1
|
Fang H, Li P, Zhu S, Bi R. Genetic factors underlying Mandibular prognathism: insights from recent human and animal studies. Mamm Genome 2025; 36:293-305. [PMID: 39607497 DOI: 10.1007/s00335-024-10084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
This review aims to provide an updated overview of the genetic etiology of mandibular prognathism (MP), focusing on recent research efforts, to summarize the findings from human studies utilizing genome-wide association studies (GWAS), candidate gene analyses, whole exome sequencing (WES) and single-nucleotide polymorphisms (SNPs) in relation to MP. Additionally, insights from animal studies are incorporated to understand the molecular mechanisms underlying mandibular development and the pathogenesis of MP. A comprehensive literature search was conducted to identify relevant studies on the genetic basis of MP. Human studies employing GWAS, candidate gene analyses, and SNPs investigations were reviewed. Animal studies, including European seabass, zebrafish, transgenic mouse and miniature horse were also examined to provide additional insights into mandibular development and MP's pathogenesis using GWAS, WES, transgenic techniques, morpholino antisense oligos and homozygote. Human studies have identified multiple loci and genes potentially associated with MP through GWAS, candidate gene analyses, and SNP investigations. Animal models have contributed valuable information about the molecular mechanisms involved in mandibular development and the development of MP. Recent research efforts have enhanced our understanding of the genetic etiology of MP. Integration of genetic studies with functional analyses has shed light on key signaling pathways and gene regulatory networks implicated in MP.
Collapse
Affiliation(s)
- Han Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Chien MH, Yang YC, Ho KH, Ding YF, Chen LH, Chiu WK, Chen JQ, Tung MC, Hsiao M, Lee WJ. Cyclic increase in the ADAMTS1-L1CAM-EGFR axis promotes the EMT and cervical lymph node metastasis of oral squamous cell carcinoma. Cell Death Dis 2024; 15:82. [PMID: 38263290 PMCID: PMC10805752 DOI: 10.1038/s41419-024-06452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The matrix metalloprotease A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1) was reported to be involved in tumor progression in several cancer types, but its contributions appear discrepant. At present, the role of ADAMTS1 in oral squamous cell carcinoma (SCC; OSCC) remains unclear. Herein, The Cancer Genome Atlas (TCGA) database showed that ADAMTS1 transcripts were downregulated in head and neck SCC (HNSCC) tissues compared to normal tissues, but ADAMTS1 levels were correlated with poorer prognoses of HNSCC patients. In vitro, we observed that ADAMTS1 expression levels were correlated with the invasive abilities of four OSCC cell lines, HSC-3, SCC9, HSC-3M, and SAS. Knockdown of ADAMTS1 in OSCC cells led to a decrease and its overexpression led to an increase in cell-invasive abilities in vitro as well as tumor growth and lymph node (LN) metastasis in OSCC xenografts. Mechanistic investigations showed that the cyclic increase in ADAMTS1-L1 cell adhesion molecule (L1CAM) axis-mediated epidermal growth factor receptor (EGFR) activation led to exacerbation of the invasive abilities of OSCC cells via inducing epithelial-mesenchymal transition (EMT) progression. Clinical analyses revealed that ADAMTS1, L1CAM, and EGFR levels were all correlated with worse prognoses of HNSCC patients, and patients with ADAMTS1high/L1CAMhigh or EGFRhigh tumors had the shortest overall and disease-specific survival times. As to therapeutic aspects, we discovered that an edible plant-derived flavonoid, apigenin (API), drastically inhibited expression of the ADAMTS1-L1CAM-EGFR axis and reduced the ADAMTS1-triggered invasion and LN metastasis of OSCC cells in vitro and in vivo. Most importantly, API treatment significantly prolonged survival rates of xenograft mice with OSCC. In summary, ADAMTS1 may be a useful biomarker for predicting OSCC progression, and API potentially retarded OSCC progression by targeting the ADAMTS1-L1CAM-EGFR signaling pathway.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fang Ding
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuan Chiu
- Division of Plastic Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Surgery, Taipei Medical University, Taipei, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Min-Che Tung
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Li T, Peng J, Li Q, Shu Y, Zhu P, Hao L. The Mechanism and Role of ADAMTS Protein Family in Osteoarthritis. Biomolecules 2022; 12:959. [PMID: 35883515 PMCID: PMC9313267 DOI: 10.3390/biom12070959] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a principal cause of aches and disability worldwide. It is characterized by the inflammation of the bone leading to degeneration and loss of cartilage function. Factors, including diet, age, and obesity, impact and/or lead to osteoarthritis. In the past few years, OA has received considerable scholarly attention owing to its increasing prevalence, resulting in a cumbersome burden. At present, most of the interventions only relieve short-term symptoms, and some treatments and drugs can aggravate the disease in the long run. There is a pressing need to address the safety problems due to osteoarthritis. A disintegrin-like and metalloprotease domain with thrombospondin type 1 repeats (ADAMTS) metalloproteinase is a kind of secretory zinc endopeptidase, comprising 19 kinds of zinc endopeptidases. ADAMTS has been implicated in several human diseases, including OA. For example, aggrecanases, ADAMTS-4 and ADAMTS-5, participate in the cleavage of aggrecan in the extracellular matrix (ECM); ADAMTS-7 and ADAMTS-12 participate in the fission of Cartilage Oligomeric Matrix Protein (COMP) into COMP lyase, and ADAMTS-2, ADAMTS-3, and ADAMTS-14 promote the formation of collagen fibers. In this article, we principally review the role of ADAMTS metalloproteinases in osteoarthritis. From three different dimensions, we explain how ADAMTS participates in all the following aspects of osteoarthritis: ECM, cartilage degeneration, and synovial inflammation. Thus, ADAMTS may be a potential therapeutic target in osteoarthritis, and this article may render a theoretical basis for the study of new therapeutic methods for osteoarthritis.
Collapse
Affiliation(s)
- Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
| |
Collapse
|
4
|
Wang L, Pi C, Sun J, Cui Y, Cai L, Lan Y, Gu J, Liu L, Zhang G, Guo L, Zhang Z, Guo Q, Zheng L, Xie J, Zhang D, Zhou X. The alteration of A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in the knee joints of osteoarthritis mice. J Histotechnol 2021; 44:99-110. [PMID: 33480322 DOI: 10.1080/01478885.2020.1861908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family is gradually being recognized as an important family of mediators that, along with the matrix metalloproteinases (MMPs), control the degradation process in osteoarthritis (OA). The objective of this study was to uncover the detailed alterations of ADAMTS1, ADAMTS2, and ADAMTS5 in the knee joint of OA mice. The OA model was established by anterior cruciate ligament transection (ACLT) on the knee joints of C57BL/6 J mice. The mice showed representative phenotypes of ACLT-induced OA, including obvious deterioration of the cartilage, reductions in the collagen and proteoglycan components in the cartilage matrix of OA mice, and increased inflammation and osteoclast activity. By qPCR, the gene expression levels of Adamts1, -2, and -5 were the top-ranked among Adamts1-5 in cartilage/chondrocytes, osteogenic tissue/osteoblasts, and cortical bone/osteocytes. Moreover, the protein expression levels of ADAMTS1, -2, and -5 were all increased in articular cartilage, the growth plate, and subchondral bone of the knee joint. The results suggest the important roles of ADAMTS1, -2, and -5 in OA disease, which will be helpful in further research on degenerative changes in OA.
Collapse
Affiliation(s)
- Luling Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanchen Lan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lianyang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Araya HF, Sepulveda H, Lizama CO, Vega OA, Jerez S, Briceño PF, Thaler R, Riester SM, Antonelli M, Salazar-Onfray F, Rodríguez JP, Moreno RD, Montecino M, Charbonneau M, Dubois CM, Stein GS, van Wijnen AJ, Galindo MA. Expression of the ectodomain-releasing protease ADAM17 is directly regulated by the osteosarcoma and bone-related transcription factor RUNX2. J Cell Biochem 2018; 119:8204-8219. [PMID: 29923217 DOI: 10.1002/jcb.26832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 01/04/2023]
Abstract
Osteoblast differentiation is controlled by transcription factor RUNX2 which temporally activates or represses several bone-related genes, including those encoding extracellular matrix proteins or factors that control cell-cell, and cell-matrix interactions. Cell-cell communication in the many skeletal pericellular micro-niches is critical for bone development and involves paracrine secretion of growth factors and morphogens. This paracrine signaling is in part regulated by "A Disintegrin And Metalloproteinase" (ADAM) proteins. These cell membrane-associated metalloproteinases support proteolytic release ("shedding") of protein ectodomains residing at the cell surface. We analyzed microarray and RNA-sequencing data for Adam genes and show that Adam17, Adam10, and Adam9 are stimulated during BMP2 mediated induction of osteogenic differentiation and are robustly expressed in human osteoblastic cells. ADAM17, which was initially identified as a tumor necrosis factor alpha (TNFα) converting enzyme also called (TACE), regulates TNFα-signaling pathway, which inhibits osteoblast differentiation. We demonstrate that Adam17 expression is suppressed by RUNX2 during osteoblast differentiation through the proximal Adam17 promoter region (-0.4 kb) containing two functional RUNX2 binding motifs. Adam17 downregulation during osteoblast differentiation is paralleled by increased RUNX2 expression, cytoplasmic-nuclear translocation and enhanced binding to the Adam17 proximal promoter. Forced expression of Adam17 reduces Runx2 and Alpl expression, indicating that Adam17 may negatively modulate osteoblast differentiation. These findings suggest a novel regulatory mechanism involving a reciprocal Runx2-Adam17 negative feedback loop to regulate progression through osteoblast differentiation. Our results suggest that RUNX2 may control paracrine signaling through regulation of ectodomain shedding at the cell surface of osteoblasts by directly suppressing Adam17 expression.
Collapse
Affiliation(s)
- Héctor F Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Carlos O Lizama
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar A Vega
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofia Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro F Briceño
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Rodríguez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), University of Chile, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Martine Charbonneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claire M Dubois
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mario A Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Hong-Brown LQ, Brown CR, Navaratnarajah M, Lang CH. Adamts1 mediates ethanol-induced alterations in collagen and elastin via a FoxO1-sestrin3-AMPK signaling cascade in myocytes. J Cell Biochem 2016; 116:91-101. [PMID: 25142777 DOI: 10.1002/jcb.24945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022]
Abstract
A variety of stressors including alcohol (EtOH) are known to induce collagen production and fibrotic diseases. Matrix metalloproteinases (MMP) play an important role in regulating fibrosis, but little is known regarding the relationship between EtOH and MMPs. In addition, the signaling cascades involved in this process have not been elucidated. We have identified the MMP Adamts1 as a target of EtOH regulation. To characterize the function of Adamts1, we examined EtOH-induced alterations in collagen I and elastin protein levels in C2C12 myocytes. Incubation of myocytes with 100 mM EtOH decreased elastin and increased collagen content, respectively, and these changes were associated with increased O-GLcNAc modification of Adamts1. Conversely, silencing of Adamts1 by siRNA blocked the adverse effects of EtOH on collagen and elastin levels. Similar results were obtained after treatment with a pharmacological inhibitor of MMP. Changes in collagen were due, at least in part, to a decreased interaction of Adamts1 with its endogenous inhibitor TIMP3. The AMPK inhibitor compound C blocked the EtOH-induced stimulation of collagen and O-GLcNAc Adamts1 protein. Changes in AMPK appear linked to FoxO1, since inhibition of FoxO1 blocked the effects of EtOH on AMPK phosphorylation and O-GLcNAc levels. These FoxO-dependent modifications were associated with an upregulation of the FoxO1 transcription target sestrin 3, as well as increased binding of sestrin 3 with AMPK. Collectively, these data indicate that EtOH regulates the collagen I and elastin content in an Adamts1-dependent manner in myocytes. Furthermore, Adamts1 appears to be controlled by the FoxO1-sestrin 3-AMPK signaling cascade.
Collapse
Affiliation(s)
- Ly Q Hong-Brown
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, 17033, USA
| | | | | | | |
Collapse
|
7
|
Guan X, Song Y, Ott J, Zhang Y, Li C, Xin T, Li Z, Gan Y, Li J, Zhou S, Zhou Y. The ADAMTS1 Gene Is Associated with Familial Mandibular Prognathism. J Dent Res 2015; 94:1196-201. [PMID: 26124221 DOI: 10.1177/0022034515589957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mandibular prognathism is a facial skeletal malocclusion. Until now, the genetic mechanism has been unclear. The goal of this study was to identify candidate genes or genomic regions directly associated with mandibular prognathism development, by employing whole genome sequencing. A large Chinese family was recruited, composed of 9 affected and 12 unaffected individuals, and the inheritance pattern of this family tends to be autosomal dominant. A single-nucleotide missense mutation in the ADAMTS1 gene (c. 742I>T) was found to segregate in the family, given that the affected individuals must be heterozygous for the mutation. For mutation validation, we screened this candidate mutation and 15 tag single-nucleotide polymorphisms in the coding sequence of ADAMTS1 among 230 unrelated cases and 196 unrelated controls using Sequenom Massarray and found that 3 in 230 cases carried this mutation and none of the controls did. Final results suggested that 2 single-nucleotide polymorphisms (rs2738, rs229038) of ADAMTS1 were significantly associated with mandibular prognathism.
Collapse
Affiliation(s)
- X Guan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Y Song
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - J Ott
- Department of Laboratory of Statistical Genetics, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China, and Rockefeller University, New York, NY, USA
| | - Y Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - C Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - T Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Z Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology. Beijing, P.R. China
| | - Y Gan
- Department of Laboratory of Molecular Biology and Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology. Beijing, P.R. China
| | - J Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - S Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Y Zhou
- Department of Orthodontics, Center for Craniofacial Stem Cell Research, Regeneration, and Translational Medicine, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| |
Collapse
|
8
|
Liu P, Yan S, Chen M, Chen A, Yao D, Xu X, Cai X, Wang L, Huang X. Effects of baicalin on collagen Ι and collagen ΙΙΙ expression in pulmonary arteries of rats with hypoxic pulmonary hypertension. Int J Mol Med 2015; 35:901-8. [PMID: 25716558 PMCID: PMC4356435 DOI: 10.3892/ijmm.2015.2110] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/13/2015] [Indexed: 01/10/2023] Open
Abstract
The synthesis and accumulation of collagen play an important role in the formation and progression of hypoxic pulmonary hypertension. Baicalin has been reported to prevent bleomycin-induced pulmonary fibrosis. However, the role of baicalin in the treatment of pulmonary hypertension remains unknown. A disintegrin and metalloprotease with thrombospondin type-1 motif (ADAMTS-1) is a secreted enzyme that acts on a wide variety of extracellular matrix (ECM) substrates associated with vascular diseases. In this study, we aimed to investigate the effects of baicalin on the synthesis of collagen I in rats with pulmonary hypertension induced by hypoxia and the changes in ADAMTS-1 expression. A total of 24 Sprague Dawley rats were randomly assigned to 3 groups as follows: the control group (C), the hypoxia group (H) and the hypoxia + baicalin group (B). The rats in groups H and B were kept in a normobaric hypoxic chamber for 4 weeks, and the rats in group C were exposed to room air. We measured the hemodynamic indexes, including mean pulmonary artery pressure (mPAP), mean systemic (carotid) artery pressure (mSAP), and then calculated the mass ratio of right ventricle to left ventricle plus septum [RV/(LV + S)] to reflect the extent of right ventricular hypertrophy. We measured the mRNA and protein expression levels of type I collagen, type III collagen and ADAMTS-1 by hybridization in situ, and immunohistochemistry and western blot analysis, respectively. The results revealed that treatment with baicalin significantly reduced pulmonary artery pressure and attenuated the remodeling of the pulmonary artery under hypoxic conditions by increasing the expression of ADAMTS-1, so that the synthesis of type I collagen and its mRNA expression were inhibited. In conclusion, baicalin effectively inhibits the synthesis of collagen I in pulmonary arteries and this is associated with an increase in the expression of ADAMTS-1. Thus, treatment with baicalin may be an effective method for lowering pulmonary artery pressure and preventing pulmonary artery remodeling.
Collapse
Affiliation(s)
- Panpan Liu
- Intensive Care Unit, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Shuangquan Yan
- Division of Respiratory Medicine, Taizhou Enze Medical Center Luqiao Hospital, Taizhou, Zhejiang 318050, P.R. China
| | - Mayun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Ali Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Dan Yao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaomei Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Xueding Cai
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University and Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
9
|
Granéli C, Karlsson C, Brisby H, Lindahl A, Thomsen P. The effects of PPAR-γ inhibition on gene expression and the progression of induced osteogenic differentiation of human mesenchymal stem cells. Connect Tissue Res 2014; 55:262-74. [PMID: 24708348 DOI: 10.3109/03008207.2014.910198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several cell types, such as osteoblasts and adipocytes, both in vitro and in vivo. Although these two differentiation pathways are distinct from each other, cross-communication between cells of the two lineages exists both systemically and peripherally in the tissue. The transcription factor PPAR-γ, the main switch in adipogenic differentiation of MSCs, has previously been described to have a negative effect on osteogenic differentiation. The aim of this study was to investigate the effect of PPAR-γ inhibition on osteogenic differentiation of human MSCs, in vitro. Extracellular matrix analysis and quantification of osteogenic markers, revealed how these cells respond when the adipogenic differentiation pathway is blocked during induction of osteogenic differentiation. The inhibition leads to a significant increase in mineralization of the extracellular matrix, as well as an increased activity or up-regulated gene expression of alkaline phosphatase, the key enzyme involved in matrix mineralization. Furthermore, it was also demonstrated by microarray analysis, that PPAR-γ inhibition during osteogenic induction leads to a significant up-regulation of a number of genes related to both osteogenesis and adipogenesis such as c10orf10, leptin, GDF5 and KLF15. In conclusion, inhibition of PPAR-γ during induction of osteogenesis leads to increased osteogenic differentiation of human MSCs.
Collapse
Affiliation(s)
- Cecilia Granéli
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | | | | | | | | |
Collapse
|
10
|
Tan IDA, Ricciardelli C, Russell DL. The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. Int J Cancer 2013; 133:2263-76. [PMID: 23444028 DOI: 10.1002/ijc.28127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
As it was first characterized in 1997, the ADAMTS (A Disintegrin and Metalloprotease with ThromboSpondin motifs) metalloprotease family has been associated with many physiological and pathological conditions. Of the 19 proteases belonging to this family, considerable attention has been devoted to the role of its first member ADAMTS1 in cancer. Elevated ADAMTS1 promotes pro-tumorigenic changes such as increased tumor cell proliferation, inhibited apoptosis and altered vascularization. Importantly, it facilitates significant peritumoral remodeling of the extracellular matrix environment to promote tumor progression and metastasis. However, discrepancy exists, as several studies also depict ADAMTS1 as a tumor suppressor. This article reviews the current understanding of ADAMTS1 regulation and the consequence of its dysregulation in primary cancer and ADAMTS1-mediated pathways of cancer progression and metastasis.
Collapse
Affiliation(s)
- Izza de Arao Tan
- Robinson Institute, School of Paediatrics and Reproductive Health, Department of Obstetrics and Gynaecology, Univeristy of Adelaide, South Australia, Australia
| | | | | |
Collapse
|
11
|
Decreased expression of ADAMTS-1 in human breast tumors stimulates migration and invasion. Mol Cancer 2013; 12:2. [PMID: 23289900 PMCID: PMC3600045 DOI: 10.1186/1476-4598-12-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/04/2013] [Indexed: 01/15/2023] Open
Abstract
Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells.
Collapse
|
12
|
Adamts1 is highly induced in rachitic bones of FGF23 transgenic mice and participates in degradation of non-mineralized bone matrix collagen. Biochem Biophys Res Commun 2013; 430:901-6. [DOI: 10.1016/j.bbrc.2012.12.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 11/20/2022]
|
13
|
Hu L, Jonsson KB, Andersén H, Edenro A, Bohlooly-Y M, Melhus H, Lind T. Over-expression of Adamts1 in mice alters bone mineral density. J Bone Miner Metab 2012; 30:304-11. [PMID: 22002813 DOI: 10.1007/s00774-011-0322-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
Abstract
ADAMTS1, a secreted multifunctional metalloproteinase with disintegrin and thrombospondin motifs, is an early response gene of parathyroid hormone (PTH) in osteoblasts. Mice engineered to lack Adamts1 are smaller compared to wild-type (WT) mice and ADAMTS1 metalloproteinase activity has been shown to increase osteoblastic growth in collagen gels. However, there are no reports investigating the consequence of Adamts1 over-expression on bone tissue in vivo. Here, we analyze bones of female and male transgenic (TG) mice over-expressing mouse Adamts1 using peripheral quantitative computed tomography to evaluate its effect on bone shape and mineral density. Western blotting of protein extracts and immunohistochemistry of bone sections reveal increased presence of Adamts1 protein in TG bones compared to WT bones. Phenotypic analyses of femur show that female TG mice have reduced metaphyseal total density, trabecular bone mineral density and trabecular mineral content. In contrast, male TG mice which were without changes in the metaphysis showed increased total density and cortical density at the mid-diaphysis cortical site. Female TG mice showed no significant changes at the cortical site compared to WT mice. Furthermore, diaphyseal endosteal compartment was only affected in male TG mice. Along these lines, Adamts1 increased blood levels of PTH only in females whereas it reduced osteocalcin levels only in males. These results reveal that Adamts1 has an impact on bone mineral density and thus further confirm Adamts1 as a potent regulator of bone remodeling.
Collapse
Affiliation(s)
- Lijuan Hu
- Department of Medical Sciences, Section of Clinical Pharmacology, University Hospital, Ing 70 3tr Foa2 Lab22, 75185, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Alford AI, Reddy AB, Goldstein SA, Murthy P, Tayim R, Sharma G. Two molecular weight species of thrombospondin-2 are present in bone and differentially modulated in fractured and nonfractured tibiae in a murine model of bone healing. Calcif Tissue Int 2012; 90:420-8. [PMID: 22362307 PMCID: PMC3374957 DOI: 10.1007/s00223-012-9580-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 02/04/2012] [Indexed: 02/02/2023]
Abstract
We report two immuoreactive species of thrombospondin-2 (TSP2), sized approximately 200 and 125 kDa, in the long bones of growing, but not skeletally mature, mice. In vitro osteoblasts secrete a 200-kDa species into the culture medium as early as day 3, and it appears in the cell-matrix layer by day 7. A 125-kDa species appears in the cell-matrix layer in parallel with mineralization; it is not detected in cell-conditioned medium. Unilateral tibial fracture induced a time-dependent upregulation of the 200-kDa species at the site of trauma. By contrast, relative levels of the 125-kDa species at the fracture site were lower than in bones from naive control animals. In the contralateral untouched control tibia, the 200-kDa species was rapidly and substantially reduced compared to bone harvested from naive control mice. Levels of the 125-kDa species in the untouched tibia declined gradually with time postfracture. TSP2 gene expression in uninjured control bone decreased modestly by 21 days postfracture. On the day of fracture, the osteoblast differentiation potential of MSCs harvested from uninjured bones decreased compared to those harvested from naive control animals. The presence of two isoforms suggests that TSP2 may undergo posttranscriptional or posttranslational processing in skeletal tissue. Our data also suggest that, in the context of trauma, the two TSP2 isforms are differentially modulated at injured and noninjured skeletal sites in an animal undergoing fracture healing.
Collapse
Affiliation(s)
- Andrea I Alford
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Akison LK, Alvino ER, Dunning KR, Robker RL, Russell DL. Transient Invasive Migration in Mouse Cumulus Oocyte Complexes Induced at Ovulation by Luteinizing Hormone1. Biol Reprod 2012; 86:125. [DOI: 10.1095/biolreprod.111.097345] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
16
|
Saminathan A, Vinoth KJ, Wescott DC, Pinkerton MN, Milne TJ, Cao T, Meikle MC. The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. J Periodontal Res 2011; 47:212-21. [PMID: 22010885 DOI: 10.1111/j.1600-0765.2011.01423.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell adhesion plays important roles in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. The objective of the present investigation was to extend our understanding of the effect of cyclic mechanical strain on the expression of adhesion-related genes by human periodontal ligament cells. MATERIAL AND METHODS Cultured periodontal ligament cells were subjected to a cyclic in-plane tensile deformation of 12% for 5 s (0.2 Hz) every 90 s for 6-24 h in a Flexercell FX-4000 Strain Unit. The following parameters were measured: (i) cell viability by the MTT assay; (ii) caspase-3 and -7 activity; and (iii) the expression of 84 genes encoding adhesion-related molecules using real-time RT-PCR microarrays. RESULTS Mechanical stress reduced the metabolic activity of deformed cells at 6 h, and caspase-3 and -7 activity at 6 and 12 h. Seventy-three genes were detected at critical threshold values < 35. Fifteen showed a significant change in relative expression: five cell adhesion molecules (ICAM1, ITGA3, ITGA6, ITGA8 and NCAM1), three collagen α-chains (COL6A1, COL8A1 and COL11A1), four MMPs (ADAMTS1, MMP8, MMP11 and MMP15), plus CTGF, SPP1 and VTN. Four genes were upregulated (ADAMTS1, CTGF, ICAM1 and SPP1) and 11 downregulated, with the range extending from a 1.76-fold induction of SPP1 at 12 h to a 2.49-fold downregulation of COL11A1 at 24 h. CONCLUSION The study has identified several mechanoresponsive adhesion-related genes, and shown that onset of mechanical stress was followed by a transient reduction in overall cellular activity, including the expression of two apoptosis 'executioner' caspases.
Collapse
Affiliation(s)
- A Saminathan
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
17
|
Synergistic Regulation of Angiogenic Sprouting by Biochemical Factors and Wall Shear Stress. Cell Mol Bioeng 2011; 4:547-559. [PMID: 22247741 DOI: 10.1007/s12195-011-0208-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The process of sprouting angiogenesis involves activating endothelial cells in a quiescent monolayer of an existing vessel to degrade and migrate into the underlying matrix to form new blood vessels. While the roles of biochemical factors in angiogenic sprouting have been well characterized, the roles of fluid forces have received much less attention. This review summarizes results that support a role for wall shear stress in post-capillary venules as a mechanical factor capable of synergizing with biochemical factors to stimulate pro-angiogenic signaling in endothelial cells and promote sprout formation.
Collapse
|
18
|
Ricciardelli C, Frewin KM, Tan IDA, Williams ED, Opeskin K, Pritchard MA, Ingman WV, Russell DL. The ADAMTS1 protease gene is required for mammary tumor growth and metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3075-85. [PMID: 22001177 DOI: 10.1016/j.ajpath.2011.08.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 08/19/2011] [Accepted: 08/26/2011] [Indexed: 12/21/2022]
Abstract
A disintegrin and metalloprotease with thrombospondin motifs protein 1 (ADAMTS1) is a protease commonly up-regulated in metastatic carcinoma. Its overexpression in cancer cells promotes experimental metastasis, but whether ADAMTS1 is essential for metastatic progression is unknown. To address this question, we investigated mammary cancer progression and spontaneous metastasis in the MMTV-PyMT mouse mammary tumor model in Adamts1 knockout mice. Adamts1(-/-)/PyMT mice displayed significantly reduced mammary tumor and lung metastatic tumor burden and increased survival, compared with their wild-type and heterozygous littermates. Histological examination revealed an increased proportion of tumors with ductal carcinoma in situ and a lower proportion of high-grade invasive tumors in Adamts1(-/-)/PyMT mice, compared with Adamts1(+/+)/PyMT mice. Increased apoptosis with unaltered proliferation and vascular density in the Adamts1(-/-)/PyMT tumors suggested that reduced cell survival accounts for the lower tumor burden in ADAMTS1-deficient mice. Furthermore, Adamts1(-/-) tumor stroma had significantly lesser amounts of proteolytically cleaved versican and increased numbers of CD45(+) leukocytes. Characterization of immune cell gene expression indicated that cytotoxic cell activation was increased in Adamts1(-/-) tumors, compared with Adamts1(+/+) tumors. This finding is supported by significantly elevated IL-12(+) cell numbers in Adamts1(-/-) tumors. Thus, in vivo ADAMTS1 may promote mammary tumor growth and progression to metastasis in the PyMT model and is a potential therapeutic target to prevent metastatic breast cancer.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Brown HM, Dunning KR, Robker RL, Boerboom D, Pritchard M, Lane M, Russell DL. ADAMTS1 cleavage of versican mediates essential structural remodeling of the ovarian follicle and cumulus-oocyte matrix during ovulation in mice. Biol Reprod 2010; 83:549-57. [PMID: 20592310 DOI: 10.1095/biolreprod.110.084434] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Remodeling of ovarian follicle extracellular matrix is essential for ovulation and vascularization of the corpus luteum (CL). Formation of the cumulus matrix around oocytes also plays an important role in ovulation and subsequent fertilization of oocytes. ADAMTS1 is an extracellular metalloprotease induced in ovarian follicles by ovulatory hormones and is required for fertility. In this study, we identified ADAMTS1-mediated structural and morphological changes in remodeling of the follicle and cumulus oocyte complex (COC). In Adamts1(-/-) mice, the ovulation rate was 77% reduced and fertilization of ovulated oocytes was reduced a further 63%, resulting in a reduced number of litters and pups per litter. Morphological assessment of peri-ovulatory ovaries revealed abnormal morphogenesis with a lack of thecal/vascular invagination in the basal region of follicles. Cleavage of the ADAMTS1 substrate, versican, at these invaginating regions was abundant in Adamts1(+/-) but undetectable in Adamts1(-/-) ovaries, indicating that processing of versican by ADAMTS1 is involved in ovulating follicle remodeling. Versican and hyaluronan localization was abnormal during COC matrix expansion, and versican persisted beyond the expected time of fertilization in Adamts1(-/-) but was catabolized and cleared from control COC. The results demonstrate that ADAMTS1 is critical in both ovulation and fertilization processes in vivo. The protease activity of ADAMTS1 mediates neomorphogenesis of the ovulating follicle wall and COC matrix necessary for successful ovulation and fertilization, as well as subsequent catabolism of versican required for degradation of COC matrix after fertilization.
Collapse
Affiliation(s)
- Hannah M Brown
- School of Paediatrics and Reproductive Health, Robinson Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Lin EA, Liu CJ. The role of ADAMTSs in arthritis. Protein Cell 2010; 1:33-47. [PMID: 21203996 DOI: 10.1007/s13238-010-0002-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/21/2009] [Indexed: 12/11/2022] Open
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family consists of 19 proteases. These enzymes are known to play important roles in development, angiogenesis and coagulation; dysregulation and mutation of these enzymes have been implicated in many disease processes, such as inflammation, cancer, arthritis and atherosclerosis. This review briefly summarizes the structural organization and functional roles of ADAMTSs in normal and pathological conditions, focusing on members that are known to be involved in the degradation of extracellular matrix and loss of cartilage in arthritis, including the aggrecanases (ADAMTS-4 and ADAMTS-5), ADAMTS-7 and ADAMTS-12, the latter two are associated with cartilage oligomeric matrix protein (COMP), a component of the cartilage extracellular matrix (ECM). We will discuss the expression pattern and the regulation of these metalloproteinases at multiple levels, including their interaction with substrates, induction by pro-inflammatory cytokines, protein processing, inhibition (e.g., TIMP-3, alpha-2-macroglobulin, GEP), and activation (e.g., syndecan-4, PACE-4).
Collapse
Affiliation(s)
- Edward A Lin
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | | |
Collapse
|
21
|
Abstract
The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) comprise a family of secreted zinc metalloproteinases with a precisely ordered modular organization. These enzymes play an important role in the turnover of extracellular matrix proteins in various tissues and their dysregulation has been implicated in disease-related processes such as arthritis, atherosclerosis, cancer, and inflammation. ADAMTS-7 and ADAMTS-12 share a similar domain organization to each other and form a subgroup within the ADAMTS family. Emerging evidence suggests that ADAMTS-7 and ADAMTS-12 may play an important role in the development and pathogenesis of various kinds of diseases. In this review, we summarize what is currently known about the roles of these two metalloproteinases, with a special focus on their involvement in chondrogenesis, endochondral ossification, and the pathogenesis of arthritis, atherosclerosis, and cancer. The future study of ADAMTS-7 and ADAMTS-12, as well as the molecules with which they interact, will help us to better understand a variety of human diseases from both a biological and therapeutic standpoint.
Collapse
Affiliation(s)
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery; Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
22
|
Georges S, Ruiz Velasco C, Trichet V, Fortun Y, Heymann D, Padrines M. Proteases and bone remodelling. Cytokine Growth Factor Rev 2008; 20:29-41. [PMID: 19041277 DOI: 10.1016/j.cytogfr.2008.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bone remodelling is regulated by osteogenic cells which act individually through cellular and molecular interaction. These interactions can be established either through a cell-cell contact, involving molecules of the integrin family, or by the release of many polypeptidic factors and/or their soluble receptor chains. Proteolytic shedding of membrane-associated proteins regulates the physiological activity of numerous proteins. Proteases located on the plasma membrane, either as transmembrane proteins or anchored to cell-surface molecules, serve as activators or inhibitors of different cellular and physiological processes. This review will focus on the role of the proteases implicated in bone remodelling either through the proteolytic degradation of the extracellular matrix or through their relations with osteogenic factors. Their implication in bone tumor progression will be also considered.
Collapse
Affiliation(s)
- S Georges
- Université de Nantes, Nantes Atlantique Universités, France
| | | | | | | | | | | |
Collapse
|
23
|
Su SC, Mendoza EA, Kwak HI, Bayless KJ. Molecular profile of endothelial invasion of three-dimensional collagen matrices: insights into angiogenic sprout induction in wound healing. Am J Physiol Cell Physiol 2008; 295:C1215-29. [DOI: 10.1152/ajpcell.00336.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sprouting angiogenesis is a multistep process consisting of basement membrane degradation, endothelial cell (EC) activation, proliferation, invasion, lumen formation, and sprout stabilization. Such complexity is consistent with a requirement for orchestration of individual gene expression alongside multiple signaling pathways. To better understand the mechanisms that direct the transformation of adherent ECs on the surface of collagen matrices to develop multicellular invading sprouts, we analyzed differential gene expression with time using a defined in vitro model of EC invasion driven by the combination of sphingosine-1-phosphate, basic FGF, and VEGF. Gene expression changes were confirmed by real-time PCR and Western blot analyses. A cohort of cell adhesion molecule genes involved in adherens junction and cell-extracellular matrix (ECM) interactions were upregulated, whereas a set of genes associated with tight junctions were downregulated. Numerous genes encoding ECM proteins and proteases were induced, indicating that biosynthesis and remodeling of ECM is indispensable for sprouting angiogenesis. Knockdown of a highly upregulated gene, a disintegrin and metalloproteinase with thrombospondin-type repeats-1 (ADAMTS1), decreased invasion responses, confirming a role for ADAMTS1 in mediating EC invasion. Furthermore, differential expression of multiple members of the Wnt and Notch pathways was observed. Functional experiments indicated that inhibition and activation of the Notch signaling pathway stimulated and inhibited EC invasion responses, respectively. This study has enhanced the molecular road map of gene expression changes that occur during endothelial invasion and highlighted the utility of three-dimensional models to study EC morphogenesis.
Collapse
|