1
|
Mohan S, Kesavan C. T-cell factor 7L2 is a novel regulator of osteoblast functions that acts in part by modulation of hypoxia signaling. Am J Physiol Endocrinol Metab 2022; 322:E528-E539. [PMID: 35466691 PMCID: PMC9169825 DOI: 10.1152/ajpendo.00035.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
T-cell-like factor (TCF)7l2, a key effector of canonical Wnt signaling, is highly expressed in bone but nothing is known about its role in regulating osteoblast function. To test this, we generated mice with conditional disruption of Tcf7l2 gene in osteoblast lineages using Tcf7l2 floxed and Col1α2-Cre mice. Skeletal parameters were evaluated using heterozygous conditional knockdown (HCKD) mice since homozygous conditional knockout died during pregnancy or immediately after birth. At 5 wk of age, trabecular bone mass of long bones was reduced by 35% as measured by microcomputed tomography (μCT). Histology data showed a 42% reduction in femur trabecular bone mass caused by reduced bone formation. Knockdown of Tcf7l2 expression in osteoblasts decreased proliferation and differentiation by 20%-40%. Expression levels of genes (Hif1α, Vegf, and β-catenin) targeted by TCF7L2 were decreased by 50% in Tcf7l2-deficient osteoblasts and bones of HCKD mice. We found that the Hif1α gene promoter contained multiple putative TCF7L2 motifs and stabilization of HIF1α protein levels rescued expression of TCF7L2 target genes and alkaline phosphatase (ALP) activity in Tcf7l2-deficient osteoblasts. Furthermore, Tcf7l2 overexpression increased proliferation in the presence of canonical Wnt3a that was not affected by β-catenin inhibitor providing evidence for a noncanonical signaling in mediating TCF7L2 effects. Tcf7l2 expression was increased in response to mechanical strain (MS) in vitro and in vivo, and disruption of Tcf7l2 expression in osteoblasts reduced MS-induced ALP activity by 35%. We conclude that Tcf7l2, a mechanoresponsive gene, is an important regulator of osteoblast function acting, in part, via hypoxia signaling.NEW & NOTEWORTHY TCF7L2 is expressed by bone but it was not known whether TCF7L2 expression influenced bone development. By using a mouse model with conditional disruption of Tcf7l2 in osteoblast lineage cells, we have demonstrated for the first time, that TCF7L2 plays an important role in regulating osteoblasts via a noncanonical pathway.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California
- Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, California
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
2
|
Mohan S, Muthusamy K, Nagamani S, Kesavan C. Computational prediction of small molecules with predicted binding to FGFR3 and testing biological effects in bone cells. Exp Biol Med (Maywood) 2021; 246:1660-1667. [PMID: 33779341 DOI: 10.1177/15353702211002181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Activating anabolic receptor-mediated signaling is essential for stimulating new bone formation and for promoting bone healing in humans. Fibroblast growth factor receptor (FGFR) 3 is reported to be an important positive regulator of osteogenesis. Presently, recombinant proteins are used to stimulate FGFR3 function but have limitations for therapy due to expense and stability. Therefore, there is a need for identification of novel small molecules binding to FGFR3 that promote biological function. In silico molecular docking and high-throughput virtual screening on zinc database identified seven compounds predicted to bind to an active site within the βC'-βE loop, specific to FGFR3. All seven compounds fall within an acceptable range of ADME/T properties. Four compounds showed a 30-65% oral absorption rate. Density functional theory analysis revealed a high HOMO-LUMO gap, reflecting high molecular stability for compounds 14977614 and 13509082. Five compounds exhibited mutagenicity, while the other three compounds presented irritability. Computational mutagenesis predicted that mutating G322 affected compound binding to FGFR3. Molecular dynamics simulation revealed compound 14977614 is stable in binding to FGFR3. Furthermore, compound 14977614, with an oral absorption rate of 60% and high molecular stability, produced significant increases in both proliferation and differentiation of bone marrow stromal cells in vitro. Anti-FGFR3 treatment completely blocked the stimulatory effect of 14977614 on BMSC proliferation. Ex vivo treatment of mouse calvaria in organ culture for seven days with 14977614 increased mineralization and expression levels of bone formation markers. In conclusion, computational analyses identified seven compounds that bind to the FGFR3, and in vitro studies showed that compound 14977614 exerts significant biological effects on osteogenic cells.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.,Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
3
|
Turko AJ, Kültz D, Fudge D, Croll RP, Smith FM, Stoyek MR, Wright PA. Skeletal stiffening in an amphibious fish out of water is a response to increased body weight. ACTA ACUST UNITED AC 2018; 220:3621-3631. [PMID: 29046415 DOI: 10.1242/jeb.161638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, 1 Shields Ave., Meyer Hall, Davis, CA 95616, USA
| | - Douglas Fudge
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1.,Schmid College of Science and Technology, Chapman University, 1 University Dr., Orange, CA 92866, USA
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Frank M Smith
- Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Matthew R Stoyek
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2.,Department of Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
4
|
Judex S, Zhang W, Donahue LR, Ozcivici E. Genetic loci that control the loss and regain of trabecular bone during unloading and reambulation. J Bone Miner Res 2013; 28:1537-49. [PMID: 23401066 DOI: 10.1002/jbmr.1883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/15/2013] [Accepted: 01/23/2013] [Indexed: 12/18/2022]
Abstract
Changes in trabecular morphology during unloading and reloading are marked by large variations between individuals, implying that there is a strong genetic influence on the magnitude of the response. Here, we subjected more than 350 second-generation (BALBxC3H) 4-month-old adult female mice to 3 weeks of hindlimb unloading followed by 3 weeks of reambulation to identify the quantitative trait loci (QTLs) that define an individual's propensity to either lose trabecular bone when weight bearing is removed or to gain trabecular bone when weight bearing is reintroduced. Longitudinal in vivo micro-computed tomography (µCT) scans demonstrated that individual mice lost between 15% and 71% in trabecular bone volume fraction (BV/TV) in the distal femur during unloading (average: -43%). Changes in trabecular BV/TV during the 3-week reambulation period ranged from a continuation of bone loss (-18%) to large additions (56%) of tissue (average: +10%). During unloading, six QTLs accounted for 21% of the total variability in changes in BV/TV whereas one QTL accounted for 6% of the variability in changes in BV/TV during reambulation. QTLs were also identified for changes in trabecular architecture. Most of the QTLs defining morphologic changes during unloading or reambulation did not overlap with those QTLs identified at baseline, suggesting that these QTLs harbor genes that are specific for sensing changes in the levels of weight bearing. The lack of overlap in QTLs between unloading and reambulation also emphasizes that the genes modulating the trabecular response to unloading are distinct from those regulating tissue recovery during reloading. The identified QTLs contain the regulatory genes underlying the strong genetic regulation of trabecular bone's sensitivity to weight bearing and may help to identify individuals that are most susceptible to unloading-induced bone loss and/or the least capable of recovering.
Collapse
Affiliation(s)
- Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | | | | | | |
Collapse
|
5
|
DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res 2013; 28:1509-18. [PMID: 23630111 PMCID: PMC4892934 DOI: 10.1002/jbmr.1969] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 03/29/2013] [Accepted: 04/15/2013] [Indexed: 12/18/2022]
Abstract
The musculoskeletal system evolved in mammals to perform diverse functions that include locomotion, facilitating breathing, protecting internal organs, and coordinating global energy expenditure. Bone and skeletal muscles involved with locomotion are both derived from somitic mesoderm and accumulate peak tissue mass synchronously, according to genetic information and environmental stimuli. Aging results in the progressive and parallel loss of bone (osteopenia) and skeletal muscle (sarcopenia) with profound consequences for quality of life. Age-associated sarcopenia results in reduced endurance, poor balance, and reduced mobility that predispose elderly individuals to falls, which more frequently result in fracture because of concomitant osteoporosis. Thus, a better understanding of the mechanisms underlying the parallel development and involution of these tissues is critical to developing new and more effective means to combat osteoporosis and sarcopenia in our increasingly aged population. This perspective highlights recent advances in our understanding of mechanisms coupling bone and skeletal muscle mass, and identify critical areas where further work is needed.
Collapse
Affiliation(s)
- Douglas J DiGirolamo
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287‐0882, USA.
| | | | | |
Collapse
|
6
|
Kim CH, Yoo YM. Fluid shear stress and melatonin in combination activate anabolic proteins in MC3T3-E1 osteoblast cells. J Pineal Res 2013; 54:453-61. [PMID: 23397978 DOI: 10.1111/jpi.12043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/11/2013] [Indexed: 12/19/2022]
Abstract
In this study, we investigated whether fluid shear stress and melatonin in combination stimulate the anabolic proteins through the phosphorylation of extracellular signal-regulated kinase (p-ERK) in MC3T3-E1 osteoblast cells. First, we researched why fluid shear stress and melatonin in combination influence cell survival. Fluid shear stress (1 hr) and melatonin (1 mM) in combination reduced autophagic marker LC3-II compared with fluid shear stress (1 hr) and/or melatonin (0.1 mM). Under the same conditions for fluid shear stress, markers of cell survival signaling pathway p-ERK, phosphorylation of serine-threonine protein kinase (p-Akt), phosphorylation of mammalian target of rapamycin (p-mTOR), and p85-S6K were investigated. p-Akt, p-mTOR (Ser 2481) expressions increased with the addition of 1 mM melatonin prior to 0.1 mM melatonin treatment. However, p-S6K expression did not change significantly. Next, mitochondria activity including Bcl-2, Bax, catalase, and Mn-superoxide dismutase (Mn-SOD) were studied. Expressions of Bcl-2, Bax, and catalase proteins were low under fluid shear stress plus 1 mM melatonin compared with only fluid shear stress alone, whereas Mn-SOD expression was high compared with conditions of no fluid shear stress. Finally, the anabolic proteins of bone, osteoprotegerin, type I collagen (collagen I), and bone sialoprotein II (BSP II) were checked. These proteins increased with combined fluid shear stress (1, 4 hr) and melatonin (0.1, 1 mM). Together, these results suggest that fluid shear stress and melatonin in combination may increase the expression of anabolic proteins through the p-ERK in MC3T3-E1 osteoblast cells. Therefore, fluid shear stress in combination with melatonin may promote the anabolic response of osteoblasts.
Collapse
Affiliation(s)
- Chi Hyun Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do, Korea
| | | |
Collapse
|
7
|
SENGUL A, MOHAN S, KESAVAN C. Bone Response to Loading in Mice With Targeted Disruption of the Cartilage Oligomeric Matrix Protein Gene. Physiol Res 2012; 61:637-41. [DOI: 10.33549/physiolres.932307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Exercise induced bone response although established, little is known about the molecular components that mediate bone response to mechanical loading (ML). In our recent QTL study, we identified one such possible molecular component responding to ML: cartilage oligomeric matrix protein (COMP). To address the COMP role in mediating ML effects on bone formation, COMP expression was evaluated as a function of duration and age in response to ML in female B6 mice. A 9N load was applied using a four-point bending device at 2Hz frequency for 36 cycles, once per day for 2-, 4- and 12-days on the right tibia. The left tibia was used as an internal control. Loading caused an increase in COMP expression by 1.3-, 2- and 4-fold respectively after 2-, 4- and 12-days of loading. This increase was also seen in 16 and 36-week old mice. Based on these findings, we next used COMP knockout (KO) mice to evaluate the cause and effect relationship. Quantitative analysis revealed 2 weeks of ML induced changes in vBMD and bone size in the KO mice (5.9 % and 21 % vs. unloaded bones) was not significantly different from control mice (7 % and 24 % vs. unloaded bones). Our results imply that COMP is not a key upstream mediator of the anabolic effects of ML on the skeleton.
Collapse
Affiliation(s)
| | | | - C. KESAVAN
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| |
Collapse
|
8
|
Farber CR, Kelly SA, Baruch E, Yu D, Hua K, Nehrenberg DL, de Villena FPM, Buus RJ, Garland T, Pomp D. Identification of quantitative trait loci influencing skeletal architecture in mice: emergence of Cdh11 as a primary candidate gene regulating femoral morphology. J Bone Miner Res 2011; 26:2174-83. [PMID: 21638317 PMCID: PMC3304441 DOI: 10.1002/jbmr.436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bone strength is influenced by many properties intrinsic to bone, including its mass, geometry, and mineralization. To further advance our understanding of the genetic basis of bone-strength-related traits, we used a large (n = 815), moderately (G(4) ) advanced intercross line (AIL) of mice derived from a high-runner selection line (HR) and the C57BL/6J inbred strain. In total, 16 quantitative trait loci (QTLs) were identified that affected areal bone mineral density (aBMD) and femoral length and width. Four significant (p < .05) and one suggestive (p < .10) QTLs were identified for three aBMD measurements: total body, vertebral, and femoral. A QTL on chromosome (Chr.) 3 influenced all three aBMD measures, whereas the other four QTLs were unique to a single measure. A total of 10 significant and one suggestive QTLs were identified for femoral length (FL) and two measures of femoral width, anteroposterior (AP) and mediolateral (ML). FL QTLs were distinct from loci affecting AP and ML width, and of the 7 AP QTLs, only three affected ML. A QTL on Chr. 8 that explained 7.1% and 4.0% of the variance in AP and ML, respectively, was mapped to a 6-Mb region harboring 12 protein-coding genes. The pattern of haplotype diversity across the QTL region and expression profiles of QTL genes suggested that of the 12, cadherin 11 (Cdh11) was most likely the causal gene. These findings, when combined with existing data from gene knockouts, identify Cdh11 as a strong candidate gene within which genetic variation may affect bone morphology.
Collapse
Affiliation(s)
- Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saless N, Litscher SJ, Vanderby R, Demant P, Blank RD. Linkage mapping of principal components for femoral biomechanical performance in a reciprocal HCB-8 × HCB-23 intercross. Bone 2011; 48:647-53. [PMID: 20969983 PMCID: PMC3073517 DOI: 10.1016/j.bone.2010.10.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 12/16/2022]
Abstract
Studies of bone genetics have addressed an array of related phenotypes, including various measures of biomechanical performance, bone size, bone, shape, and bone mineral density. These phenotypes are not independent, resulting in redundancy of the information they provide. Principal component (PC) analysis transforms multiple phenotype data to a new set of orthogonal "synthetic" phenotypes. We performed PC analysis on 17 femoral biomechanical, anatomic, and body size phenotypes in a reciprocal intercross of HcB-8 and HcB-23, accounting for 80% of the variance in 4 PCs. Three of the 4 PCs were mapped in the cross. The linkage analysis revealed a quantitative trait locus (QTL) with LOD = 4.7 for PC2 at 16 cM on chromosome 19 that was not detected using the directly measured phenotypes. The chromosome 19 QTL falls within a ~10 megabase interval, with Osf1 as a positional candidate gene. PC QTLs were also found on chromosomes 1, 2, 4, 6, and 10 that coincided with those identified for directly measured or calculated material property phenotypes. The novel chromosome 19 QTL illustrates the power advantage that attends use of PC phenotypes for linkage mapping. Constraint of the chromosome 19 candidate interval illustrates an important advantage of experimental crosses between recombinant congenic mouse strains.
Collapse
Affiliation(s)
- Neema Saless
- Cellular and Molecular Biology Program, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
10
|
Kapur S, Amoui M, Kesavan C, Wang X, Mohan S, Baylink DJ, Lau KHW. Leptin receptor (Lepr) is a negative modulator of bone mechanosensitivity and genetic variations in Lepr may contribute to the differential osteogenic response to mechanical stimulation in the C57BL/6J and C3H/HeJ pair of mouse strains. J Biol Chem 2010; 285:37607-18. [PMID: 20851886 PMCID: PMC2988366 DOI: 10.1074/jbc.m110.169714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study investigated the role of leptin receptor (Lepr) signaling in determining the bone mechanosensitivity and also evaluated whether differences in the Lepr signaling may contribute to the differential osteogenic response of the C57BL/6J (B6) and C3H/HeJ (C3H) pair of mouse strains to mechanical stimuli. This study shows that a loading strain of ∼2,500 με, which was insufficient to produce a bone formation response in B6 mice, significantly increased bone formation parameters in leptin-deficient ob(-)/ob(-) mice and that a loading strain of ∼3,000 με also yielded greater osteogenic responses in Lepr-deficient db(-)/db(-) mice than in wild-type littermates. In vitro, a 30-min steady shear stress increased [(3)H]thymidine incorporation and Erk1/2 phosphorylation in ob(-)/ob(-) osteoblasts and db(-)/db(-) osteoblasts much greater than those in corresponding wild-type osteoblasts. The siRNA-mediated suppression of Lepr expression in B6 osteoblasts enhanced (but in osteoblasts of C3H (the mouse strain with poor bone mechanosensitivity) restored) their anabolic responses to shear stress. The Lepr signaling (leptin-induced Jak2/Stat3 phosphorylation) in C3H osteoblasts was higher than that in B6 osteoblasts. One of the three single nucleotide polymorphisms in the C3H Lepr coding region yielded an I359V substitution near the leptin binding region, suggesting that genetic variation of Lepr may contribute to a dysfunctional Lepr signaling in C3H osteoblasts. In conclusion, Lepr signaling is a negative modulator of bone mechanosensitivity. Genetic variations in Lepr, which result in a dysfunctional Lepr signaling in C3H mice, may contribute to the poor osteogenic response to loading in C3H mice.
Collapse
Affiliation(s)
- Sonia Kapur
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Affairs Medical Center, Loma Linda, California 92357, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Karasik D, Kiel DP. Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 2010; 46:1226-37. [PMID: 20149904 PMCID: PMC4852133 DOI: 10.1016/j.bone.2010.01.382] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/20/2010] [Accepted: 01/29/2010] [Indexed: 12/25/2022]
Abstract
There are both theoretical and empirical underpinnings that provide evidence that the musculoskeletal system develops, functions, and ages as a whole. Thus, the risk of osteoporotic fracture can be viewed as a function of loading conditions and the ability of the bone to withstand the load. Both bone loss (osteoporosis) and muscle wasting (sarcopenia) are the two sides of the same coin, an involution of the musculoskeletal system. Skeletal loads are dominated by muscle action; both bone and muscle share environmental, endocrine and paracrine influences. Muscle also has an endocrine function by producing bioactive molecules, which can contribute to homeostatic regulation of both bone and muscle. It also becomes clear that bone and muscle share genetic determinants; therefore the consideration of pleiotropy is an important aspect in the study of the genetics of osteoporosis and sarcopenia. The aim of this review is to provide an additional evidence for existence of the tight genetic co-regulation of muscles and bones, starting early in development and still evident in aging. Recently, important papers were published, including those dealing with the cellular mechanisms and anatomic substrate of bone mechanosensitivity. Further evidence has emerged suggesting that the relationship between skeletal muscle and bone parameters extends beyond the general paradigm of bone responses to mechanical loading. We provide insights into several pathways and single genes, which apparently have a biologically plausible pleiotropic effect on both bones and muscles; the list is continuing to grow. Understanding the crosstalk between muscles and bones will translate into a conceptual framework aimed at studying the pleiotropic genetic relationships in the etiology of complex musculoskeletal disease. We believe that further progress in understanding the common genetic etiology of osteoporosis and sarcopenia will provide valuable insight into important biological underpinnings for both musculoskeletal conditions. This may translate into new approaches to reduce the burden of both conditions, which are prevalent in the elderly population.
Collapse
Affiliation(s)
- David Karasik
- Institute for Aging Research, Hebrew SeniorLife, 1200 Centre Street, Boston, MA 02131, USA.
| | | |
Collapse
|
12
|
Middleton KM, Goldstein BD, Guduru PR, Waters JF, Kelly SA, Swartz SM, Garland T. Variation in within-bone stiffness measured by nanoindentation in mice bred for high levels of voluntary wheel running. J Anat 2010; 216:121-31. [PMID: 20402827 PMCID: PMC2807980 DOI: 10.1111/j.1469-7580.2009.01175.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2009] [Indexed: 12/17/2022] Open
Abstract
The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high levels of voluntary wheel running (HR). Mice (n = 48 total), half from HR lines and half from non-selected control (C) lines, were divided into two experimental groups, one with 13-14 weeks of access to a running wheel and one housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomography (microCT)-based morphometric traits were measured, and reduced elastic modulus (E(r)) was estimated separately for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-model analysis of covariance (ancova) showed that body mass was a highly significant predictor of all morphometric traits and that structural change is more apparent at the microCT level than in conventional morphometrics of whole bones. Both line type (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian recessive allele and characterized by a approximately 50% reduction in mass of the gastrocnemius muscle complex) were significant predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoindentation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences. Although we found no significant effects of line type (HR vs. C) or physical activity (wheel vs. no wheel) on mean stiffness, anterior and posterior quadrants were significantly stiffer (P < 0.0001) than medial and lateral quadrants (32.67 and 33.09 GPa vs. 29.78 and 30.46 GPa, respectively). Our findings of no significant difference in compressive stiffness in the anterior and posterior quadrants agree with previous results for mice, but differ from those for large mammals. Integrating these results with others from ongoing research on these mice, we hypothesize that the skeletons of female HR mice may be less sensitive to the effects of chronic exercise, due to decreased circulating leptin levels and potentially altered endocannabinoid signaling.
Collapse
Affiliation(s)
- Kevin M Middleton
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Jepsen KJ. Systems analysis of bone. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:73-88. [PMID: 20046860 PMCID: PMC2790199 DOI: 10.1002/wsbm.15] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The genetic variants contributing to variability in skeletal traits has been well studied, and several hundred QTLs have been mapped and several genes contributing to trait variation have been identified. However, many questions remain unanswered. In particular, it is unclear whether variation in a single gene leads to alterations in function. Bone is a highly adaptive system and genetic variants affecting one trait are often accompanied by compensatory changes in other traits. The functional interactions among traits, which is known as phenotypic integration, has been observed in many biological systems, including bone. Phenotypic integration is a property of bone that is critically important for establishing a mechanically functional structure that is capable of supporting the forces imparted during daily activities. In this paper, bone is reviewed as a system and primarily in the context of functionality. A better understanding of the system properties of bone will lead to novel targets for future genetic analyses and the identification of genes that are directly responsible for regulating bone strength. This systems analysis has the added benefit of leaving a trail of valuable information about how the skeletal system works. This information will provide novel approaches to assessing skeletal health during growth and aging and for developing novel treatment strategies to reduce the morbidity and mortality associated with fragility fractures.
Collapse
Affiliation(s)
- Karl J Jepsen
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
14
|
Reiner G, Clemens N, Fischer R, Köhler F, Berge T, Hepp S, Willems H. Mapping of quantitative trait loci for clinical-chemical traits in swine. Anim Genet 2009; 40:57-64. [DOI: 10.1111/j.1365-2052.2008.01804.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Poliachik SL, Threet D, Srinivasan S, Gross TS. 32 wk old C3H/HeJ mice actively respond to mechanical loading. Bone 2008; 42:653-9. [PMID: 18280231 PMCID: PMC2366046 DOI: 10.1016/j.bone.2007.12.222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 12/19/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Numerous studies indicate that C3H/HeJ (C3H) mice are mildly responsive to mechanical loading compared to C57BL/6J (C57) mice. Guided by data indicating high baseline periosteal osteoblast activity in 16 wk C3H mice, we speculated that simply allowing the C3H mice to age until basal periosteal bone formation was equivalent to that of 16 wk C57 mice would restore mechanoresponsiveness in C3H mice. We tested this hypothesis by subjecting the right tibiae of 32 wk old C3H mice and 16 wk old C57 mice to low magnitude rest-inserted loading (peak strain: 1235 mu epsilon) and then exposing the right tibiae of 32 wk C3H mice to low (1085 mu epsilon) or moderate (1875 mu epsilon) magnitude cyclic loading. The osteoblastic response to loading on the endocortical and periosteal surfaces was evaluated via dynamic histomorphometry. At 32 wk of age, C3H mice responded to low magnitude rest-inserted loading with significantly elevated periosteal mineralizing surface, mineral apposition rate and bone formation compared to unloaded contralateral bones. Surprisingly, the periosteal bone formation induced by low magnitude rest-inserted loading in C3H mice exceeded that induced in 16 wk C57 mice. At 32 wk of age, C3H mice also demonstrated an elevated response to increased magnitudes of cyclic loading. We conclude that a high level of basal osteoblast function in 16 wk C3H mice appears to overwhelm the ability of the tissue to respond to an otherwise anabolic mechanical loading stimulus. However, when basal surface osteoblast activity is equivalent to that of 16 wk C57 mice, C3H mice demonstrate a clear ability to respond to either rest-inserted or cyclic loading.
Collapse
Affiliation(s)
- Sandra L Poliachik
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, 98104, USA.
| | | | | | | |
Collapse
|