of bone strength in elite masters athletes. Arch Osteoporos 2020; 15:87. [PMID: 32524289 PMCID: PMC7286845 DOI: 10.1007/s11657-020-00757-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/11/2020] [Indexed: 02/03/2023]
Abstract
UNLABELLED We investigated longitudinal changes in tibia bone strength in master power (jumping and sprinting) and endurance (distance) athletes of both sexes. Bone mass but not cross-sectional moment of inertia was better maintained in power than endurance athletes over time, particularly in men and independent of changes in performance. OBJECTIVE Assessment of effects of sex and athletic discipline (lower limb power events, e.g. sprint running and jumping versus endurance running events) on longitudinal changes in bone strength in masters athletes. METHODS We examined tibia and fibula bone properties at distal (4% distal-proximal tibia length) and proximal (66% length) sites using peripheral quantitative computed tomography (pQCT) in seventy-one track and field masters athletes (30 male, 41 female, age at baseline 57.0 ± 12.2 years) in a longitudinal cohort study that included at least two testing sessions over a mean period of 4.2 ± 3.1 years. Effects of time, as well as time × sex and time × discipline interactions on bone parameters and calf muscle cross-sectional area (CSA), were examined. RESULTS Effects of time were sex and discipline-dependent, even following adjustment for enrolment age, sex and changes in muscle CSA and athletic performance. Male sex and participation in power events was associated with better maintenance of tibia bone mineral content (BMC, an indicator of bone compressive strength) at 4% and 66% sites. In contrast, there was no strong evidence of sex or discipline effects on cross-sectional moment of inertia (CSMI, an indicator of bone bending and torsional strength-P > 0.3 for interactions). Similar sex and discipline-specific changes were also observed in the fibula. CONCLUSIONS Results suggest that male athletes and those participating in lower limb power-based rather than endurance-based disciplines have better maintenance of bone compressive but not bending and torsional strength.
Collapse
Affiliation(s)
- Alex Ireland
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK
| | - Uwe Mittag
- grid.7551.60000 0000 8983 7915Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hans Degens
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK ,grid.419313.d0000 0000 9487 602XLithuanian Sports University, Kaunas, Lithuania ,grid.10414.300000 0001 0738 9977University of Medicine and Pharmacy of Targu Mures, Targu Mures, Romania
| | - Dieter Felsenberg
- grid.7468.d0000 0001 2248 7639Osteology and Orphane Bone Diseases and Charité – Campus Benjamin Franklin, Centre of Muscle and Bone Research, Humboldt-University Berlin and Free University, Berlin, Germany
| | - José L. Ferretti
- grid.10814.3c0000 0001 2097 3211Center for P-Ca Metabolism Studies (CEMFoC), National University of Rosario, Rosario, Argentina
| | - Ari Heinonen
- grid.9681.60000 0001 1013 7965Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Erika Koltai
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Marko T. Korhonen
- grid.9681.60000 0001 1013 7965Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jamie S. McPhee
- grid.25627.340000 0001 0790 5329Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Igor Mekjavic
- grid.11375.310000 0001 0706 0012Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia ,grid.61971.380000 0004 1936 7494Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Jessica Piasecki
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK ,grid.12361.370000 0001 0727 0669Sport Health and Performance Enhancement Centre, Nottingham Trent University, Nottingham, UK
| | - Rado Pisot
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Zsolt Radak
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Bostjan Simunic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Harri Suominen
- grid.9681.60000 0001 1013 7965Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Désirée C. Wilks
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK
| | - Keith Winwood
- grid.25627.340000 0001 0790 5329Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD UK
| | - Jörn Rittweger
- grid.7551.60000 0000 8983 7915Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany ,grid.6190.e0000 0000 8580 3777Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Rooney AM, van der Meulen MCH. Mouse models to evaluate the role of estrogen receptor α in skeletal maintenance and adaptation. Ann N Y Acad Sci 2017; 1410:85-92. [PMID: 29148577 DOI: 10.1111/nyas.13523] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
Estrogen signaling and mechanical loading have individual and combined effects on skeletal maintenance and adaptation. Previous work investigating estrogen signaling both in vitro and in vivo using global estrogen receptor α (ERα) gene knockout mouse models has provided information regarding the role of ERα in regulating bone mass and adaptation to mechanical stimulation. However, these models have inherent limitations that confound interpretation of the data. Therefore, recent studies have focused on mice with targeted deletion of ERα from specific bone cells and their precursors. Cell stage, tissue type, and mouse sex all influence the effects of ERα gene deletion. Lack of ERα in osteoblast progenitor and precursor cells generally affects the periosteum of female and male mice. The absence of ERα in differentiated osteoblasts, osteocytes, and osteoclasts in mice generally resulted in reduced cancellous bone mass, with differing reports of the effect by animal sex and greater deficiencies in bone mass typically occurring in cancellous bone in female mice. Limited data exist for the role of bone cell-specific ERα in skeletal adaptation in vivo. Cell-specific ERα gene knockout mice provide an excellent platform for investigating the function of ERα in regulating skeletal phenotype and response to mechanical loading by sex and age.
Collapse
Affiliation(s)
- Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Marjolein C H van der Meulen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York.,Research Division, Hospital for Special Surgery, New York, New York
| |
Collapse
|
6
|
Li JY, Liu SG, Xiao GN, Mao MY, Zhang XW, Sun HQ. Fibroblast growth factor receptor 1 propagates estrogen and fluid shear stress driven proliferation and differentiation response in MC3T3-E1 cells. Mol Biol 2017. [DOI: 10.1134/s0026893317020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, Vandamme K. Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int 2015; 26:303-13. [PMID: 25236876 DOI: 10.1007/s00198-014-2857-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/13/2014] [Indexed: 01/23/2023]
Abstract
UNLABELLED Mechanical loading at high frequency affects bone. Whether this also applies to osteoporotic bone, combined or not with bisphosphonate therapy, was investigated in this animal study through imaging. An anabolic effect of high-frequency loading on osteoporotic bone, however non-synergistic with bisphosphonates, was found, thereby revealing its potential for treatment of osteoporosis. INTRODUCTION In an effort to elucidate the effect of high-frequency (HF) loading on bone and to optimize its potential for treatment osteoporosis, this study aimed to investigate the effect of HF loading via whole body vibration (WBV), alone or in association with bisphosphonate treatment (alendronate--ALN), on the micro-architecture of ovariectomy (OVX)-induced compromised bone. METHODS Eighty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX). OVX animals were treated either with ALN (3 days/week at a dose of 2 mg/kg) or with saline solution. Each group (shOVX, OVX, ALN) was further divided into subgroups relative to the loading status (sham-WBV versus WBV) and the duration of experimental period (4 days versus 14 days). (Sham)WBV loading was applied for 10 min/day using 10 consecutive steps of HF loading (130, 135, 140, 145, 150, 130, 135, 140, 145, 150 Hz). Tibial bone structural responses to WBV and/or ALN treatment were analyzed using ex vivo micro-computed tomography. RESULTS The animal's hormonal status displayed a major impact on the trabecular and cortical bone structural parameters. Furthermore, mechanical treatment with HF WBV increased the cortical thickness and reduced the medullar area in OVX rats. However, OVX trabecular bone was not affected by HF stimuli. Finally, ALN prevented OVX-associated bone loss, but the association of ALN with WBV did not lead to a synergistic bone response in OVX bone. CONCLUSIONS HF WBV mechanical stimulation displayed an anabolic effect on osteoporotic cortical bone, confirming its therapeutic properties for enhancing compromised bone. Additionally, its association with bisphosphonates' administration did not produce any additive effect on the bone micro-architecture in the present study.
Collapse
Affiliation(s)
- K Hatori
- Department of Oral Health Sciences, BIOMAT Research Group, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Klein-Nulend J, van Oers RFM, Bakker AD, Bacabac RG. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J Biomech 2014; 48:855-65. [PMID: 25582356 DOI: 10.1016/j.jbiomech.2014.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/26/2022]
Abstract
Adaptation of bone to mechanical stresses normally produces a bone architecture that combines a proper resistance against failure with a minimal use of material. This adaptive process is governed by mechanosensitive osteocytes that transduce the mechanical signals into chemical responses, i.e. the osteocytes release signaling molecules, which orchestrate the recruitment and activity of bone forming osteoblasts and/or bone resorbing osteoclasts. Computer models have shown that the maintenance of a mechanically-efficient bone architecture depends on the intensity and spatial distribution of the mechanical stimulus as well as on the osteocyte response. Osteoporosis is a condition characterized by a reduced bone mass and a compromized resistance of bone against mechanical loads, which has led us to hypothesize that mechanotransduction by osteocytes is altered in osteoporosis. One of the major causal factors for osteoporosis is the loss of estrogen, the major hormonal regulator of bone metabolism. Loss of estrogen may increase osteocyte-mediated activation of bone remodeling, resulting in impaired bone mass and architecture. In this review we highlight current insights on how osteocytes perceive mechanical stimuli placed on whole bones. Particular emphasis is placed on the role of estrogen in signaling pathway activation by mechanical stimuli, and on computer simulation in combination with cell biology to unravel biological processes contributing to bone strength.
Collapse
Affiliation(s)
- Jenneke Klein-Nulend
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.
| | - René F M van Oers
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Department of Dental Materials Science, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Rommel G Bacabac
- Department of Physics, Medical Biophysics Group, University of San Carlos, Cebu City, Philippines
| |
Collapse
|
9
|
Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev 2014; 35:906-60. [PMID: 25202834 PMCID: PMC4234776 DOI: 10.1210/er.2014-1024] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Clinical and Experimental Endocrinology (D.V.) and Gerontology and Geriatrics (M.R.L., E.G.), Department of Clinical and Experimental Medicine; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine (M.R.L., F.C.); and Centre for Metabolic Bone Diseases (D.V., M.R.L., E.G.), KU Leuven, B-3000 Leuven, Belgium; and Center for Bone and Arthritis Research (M.K.L., L.V., A.E.B., C.O.), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wehrle E, Liedert A, Heilmann A, Wehner T, Bindl R, Fischer L, Haffner-Luntzer M, Jakob F, Schinke T, Amling M, Ignatius A. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice. Dis Model Mech 2014; 8:93-104. [PMID: 25381012 PMCID: PMC4283653 DOI: 10.1242/dmm.018622] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 G: peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (μCT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in confined target populations.
Collapse
Affiliation(s)
- Esther Wehrle
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081 Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081 Ulm, Germany
| | - Aline Heilmann
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081 Ulm, Germany
| | - Tim Wehner
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081 Ulm, Germany
| | - Ronny Bindl
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081 Ulm, Germany
| | - Lena Fischer
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081 Ulm, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97074 Würzburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
11
|
Meakin LB, Price JS, Lanyon LE. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone. Front Endocrinol (Lausanne) 2014; 5:154. [PMID: 25324829 PMCID: PMC4181237 DOI: 10.3389/fendo.2014.00154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022] Open
Abstract
Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones' strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone's mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them.
Collapse
Affiliation(s)
- Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- *Correspondence: Lee B. Meakin, School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK e-mail:
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lance E. Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Vicente WS, dos Reis LM, Graciolli RG, Graciolli FG, Dominguez WV, Wang CC, Fonseca TL, Velosa AP, Roschel H, Teodoro WR, Gualano B, Jorgetti V. Bone plasticity in response to exercise is sex-dependent in rats. PLoS One 2013; 8:e64725. [PMID: 23741378 PMCID: PMC3669412 DOI: 10.1371/journal.pone.0064725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/17/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To characterize the potential sexual dimorphism of bone in response to exercise. METHODS Young male and female Wistar rats were either submitted to 12 weeks of exercise or remained sedentary. The training load was adjusted at the mid-trial (week 6) by the maximal speed test. A mechanical test was performed to measure the maximal force, resilience, stiffness, and fracture load. The bone structure, formation, and resorption were obtained by histomorphometric analyses. Type I collagen (COL I) mRNA expression and tartrate-resistant acid phosphatase (TRAP) mRNA expression were evaluated by quantitative real-time PCR (qPCR). RESULTS The male and female trained rats significantly improved their maximum speed during the maximal exercise test (main effect of training; p<0.0001). The male rats were significantly heavier than the females, irrespective of training (main effect of sex; p<0.0001). Similarly, both the weight and length of the femur were greater for the male rats when compared with the females (main effect of sex; p<0.0001 and p<0.0001, respectively). The trabecular volume was positively affected by exercise in male and female rats (main effect of training; p = 0.001), whereas the trabecular thickness, resilience, mineral apposition rate, and bone formation rate increased only in the trained males (within-sex comparison; p<0.05 for all parameters), demonstrating the sexual dimorphism in response to exercise. Accordingly, the number of osteocytes increased significantly only in the trained males (within-sex comparison; p<0.05). Pearson's correlation analyses revealed that the COL I mRNA expression and TRAP mRNA expression were positively and negatively, respectively, related to the parameters of bone remodeling obtained from the histomorphometric analysis (r = 0.59 to 0.85; p<0.05). CONCLUSION Exercise yielded differential adaptations with respect to bone structure, biomechanical proprieties, and molecular signaling in male and female rats.
Collapse
Affiliation(s)
- Wagner S. Vicente
- Nephrology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Luciene M. dos Reis
- Nephrology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Rafael G. Graciolli
- Nephrology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Wagner V. Dominguez
- Nephrology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Charles C. Wang
- Department of Physiological Sciences, Federal University of São Carlos, São Paulo, Brazil
| | - Tatiana L. Fonseca
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Ana P. Velosa
- Rheumatology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Department of Sports, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Walcy R. Teodoro
- Rheumatology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Bruno Gualano
- Department of Sports, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanda Jorgetti
- Nephrology Division, Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Feldman S, Capozza RF, Mortarino PA, Reina PS, Ferretti JL, Rittweger J, Cointry GR. Site and sex effects on tibia structure in distance runners and untrained people. Med Sci Sports Exerc 2013; 44:1580-8. [PMID: 22330024 DOI: 10.1249/mss.0b013e31824e10b6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose was to study the relationship between mechanical environment and bone structure by comparing the tibia in people with different physical activities. MATERIALS AND METHODS Indicators of bone mass (bone mineral content), bone material "quality" (cortical volumetric mineral density (vBMD)), and diaphyseal design (endocortical and periosteal perimeters (EcPm and PoPm, respectively), cortical thickness (CtTh), circularity, and bending and torsion cross-sectional moments of inertia (CSMIs)) were determined in serial peripheral quantitative computed tomography scans taken at 5% steps of the tibia in 40 voluntary men and women age 25-40 yr who were either physically inactive or experienced distance runners (n = 10-12 per group). RESULTS Bone mass and design indicators were higher in runner than in nonrunner men, with a variable effect size along the tibia. In the distal tibia, runners had enhanced bone mineral content and CtTh (resistance to compression), but EcPm, PoPm, circularity, and CSMI were unaffected. In the midshaft, CSMIs (resistance to bending/torsion) were enhanced in runners, whereas bone mass was unaffected. In the proximal third, effects were observed for CtTh, EcPm, and PoPm. In female runners, these benefits were restricted to CSMIs only. Cortical vBMD, naturally lower in men than in women, was reduced in runners of either sex. DISCUSSION Results are coherent with previous findings in physically inactive people and with Frost's mechanostat theory. The observed group differences in cortical vBMD could reflect an increase in intracortical porosity (enhanced remodeling for damage repair), eventually compensated biomechanically by CSMI improvements. The sex specificity of exercise effects may suggest the interference by the endocrine environment. Results confirm that the mechanical environment is a strong determinant of regional tibia structure and suggest that the endocrine environment may reduce the effects of physical interventions on bone health in fertile women.
Collapse
Affiliation(s)
- Sara Feldman
- Laboratory of Osteoarticular Biology, Tissue Engineering and Emergent Therapies, Faculty of Medical Sciences, National University of Rosario, Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Duckham RL, Peirce N, Bailey CA, Summers G, Cameron N, Brooke-Wavell K. Bone geometry according to menstrual function in female endurance athletes. Calcif Tissue Int 2013; 92:444-50. [PMID: 23361333 DOI: 10.1007/s00223-013-9700-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Athletes have higher bone mineral density (BMD) relative to nonathletes. In amenorrheic athletes BMD may be compromised by estrogen deficiency, but it is unknown whether this is accompanied by structural differences. We compared femoral neck bone geometry and density of a-/oligomenorrheic athletes (AAs), eumenorrheic athletes (EAs), and eumenorrheic controls (ECs). We recruited 156 women: (68 endurance athletes and 88 controls). Femoral neck BMD, section modulus (Z), and width were measured using dual-energy X-ray absorptiometry. Menstrual function was assessed by questionnaire and classified as EA (≥10 periods/year) or AA (≤9 periods/year): 24 athletes were AA and 44 EA. Femoral neck BMD was significantly higher in EA than AA (8 %, difference) and EC (11 % difference): mean [SE] 1.118 [0.015], 1.023 [0.020] and 0.999 [0.014] g cm(-2), respectively; p < 0.001. Z was significantly higher in EA than EC (11 % difference): EA 667 [19], AA 625 [21], and EC 592 [10] cm(3); p < 0.001. Femoral neck width did not differ between groups. All differences persisted after adjustment for height, age, and body mass. The higher femoral neck Z and BMD in athletes, despite similar width, may indicate that exercise-related bone gains are endosteal rather than periosteal. Athletes with amenorrhea had smaller increments in bone mass rather than structural adaptation. The maintained femoral neck width in controls may be an adaptive mechanism to conserve bone strength in bending despite inactivity-related bone decrement.
Collapse
Affiliation(s)
- R L Duckham
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Windahl SH, Saxon L, Börjesson AE, Lagerquist MK, Frenkel B, Henning P, Lerner UH, Galea GL, Meakin LB, Engdahl C, Sjögren K, Antal MC, Krust A, Chambon P, Lanyon LE, Price JS, Ohlsson C. Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. J Bone Miner Res 2013; 28:291-301. [PMID: 22972752 PMCID: PMC3575695 DOI: 10.1002/jbmr.1754] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023]
Abstract
Estrogen receptor-α (ERα) is crucial for the adaptive response of bone to loading but the role of endogenous estradiol (E2) for this response is unclear. To determine in vivo the ligand dependency and relative roles of different ERα domains for the osteogenic response to mechanical loading, gene-targeted mouse models with (1) a complete ERα inactivation (ERα(-/-) ), (2) specific inactivation of activation function 1 (AF-1) in ERα (ERαAF-1(0) ), or (3) specific inactivation of ERαAF-2 (ERαAF-2(0) ) were subjected to axial loading of tibia, in the presence or absence (ovariectomy [ovx]) of endogenous E2. Loading increased the cortical bone area in the tibia mainly as a result of an increased periosteal bone formation rate (BFR) and this osteogenic response was similar in gonadal intact and ovx mice, demonstrating that E2 (ligand) is not required for this response. Female ERα(-/-) mice displayed a severely reduced osteogenic response to loading with changes in cortical area (-78% ± 15%, p < 0.01) and periosteal BFR (-81% ± 9%, p < 0.01) being significantly lower than in wild-type (WT) mice. ERαAF-1(0) mice also displayed a reduced response to mechanical loading compared with WT mice (cortical area -40% ± 11%, p < 0.05 and periosteal BFR -41% ± 8%, p < 0.01), whereas the periosteal osteogenic response to loading was unaffected in ERαAF-2(0) mice. Mechanical loading of transgenic estrogen response element (ERE)-luciferase reporter mice did not increase luciferase expression in cortical bone, suggesting that the loading response does not involve classical genomic ERE-mediated pathways. In conclusion, ERα is required for the osteogenic response to mechanical loading in a ligand-independent manner involving AF-1 but not AF-2.
Collapse
Affiliation(s)
- Sara H Windahl
- Department of Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cheung WH, Sun MH, Zheng YP, Chu WCW, Leung AHC, Qin L, Wei FY, Leung KS. Stimulated angiogenesis for fracture healing augmented by low-magnitude, high-frequency vibration in a rat model-evaluation of pulsed-wave doppler, 3-D power Doppler ultrasonography and micro-CT microangiography. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:2120-2129. [PMID: 23062367 DOI: 10.1016/j.ultrasmedbio.2012.07.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/28/2012] [Accepted: 07/28/2012] [Indexed: 06/01/2023]
Abstract
This study aimed to investigate the mechanism of low-magnitude high-frequency vibration (LMHFV) treatment on angiogenesis and blood flow for enhancement of fracture healing. Nine-month-old ovariectomized (OVX) and sham-operated (Sham) rats received closed fractures creation at the femora and were randomized into LMHFV treatment (Sham-V, OVX-V) or control (Sham-C, OVX-C) groups. Pulsed-wave Doppler indicated an increase in blood flow velocity of the femoral artery at weeks 2 (OVX pair: p = 0.030) and 4 (OVX pair: p = 0.012; Sham pair: p = 0.020) post-treatment. Significantly enhanced vascular volume (VV) at the fracture site in the vibration groups was demonstrated by 3-D high-frequency power Doppler at week 2 (Sham pair: p = 0.021) and micro-computed tomography (microCT) microangiography at weeks 2 (OVX pair: p = 0.009) and 4 (OVX pair: p = 0.034), which echoed the osteogenesis findings by radiographic and microCT analysis. VV in the OVX groups was inferior to the Sham groups. However, OVX-V showed higher percentages of angiogenic enhancement than Sham-V. Despite impaired neo-angiogenesis in osteoporotic fractures, LMHFV could increase blood flow and angiogenesis in both normal and osteoporotic fractures, thus enhancing fracture healing.
Collapse
Affiliation(s)
- Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sample SJ, Racette MA, Hao Z, Thomas CF, Behan M, Muir P. Functional adaptation in female rats: the role of estrogen signaling. PLoS One 2012; 7:e43215. [PMID: 22984413 PMCID: PMC3439425 DOI: 10.1371/journal.pone.0043215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/20/2012] [Indexed: 01/12/2023] Open
Abstract
Background Sex steroids have direct effects on the skeleton. Estrogen acts on the skeleton via the classical genomic estrogen receptors alpha and beta (ERα and ERβ), a membrane ER, and the non-genomic G-protein coupled estrogen receptor (GPER). GPER is distributed throughout the nervous system, but little is known about its effects on bone. In male rats, adaptation to loading is neuronally regulated, but this has not been studied in females. Methodology/Principal Findings We used the rat ulna end-loading model to induce an adaptive modeling response in ovariectomized (OVX) female Sprague-Dawley rats. Rats were treated with a placebo, estrogen (17β-estradiol), or G-1, a GPER-specific agonist. Fourteen days after OVX, rats underwent unilateral cyclic loading of the right ulna; half of the rats in each group had brachial plexus anesthesia (BPA) of the loaded limb before loading. Ten days after loading, serum estrogen concentrations, dorsal root ganglion (DRG) gene expression of ERα, ERβ, GPER, CGRPα, TRPV1, TRPV4 and TRPA1, and load-induced skeletal responses were quantified. We hypothesized that estrogen and G-1 treatment would influence skeletal responses to cyclic loading through a neuronal mechanism. We found that estrogen suppresses periosteal bone formation in female rats. This physiological effect is not GPER-mediated. We also found that absolute mechanosensitivity in female rats was decreased, when compared with male rats. Blocking of adaptive bone formation by BPA in Placebo OVX females was reduced. Conclusions Estrogen acts to decrease periosteal bone formation in female rats in vivo. This effect is not GPER-mediated. Gender differences in absolute bone mechanosensitivity exist in young Sprague-Dawley rats with reduced mechanosensitivity in females, although underlying bone formation rate associated with growth likely influences this observation. In contrast to female and male rats, central neuronal signals had a diminished effect on adaptive bone formation in estrogen-deficient female rats.
Collapse
Affiliation(s)
- Susannah J. Sample
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Molly A. Racette
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhengling Hao
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cathy F. Thomas
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
18
|
Fonseca H, Moreira-Gonçalves D, Vaz M, Fernandes MH, Ferreira R, Amado F, Mota MP, Duarte JA. Changes in proximal femur bone properties following ovariectomy and their association with resistance to fracture. J Bone Miner Metab 2012; 30:281-92. [PMID: 21938383 DOI: 10.1007/s00774-011-0308-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Bone strength depends on several material and structural properties, but findings concerning the best predictors of bone mechanical performance are conflicting. The aim of this study was to investigate how a broad set of bone properties in the proximal femur are influenced by age and hormonal status, and how these properties together determine bone strength. Twenty-five Wistar rats were ovariectomized (OVX, n = 13) or sham operated (SHAM, n = 12) at 5 months of age, and killed after 9 months. Another group of rats was killed at 5 months as baseline control (BSL, n = 7). At sacrifice, serum 17β-estradiol and bone turnover marker concentrations were determined in the serum. Both femurs were collected for assessment of trabecular microarchitecture, femoral neck geometry, radiographic absorptiometry, calcium and phosphate content, and biomechanical properties. While stiffness was mostly associated with proximal femur trabecular microarchitecture and mineralization degree, bone strength was mostly linked to bone size and femoral neck geometry, which predicted almost 50% of its variance. Despite the decrease in cortical and trabecular bone as well as in mineralization degree following estrogen loss, bone strength was not reduced in OVX animals compared to BSL or sham-operated rats. This was due to a change in femoral neck geometry as well as to an increase in femur size in OVX, which apparently compensated their lower bone volume and mineral content, thereby preserving bone strength. Estrogen loss leads to a deterioration of bone tissue quality, but bone strength was preserved at the expense of geometric adaptations.
Collapse
Affiliation(s)
- Hélder Fonseca
- CIAFEL, Faculty of Sport, University of Porto, Rua Dr. Placido Costa 91, 4200-450, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen B, Li Y, Yang X, Xie D. Femoral metaphysis bending test of rat: introduction and validation of a novel biomechanical testing protocol for osteoporosis. J Orthop Sci 2012; 17:70-6. [PMID: 22045451 DOI: 10.1007/s00776-011-0167-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/03/2011] [Indexed: 12/01/2022]
Abstract
BACKGROUND The diaphysis bending test is generally accepted to assess the biomechanical properties of bone in osteoporotic animals. However, bone strength loss was more pronounced at the metaphysis than diaphysis. Therefore, the biomechanical test should be focused on the metaphysis. This study aimed to validate a novel biomechanical test for femoral metaphysis in ovariectomized rats. METHODS Twenty 5-month-old female Sprague-Dawley rats were randomly divided into the ovariectomized (OVX) and sham-operated (Sham) groups. Examination of femur bone mineral density (BMD) and histomorphometry of the distal femur were performed. Femur biomechanical parameters (maximal load, yield load, and stiffness) were determined by the diaphysis bending test and a novel designed metaphysis bending test. Pearson's correlations were used to analyze the relationships between the biomechanical parameters and BMD or bone histomorphometry indexes (%Tb.Ar, Tb.N, Tb.Th), respectively. RESULTS The femur BMD, bone histomorphometry indexes, and biomechanical parameters of OVX were inferior to those of the Sham group (P < 0.05). In the diaphysis bending test, the mean difference of the maximum load and yield load between the OVX and Sham groups were 13.83 ± 5.27 and 15.69 ± 4.15 N, which were significantly lower than in the metaphysis bending test (43.34 ± 4.27, 48.90 ± 4.35 N; all P < 0.05). Positive correlations between biomechanical parameters and femur BMD or bone histomorphometry indexes were observed in both the diaphysis bending and metaphysis bending test. The biomechanical parameters in the metaphysis bending test showed stronger correlations with BMD and bone histomorphometry indexes. CONCLUSIONS The femoral metaphysis bending test was validated to assess osteoporosis in our study, and it was more sensitive than the diaphysis bending test in evaluating the change of biomechanical properties of the femur in osteoporotic rats.
Collapse
Affiliation(s)
- BaiLing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080 Guangzhou, China.
| | | | | | | |
Collapse
|
20
|
Chen J, Sobue T, Utreja A, Kalajzic Z, Xu M, Kilts T, Young M, Wadhwa S. Sex differences in chondrocyte maturation in the mandibular condyle from a decreased occlusal loading model. Calcif Tissue Int 2011; 89:123-9. [PMID: 21597908 PMCID: PMC3298998 DOI: 10.1007/s00223-011-9498-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/01/2011] [Indexed: 11/30/2022]
Abstract
Temporomandibular joint disorders (TMDs) predominantly afflict women of childbearing age. Defects in mechanical loading-induced temporomandibular joint (TMJ) remodeling are believed to be a major etiological factor in the development of TMD. The goal of this study was to determine if there are sex differences in CD-1 and C57BL/6 mice exposed to a decreased occlusal loading TMJ remodeling model. Male and female CD-1 and C57BL/6 mice, 21 days old, were each divided into two groups. They were fed either a normal pellet diet (normal loading) or a soft diet and had their incisors trimmed out of occlusion (decreased occlusal loading) for 4 weeks. The mandibular condylar cartilage was evaluated by histology, and the subchondral bone was evaluated by micro-CT analysis. Gene expression from both was evaluated by real-time PCR analysis. In both strains and sexes of mice, decreased occlusal loading caused similar effects in the subchondral bone, decreases in bone volume and total volume compared with their normal loading controls. However, in both strains, decreased occlusal loading caused a significant decrease in the expression of collagen type II (Col2) and Sox9 only in female mice, but not in male mice, compared with their normal loading controls. Decreased occlusal loading causes decreased bone volume in both sexes and a decrease in early chondrocyte maturation exclusively in female mice.
Collapse
Affiliation(s)
- J. Chen
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| | - T. Sobue
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| | - A. Utreja
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| | - Z. Kalajzic
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| | - M. Xu
- New England Musculoskeletal Institute, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - T. Kilts
- Molecular Biology of Bones and Teeth Section, Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - M. Young
- Molecular Biology of Bones and Teeth Section, Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - S. Wadhwa
- Division of Orthodontics, Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT06030-1725, USA
| |
Collapse
|
21
|
Willett TL, Wynnyckyj C, Wang J, Grynpas MD. The fatigue resistance of rabbit tibiae varies with age from youth to middle age. Osteoporos Int 2011; 22:1157-65. [PMID: 20495904 DOI: 10.1007/s00198-010-1282-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/30/2010] [Indexed: 12/27/2022]
Abstract
UNLABELLED Young adults are at risk of stress fractures. Risk is higher in younger and female individuals. Stress fractures occur due to repeated loading of the bone (fatigue). We modeled this with rabbit tibiae. Age increased fatigue resistance which correlated with bone mineral density. A sex difference was not detected. INTRODUCTION Younger adults who engage in intense physical activity with a sudden increase in intensity level (military recruits/college athletes) are at risk of bone stress fractures. Risk is greater in females and diminishes with aging. Stress fractures may be the result of fatigue damage, which is not repaired rapidly enough to avoid fracture. It was hypothesized that the fatigue resistance of whole rabbit tibiae would be less in female specimens but greater as animal age increased. METHODS Rabbit tibiae were harvested from three age groups (4, 7, and ≥ 12 months (females only)). The tibiae were scanned with dual energy X-ray absorptiometry to determine bone mineral density (BMD), computed tomography to quantify geometry, and then fatigue tested in three-point bending. RESULTS In the ≥ 12-month group, BMD was approximately 20% higher, while the fatigue resistance was found to be approximately ten times higher than the other age groups. Sex was not a factor in the 4- and 7-month groups. Multiple linear regression revealed that fatigue life was negatively correlated with applied stress range and positively correlated with BMD (adjusted r (2) = 0.69). CONCLUSIONS A difference in fatigue behavior due to sex was not detected, but there was a large increase in fatigue resistance with age. This correlated with increased BMD and parallels a reduced risk of stress fracture due to age in military recruits. Skeletal "maturation" may play an important role in determining stress fracture risk. Increased risk in females may be due to mechanisms other than those that determine material behavior.
Collapse
Affiliation(s)
- T L Willett
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Ochareon P, Herring SW. Cell replication in craniofacial periosteum: appositional vs. resorptive sites. J Anat 2011; 218:285-97. [PMID: 21223257 DOI: 10.1111/j.1469-7580.2010.01336.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The size and the shape of craniofacial bones results from periosteal activity, which can be either appositional or resorptive. The periosteum is often used as a source of graft material for osteogenesis, but differences in cellular makeup and proliferative capacity may render resorptive regions unsuitable for transplant. This study was undertaken to characterize the cells in appositional and resorptive periosteum, and to assess variation in proliferative activity. Young pigs (n=9) were injected with bromodeoxyuridine to label replicating cells and killed 3h later. The mandibular ramus, hard palate and zygomatic arch were examined for patterns of periosteal activity, and replicating cells were quantified in 16 appositional and eight resorptive regions. Sections were also reacted for markers of osteogenic (Runx2) and osteoclastic [CTR (calcitonin receptor), RANK, TRAP, CD14] lineage, and for an endothelial label (lectin). Replicating cells were often associated with the vasculature; most were unreactive for markers of differentiation. Although the fibrous layers of periosteum had fewer replicating cells per unit area than inner layers (P<0.005), this was in part due to lower cellularity. Appositional periostea differed from resorptive periostea in having thicker fibrous layers (197 vs. 89μm, P=0.02) and higher replication density in the inner layers (606 vs. 329 labeled cells mm(-2) , P=0.02). Osteoprogenitors were numerous in the inner layers of appositional but very scarce in resorptive periostea. Multinucleated osteoclasts were never seen in appositional regions, but mononuclear cells positive for osteoclastic lineage markers were plentiful, especially in the most rapidly growing areas. These cells appeared to be macrophages accompanying a growth rate so rapid as to resemble a response to trauma. In conclusion, appositional and resorptive periostea differ strikingly in morphology and cell content. Resorptive periosteum is a poor choice for osteogenic grafting.
Collapse
Affiliation(s)
- Pannee Ochareon
- Department of Oral Biology, University of Washington, Seattle, WA 98195-7446, USA
| | | |
Collapse
|
23
|
Bergmann P, Body JJ, Boonen S, Boutsen Y, Devogelaer JP, Goemaere S, Kaufman J, Reginster JY, Rozenberg S. Loading and skeletal development and maintenance. J Osteoporos 2010; 2011:786752. [PMID: 21209784 PMCID: PMC3010667 DOI: 10.4061/2011/786752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/06/2010] [Indexed: 12/12/2022] Open
Abstract
Mechanical loading is a major regulator of bone mass and geometry. The osteocytes network is considered the main sensor of loads, through the shear stress generated by strain induced fluid flow in the lacuno-canalicular system. Intracellular transduction implies several kinases and phosphorylation of the estrogen receptor. Several extra-cellular mediators, among which NO and prostaglandins are transducing the signal to the effector cells. Disuse results in osteocytes apoptosis and rapid imbalanced bone resorption, leading to severe osteoporosis. Exercising during growth increases peak bone mass, and could be beneficial with regards to osteoporosis later in life, but the gain could be lost if training is abandoned. Exercise programs in adults and seniors have barely significant effects on bone mass and geometry at least at short term. There are few data on a possible additive effect of exercise and drugs in osteoporosis treatment, but disuse could decrease drugs action. Exercise programs proposed for bone health are tedious and compliance is usually low. The most practical advice for patients is to walk a minimum of 30 to 60 minutes per day. Other exercises like swimming or cycling have less effect on bone, but could reduce fracture risk indirectly by maintaining muscle mass and force.
Collapse
Affiliation(s)
- P. Bergmann
- Department of Nuclear Medicine, Laboratory of Clinical Chemistry and Experimental Medicine, CHU Brugmann, Université Libre de Bruxelles, 4 Pl. Van Gehuchten, 1020 Brussels, Belgium,*P. Bergmann:
| | - J. J. Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - S. Boonen
- Division of Gerontology and Geriatrics, Center for Musculoskeletal Research, Department of Experimental Medicine, Catholic Leuven University, 3000 Leuven, Belgium
| | - Y. Boutsen
- Department of Rheumatology, Mont-Godinne University Hospital, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - J. P. Devogelaer
- Rheumatology Unit, Saint-Luc University Hospital, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - S. Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - J. Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - J. Y. Reginster
- Department of Public Health Sciences, University of Liège, 4000 Liège, Belgium
| | - S. Rozenberg
- Department of Gynaecology-Obstetrics, Free University of Brussels, 1090 Brussels, Belgium
| |
Collapse
|
24
|
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic SurgeryNippon Medical School Tokyo Japan
- Department of Plastic SurgeryMeitan General Hospital Beijing China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic SurgeryNippon Medical School Tokyo Japan
| |
Collapse
|
25
|
Shi HF, Cheung WH, Qin L, Leung AHC, Leung KS. Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone 2010; 46:1299-305. [PMID: 19961960 DOI: 10.1016/j.bone.2009.11.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/17/2009] [Accepted: 11/24/2009] [Indexed: 12/26/2022]
Abstract
Fracture healing is impaired in osteoporotic bone. Low-magnitude high-frequency vibration (LMHFV) has recently been proven to be osteogenic in osteoporotic intact bone. Our previous study found that LMHFV significantly enhanced fracture healing in adult rats. This study was designed to explore whether LMHFV was able to promote fracture healing in osteoporotic bone by enhancing callus formation, remodeling, and mineralization and to compare with age-matched nonosteoporotic ones. Nine-month-old ovariectomy (OVX)-induced osteoporotic rats were randomized into control (OVX-C) or vibration group (OVX-V); age-matched sham-operated rats were assigned into control (Sham-C) or vibration group (Sham-V). LMHFV (35 Hz, 0.3 g) was given 20 min/day and 5days/week to the treatment groups, while sham treatment was given to the control groups. Weekly radiographs and endpoint micro-CT, histomorphometry, and mechanical properties were evaluated at 2, 4, and 8 weeks post-treatment. Results confirmed that the fracture healing in OVX-C was significantly inferior to that in Sham-C. LMHFV was shown to be effective in promoting the fracture healing in OVX group in all measured parameters, particularly in the early phases of healing, with the outcomes comparable to that of age-matched normal fracture healing. Callus formation, mineralization and remodeling were enhanced by 25-30%, with a 70% increase in energy to failure than OVX-C. However, Sham-V was found to have lesser fracture healing enhancement, with significant increase in callus area only on week 2 and 3 than Sham-C, suggesting non-OVX aged bones were less sensitive to mechanical loading. The findings of this study provide a good basis to suggest that proceeding to clinical trials is the next step to evaluate the efficacy of LMHFV on osteoporotic fracture healing.
Collapse
Affiliation(s)
- Hong-Fei Shi
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
26
|
Sunters A, Armstrong VJ, Zaman G, Kypta RM, Kawano Y, Lanyon LE, Price JS. Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to Ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling. J Biol Chem 2009; 285:8743-58. [PMID: 20042609 PMCID: PMC2838297 DOI: 10.1074/jbc.m109.027086] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The capacity of bones to adjust their mass and architecture to withstand the loads of everyday activity derives from the ability of their resident cells to respond appropriately to the strains engendered. To elucidate the mechanisms of strain responsiveness in bone cells, we investigated in vitro the responses of primary mouse osteoblasts and UMR-106 osteoblast-like cells to a single period of dynamic strain. This stimulates a cascade of events, including activation of insulin-like growth factor I receptor (IGF-IR), phosphatidylinositol 3-kinase-mediated phosphorylation of AKT, inhibition of GSK-3β, increased activation of β-catenin, and associated lymphoid-enhancing factor/T cell factor-mediated transcription. Initiation of this pathway does not involve the Wnt/LRP5/Frizzled receptor and does not culminate in increased IGF transcription. The effect of strain on IGF-IR is mimicked by exogenous des-(1–3)IGF-I and is blocked by the IGF-IR inhibitor H1356. Inhibition of strain-related prostanoid and nitric oxide production inhibits strain-related (and basal) AKT activity, but their separate ectopic administration does not mimic it. Strain-related IGF-IR activation of AKT requires estrogen receptor α (ERα) with which IGF-1R physically associates. The ER blocker ICI 182,780 increases the concentration of des-(1–3)IGF-I necessary to activate this cascade, whereas estrogen inhibits both basal AKT activity and its activation by des-(1–3)IGF-I. These data suggest an initial cascade of strain-related events in osteoblasts in which strain activates IGF-IR, in association with ERα, so initiating phosphatidylinositol 3-kinase/AKT-dependent activation of β-catenin and altered lymphoid-enhancing factor/T cell factor transcription. This cascade requires prostanoid/nitric oxide production and is independent of Wnt/LRP5.
Collapse
Affiliation(s)
- Andrew Sunters
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
27
|
Forwood MR. Physical activity and bone development during childhood: insights from animal models. J Appl Physiol (1985) 2008; 105:334-41. [DOI: 10.1152/japplphysiol.00040.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animal studies illustrate greater structural and material adaptations of growing bone to exercise than in adult bones but do not define effective training regimes to optimize bone strength in children. Controlled loading studies in turkey, rat, or mouse bones have revealed mechanisms of mechanotransduction and loading characteristics that optimize the modeling response to applied strains. Insights from these models reveal that static loads do not play a role in mechanotransduction and that bone formation is threshold driven and dependent on strain rate, amplitude, and partitioning of the load. That is, only a few cycles of loading are required at any time to elicit an adaptive response, and distributed bouts of loading, incorporating rest periods, are more osteogenic than single sessions of long duration. These parameters of loading have been translated into feasible public health interventions that exploit the insights gained from animal experiments to achieve adaptive responses in children and adolescents. Studies manipulating estrogen receptors (ER) in mice also demonstrate that skeletal sensitivity to loading during the peripubertal period is due to a direct regulation of mechanotransduction pathways by ER, and not just a simple enhancement of cell activity already marshaled by the hypothalamic-pituitary axis. Unfortunately, because the rate and timing of growth in small animals are completely different from those in humans, these models can be poor tools to elucidate periods during growth in youths, during which the skeleton is more sensitive to loading. However, there are insights from studies of human growth that can improve the interpretation of data from such studies of growth and development in animals.
Collapse
|
28
|
|
29
|
Rubinacci A, Marenzana M, Cavani F, Colasante F, Villa I, Willnecker J, Moro GL, Spreafico LP, Ferretti M, Guidobono F, Marotti G. Ovariectomy sensitizes rat cortical bone to whole-body vibration. Calcif Tissue Int 2008; 82:316-26. [PMID: 18379712 DOI: 10.1007/s00223-008-9115-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 02/04/2008] [Indexed: 01/06/2023]
Abstract
This study was designed to determine the modulatory effect of estrogen on mechanical stimulation in bone. Trabecular and cortical bone compartments of ovariectomized rats exposed to whole-body vibration of different amplitudes were evaluated by peripheral quantitative computed tomographic (pQCT) analysis and histomorphometry and compared to controls not exposed to vibration. Rats underwent whole-body vibration (20 minutes/day, 5 days/week) on a vibration platform for 2 months. The control rats were placed on the platform without vibration for the same time. We divided rats into six groups: a sham control (SHAM); a sham vibrated (SHAM-V) at 30 Hz, 0.6 g; a SHAM-V at 30 Hz, 3g; an ovariectomized control (OVX); an ovariectomized vibrated (OVX-V) at 30 Hz, 0.6 g; and an OVX-V at 30 Hz, 3g. In vivo, pQCT analyses of the tibiae were performed at the start of the experiment and after 4 and 8 weeks. After 8 weeks the tibiae were excised for histomorphometric and for in vitro pQCT analyses. In the SHAM-V group, vibration had no effect upon the different bone parameters. In the OVX-V group, vibration induced a significant increase compared to the OVX group of the cortical and medullary areas (P < 0.01) and of the periosteal (P < 0.01) and endosteal (P < 0.05) perimeters at the 3 g vibration. The strain strength index increased in the OVX-V group significantly (P < 0.01) at the higher vibration. The results showed that low-amplitude, high-frequency whole-body vibration is anabolic to bone in OVX animals. The osteogenic potential is limited to the modeling of the bone cortex and depends on the amplitude of the vibration.
Collapse
Affiliation(s)
- Alessandro Rubinacci
- Bone Metabolic Unit, Scientific Institute San Raffaele, Via Olgettina 60, Milan 20132, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kaji H, Yamauchi M, Chihara K, Sugimoto T. Glucocorticoid excess affects cortical bone geometry in premenopausal, but not postmenopausal, women. Calcif Tissue Int 2008; 82:182-90. [PMID: 18278571 DOI: 10.1007/s00223-008-9106-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Glucocorticoid (GC) excess causes a great increase in fracture risk, but the effects of GC excess on cortical bone geometry are unknown. The present study was performed to examine the effects of GC excess on cortical bone geometry in both premenopausal and postmenopausal women. Ninety-six women receiving oral GC treatments and 10 women with Cushing syndrome (CS) were each compared to age-matched control subjects using peripheral quantitative computed tomography. Total area, periosteal circumference, and polar strength strain index (SSIp) were significantly lower in GC-treated patients compared with control subjects in premenopausal women but not in postmenopausal women. Moreover, cortical area and thickness as well as periosteal circumference and SSIp were significantly lower in patients with CS compared to controls in premenopausal women but not in postmenopausal women. Total area, cortical area, cortical thickness, periosteal circumference, as well as SSIp were significantly lower in GC-treated patients with vertebral fractures compared to those without vertebral fractures in premenopausal women but not in postmenopausal women. In conclusion, endogenous or exogenous GC excess affects bone geometry of forearms of premenopausal, but not postmenopausal, women. These effects of GC excess on bone geometry may provide a strength loss mechanism beneath increased vertebral fracture risk.
Collapse
Affiliation(s)
- Hiroshi Kaji
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | |
Collapse
|
31
|
Liu XQ, Chen HY, Tian XY, Setterberg RB, Li M, Jee WS. Alfacalcidol treatment increases bone mass from anticatabolic and anabolic effects on cancellous and cortical bone in intact female rats. J Bone Miner Metab 2008; 26:425-35. [PMID: 18758900 DOI: 10.1007/s00774-008-0854-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 01/08/2008] [Indexed: 10/15/2022]
Abstract
It has been reported that alfacalcidol had an anticatabolic and anabolic effect on bone in ovariectomized and aged male rat models, but this has not been tested on intact female rats. The current study was to determine the effects of alfacalcidol on cancellous and cortical bone in intact female rats with or without exercise. Seventy-four, 8.5-month-old, intact female rats were orally treated with 0, 0.005, 0.025, 0.05, or 0.1 microg/kg alfacalcidol alone or in combination with raised cage (RC) exercise for 3 months. In vivo peripheral quantitative computerized tomography (pQCT) of the proximal tibial metaphyses (PTM) and ex vivo histomorphometric analyses of the PTM and tibial shaft (TX) were performed. Only the 0.1 microg alfacalcidol/kg dose proved to be anabolic. pQCT analysis showed that this dose increased total and cortical bone mineral content and density and trabecular bone mineral density. Histomorphometrically, it induced an anabolic response by increased trabecular mass and microarchitecture from stimulated cancellous bone and bone bouton formations, and suppressed bone resorption more than bone formation on the trabecular and endocortical surfaces, to produce a positive bone balance. A positive correlation between trabecular connectivity and bone bouton numbers occurred. These findings suggest alfacalcidol treatment augments bone mass by increased cancellous bone mass and improved trabecular architecture through its anticatabolic and anabolic properties in the intact adult female rat. Last, raised cage exercise alone or the combination of raised cage and alfacalcidol was no more effective than alfacalcidol alone.
Collapse
Affiliation(s)
- Xiao Qing Liu
- Division of Radiobiology, University of Utah School of Medicine, 729 Arapeen Drive 2338, Salt Lake City, UT 84108-1218, USA
| | | | | | | | | | | |
Collapse
|
32
|
Saxon LK, Robling AG, Castillo AB, Mohan S, Turner CH. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta. Am J Physiol Endocrinol Metab 2007; 293:E484-91. [PMID: 17535856 DOI: 10.1152/ajpendo.00189.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical loading caused by physical activity can stimulate bone formation and strengthen the skeleton. Estrogen receptors (ERs) play some role in the signaling cascade that is initiated in bone cells after a mechanical load is applied. We hypothesized that one of the ERs, ER-beta, influences the responsiveness of bone to mechanical loads. To test our hypothesis, 16-wk-old male and female mice with null mutations in ER-beta (ER-beta(-/-)) had their right forelimbs subjected to short daily loading bouts. The loading technique used has been shown to increase bone formation in the ulna. Each loading bout consisted of 60 compressive loads within 30 s applied daily for 3 consecutive days. Bone formation was measured by first giving standard fluorochrome bone labels 1 and 6 days after loading and using quantitative histomorphometry to assess bone sections from the midshaft of the ulna. The left nonloaded ulna served as an internal control for the effects of loading. Mechanical loading increased bone formation rate at the periosteal bone surface of the mid-ulna in both ER-beta(-/-) and wild-type (WT) mice. The ulnar responsiveness to loading was similar in male ER-beta(-/-) vs. WT mice, but for female mice bone formation was stimulated more effectively in ER-beta(-/-) mice (P < 0.001). We conclude that estrogen signaling through ER-beta suppresses the mechanical loading response on the periosteal surface of long bones.
Collapse
Affiliation(s)
- L K Saxon
- Department of Orthopaedic Surgery, Indiana University-Purdue University, Indianapolis, USA
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- E Seeman
- Austin Health, University of Melbourne, Melbourne, Australia.
| |
Collapse
|