1
|
Batkovskyte D, Swolin-Eide D, Hammarsjö A, Sæther KB, Thunström S, Lundin J, Eisfeldt J, Lindstrand A, Nordgren A, Åström E, Grigelioniene G. Structural Variants in COL1A1 and COL1A2 in Osteogenesis Imperfecta. Am J Med Genet A 2025; 197:e63935. [PMID: 39513464 DOI: 10.1002/ajmg.a.63935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Osteogenesis Imperfecta (OI) is a heterogeneous skeletal dysplasia characterized by bone fragility, skeletal deformities, and short stature. Most commonly, it is caused by autosomal dominant variants in the type I collagen genes, COL1A1 or COL1A2. Type I collagen is the main protein of the extracellular matrix in the skeleton and changes in its structure or quantity may lead to OI. 85%-90% of OI cases occur due to sequence variants in type I collagen genes, while OI caused by structural abnormalities in type I collagen genes is less common. In most cases, haploinsufficiency of type I collagen is associated with a milder OI phenotype. Large genomic deletions often involve several genes within the same chromosomal region, leading to microdeletion syndromes with OI features. Here, we report eight Swedish patients from five unrelated families with OI due to structural variants in the COL1A1 and COL1A2 genes. One patient with OI type III had a complex rearrangement with a deletion and duplication event in COL1A2, leading to reduced COL1A2 expression. Three other patients from two different families with OI type I had whole gene deletions involving COL1A1. In one family, three affected individuals with OI type I had a small intragenic deletion of exons 11-12 in COL1A2. One patient had a 2.1 Mb de novo deletion encompassing COL1A1 and DLX3 genes and features of OI and tricho-dento-osseous syndrome. Overall, this study highlights the importance of investigating gene dosage abnormalities in patients with OI and further delineates clinical and genetic variability of OI caused by structural variants in type I collagen genes.
Collapse
Affiliation(s)
- Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Diana Swolin-Eide
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristine Bilgrav Sæther
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Thunström
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institution of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Eva Åström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Barbaro F, Conza GD, Quartulli FP, Quarantini E, Quarantini M, Zini N, Fabbri C, Mosca S, Caravelli S, Mosca M, Vescovi P, Sprio S, Tampieri A, Toni R. Correlation between tooth decay and insulin resistance in normal weight males prompts a role for myo-inositol as a regenerative factor in dentistry and oral surgery: a feasibility study. Front Bioeng Biotechnol 2024; 12:1374135. [PMID: 39144484 PMCID: PMC11321979 DOI: 10.3389/fbioe.2024.1374135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Background In an era of precision and stratified medicine, homogeneity in population-based cohorts, stringent causative entry, and pattern analysis of datasets are key elements to investigate medical treatments. Adhering to these principles, we collected in vivo and in vitro data pointing to an insulin-sensitizing/insulin-mimetic effect of myo-inositol (MYO) relevant to cell regeneration in dentistry and oral surgery. Confirmation of this possibility was obtained by in silico analysis of the relation between in vivo and in vitro results (the so-called bed-to-benchside reverse translational approach). Results Fourteen subjects over the 266 screened were young adult, normal weight, euglycemic, sedentary males having normal appetite, free diet, with a regular three-times-a-day eating schedule, standard dental hygiene, and negligible malocclusion/enamel defects. Occlusal caries were detected by fluorescence videoscanning, whereas body composition and energy balance were estimated with plicometry, predictive equations, and handgrip. Statistically significant correlations (Pearson r coefficient) were found between the number of occlusal caries and anthropometric indexes predicting insulin resistance (IR) in relation to the abdominal/visceral fat mass, fat-free mass, muscular strength, and energy expenditure adjusted to the fat and muscle stores. This indicated a role for IR in affecting dentin reparative processes. Consistently, in vitro administration of MYO to HUVEC and Swiss NIH3T3 cells in concentrations corresponding to those administered in vivo to reduce IR resulted in statistically significant cell replication (ANOVA/Turkey tests), suggesting that MYO has the potential to counteract inhibitory effects of IR on dental vascular and stromal cells turnover. Finally, in in silico experiments, quantitative evaluation (WOE and information value) of a bioinformatic Clinical Outcome Pathway confirmed that in vitro trophic effects of MYO could be transferred in vivo with high predictability, providing robust credence of its efficacy for oral health. Conclusion Our reverse bed-to-benchside data indicate that MYO might antagonize the detrimental effects of IR on tooth decay. This provides feasibility for clinical studies on MYO as a regenerative factor in dentistry and oral surgery, including dysmetabolic/aging conditions, bone reconstruction in oral destructive/necrotic disorders, dental implants, and for empowering the efficacy of a number of tissue engineering methodologies in dentistry and oral surgery.
Collapse
Affiliation(s)
- Fulvio Barbaro
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Francesca Pia Quartulli
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Enrico Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Marco Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
| | - Celine Fabbri
- Course on Odontostomatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Vescovi
- Department of Medicine and Surgery - DIMEC, Odontostomatology Section, University of Parma, Parma, Italy
| | | | | | - Roberto Toni
- CNR - ISSMC, Faenza, Italy
- Academy of Sciences of the Institute of Bologna, Section IV - Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic - OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and R&D Center A.I.B.O, Centro Medico Galliera, San Venanzio di Galliera, Italy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center - Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Saboori-Darabi S, Carrera P, Akbari A, Amiri-Yekta A, Almadani N, Battista Pipitone G, Shahrokh-Tehraninejad E, Lotfi M, Mazaheri M, Totonchi M. A heterozygous missense variant in DLX3 leads to uterine leiomyomas and pregnancy losses in a consanguineous Iranian family. Gene 2023; 865:147292. [PMID: 36854347 DOI: 10.1016/j.gene.2023.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Uterine leiomyomas (ULs) are benign solid tumors arising from the uterine myometrium. They are the most common pelvic tumors among females of reproductive age. Despite the universal prevalence of ULs and its huge impact on women's lives, the exact etiology and pathophysiologic mechanisms have not been fully understood. Numerous studies indicate that genetic factors play a crucial role in ULs development. This study aims to identify the probable genetic causes of ULs in a consanguineous Iranian family. Whole-exome sequencing (WES) on five family members with ULs revealed a likely pathogenic missense variant encoding for Y88C in the transactivation (TA) domain of DLX3 gene (c.263A > G; p.Y88C). Sanger sequencing of a total of 9 affected and non-affected family members indicated a segregation with disease with autosomal dominant inheritance. Moreover, targeted Sanger sequencing on 32 additional non-related patients with ULs showed none was heterozygous for this variant. MutPred2 predicted the pathogenicity of candidate variant by both phosphorylation and sulfation loss as actionable hypotheses. Project HOPE revealed that the identified variant residue is smaller and more hydrophobic comparing to the wild-type residue. I-TASSER and UCSF Chimera were also used for modeling and visualizing the predicted variant, respectively. This WES analysis is the first to report a variant in DLX3 variation associated with ULs pathogenicity in Iranian population highlighting the effectiveness of WES as a strong diagnostic method. However, further functional studies on this variant are needed to confirm the potential pathogenicity of this mutation.
Collapse
Affiliation(s)
- Samaneh Saboori-Darabi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Arvand Akbari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Ensieh Shahrokh-Tehraninejad
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Mother & Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
4
|
Salt Dependence of DNA Binding Activity of Human Transcription Factor Dlx3. Int J Mol Sci 2022; 23:ijms23169497. [PMID: 36012753 PMCID: PMC9409194 DOI: 10.3390/ijms23169497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Distal-less 3 (Dlx3) is a homeobox-containing transcription factor and plays a crucial role in the development and differentiation process. Human Dlx3 consists of two transactivation domains and a homeobox domain (HD) that selectively binds to the consensus site (5'-TAATT-3') of the DNA duplex. Here, we performed chemical shift perturbation experiments on Dlx3-HD in a complex with a 10-base-paired (10-bp) DNA duplex under various salt conditions. We also acquired the imino proton spectra of the 10-bp DNA to monitor the changes in base-pair stabilities during titration with Dlx3-HD. Our study demonstrates that Dlx3-HD selectively recognizes its consensus DNA sequences through the α3 helix and L1 loop regions with a unique dynamic feature. The dynamic properties of the binding of Dlx3-HD to its consensus DNA sequence can be modulated by varying the salt concentrations. Our study suggested that this unique structural and dynamic feature of Dlx3-HD plays an important role in target DNA recognition, which might be associated with tricho-dento-osseous syndrome.
Collapse
|
5
|
Liu H, Wang Y, Liu H, Yu M, Zheng J, Feng H, Liu Y, Han D. Novel DLX3 variant identified in a family with tricho-dento-osseous syndrome. Arch Oral Biol 2022; 141:105479. [PMID: 35714441 DOI: 10.1016/j.archoralbio.2022.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES To identify DLX3 variants in a Chinese family with typical clinical manifestations of tricho-dento-osseous syndrome (TDO). DESIGN Sanger sequencing was performed to detect DLX3 variants in the TDO family. Three-dimensional laser scanning microscopy, bioinformatic and conformational analyses were employed to explore the phenotypic characterization and the functional impact. RESULTS We identified a novel heterozygous variant in the DLX3 gene (c.534G>C; p.Gln178His). Familial co-segregation verified an autosomal dominant inheritance pattern. Bioinformatic prediction demonstrated the deleterious effects of the variant, and DLX3 structure changes suggested the corresponding functional impairments. CONCLUSIONS We identified a variant in the DLX3 gene in an integrated family of Han nationality for the first time. This study expands the variant spectrum of DLX3 and phenotype spectrum of TDO syndrome.
Collapse
Affiliation(s)
- Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yue Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China; Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jinglei Zheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
6
|
Dong L, Wang M, Gao X, Zheng X, Zhang Y, Sun L, Zhao N, Ding C, Ma Z, Wang Y. miR-9-5p promotes myogenic differentiation via the Dlx3/Myf5 axis. PeerJ 2022; 10:e13360. [PMID: 35529491 PMCID: PMC9074878 DOI: 10.7717/peerj.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs play an important role in myogenic differentiation, they bind to target genes and regulate muscle formation. We previously found that miR-9-5p, which is related to bone formation, was increased over time during the process of myogenic differentiation. However, the mechanism by which miR-9-5p regulates myogenic differentiation remains largely unknown. In the present study, we first examined myotube formation and miR-9-5p, myogenesis-related genes including Dlx3, Myod1, Mef2c, Desmin, MyoG and Myf5 expression under myogenic induction. Then, we detected the expression of myogenic transcription factors after overexpression or knockdown of miR-9-5p or Dlx3 in the mouse premyoblast cell line C2C12 by qPCR, western blot and myotube formation under myogenic induction. A luciferase assay was performed to confirm the regulatory relationships between not only miR-9-5p and Dlx3 but also Dlx3 and its downstream gene, Myf5, which is an essential transcription factor of myogenic differentiation. The results showed that miR-9-5p promoted myogenic differentiation by increasing myogenic transcription factor expression and promoting myotube formation, but Dlx3 exerted the opposite effect. Moreover, the luciferase assay showed that miR-9-5p bound to the 3'UTR of Dlx3 and downregulated Dlx3 expression. Dlx3 in turn suppressed Myf5 expression by binding to the Myf5 promoter, ultimately inhibiting the process of myogenic differentiation. In conclusion, the miR-9-5p/Dlx3/Myf5 axis is a novel pathway for the regulation of myogenic differentiation, and can be a potential target to treat the diseases related to muscle dysfunction.
Collapse
Affiliation(s)
- Liying Dong
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China,Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Meng Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaolei Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuan Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixin Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liangjie Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts, USA,Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
7
|
Li J, Lin Q, Lin Y, Lai R, Zhang W. Effects of DLX3 on the osteogenic differentiation of induced pluripotent stem cell‑derived mesenchymal stem cells. Mol Med Rep 2021; 23:232. [PMID: 33655330 PMCID: PMC7893805 DOI: 10.3892/mmr.2021.11871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a disease characterized by the degeneration of bone structure and decreased bone mass. Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) have multiple advantages that make them ideal seed cells for bone regeneration, including high-level proliferation, multi-differentiation potential and favorable immune compatibility. Distal-less homeobox (DLX)3, an important member of the DLX family, serves a crucial role in osteogenic differentiation and bone formation. The present study aimed to evaluate the effects of DLX3 on the proliferation and osteogenic differentiation of human iPSC-MSCs. iPSC-MSCs were induced from iPSCs, and identified via flow cytometry. Alkaline phosphatase (ALP), Von Kossa, Oil Red O and Alcian blue staining methods were used to evaluate the osteogenic, adipogenic and chondrogenic differentiation of iPSC-MSCs. DLX3 overexpression plasmids were constructed and transfected into iPSC-MSCs to generate iPSC-MSC-DLX3. iPSC-MSC-GFP was used as the control. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were performed to measure the expression of DLX3 2 days after transfection. Subsequently, cell proliferation was assessed using a Cell Counting Kit-8 assay on days 1, 3, 5 and 7. RT-qPCR and western blotting were used to analyze osteogenic-related gene and protein expression levels on day 7. ALP activity and mineralized nodules were assessed via ALP staining on day 14. Statistical analysis was performed using an unpaired Student's t-test. Flow cytometry results demonstrated that iPSC-MSCs were positive for CD73, CD90 and CD105, but negative for CD34 and CD45. iPSC-MSC-DLX3 had significantly lower proliferation compared with iPSC-MSC-GFP on days 5 and 7 (P<0.05). mRNA expression levels of osteogenic markers, such as ALP, osteopenia (OPN), osteocalcin (OCN) and Collagen Type I (COL-1), were significantly increased in iPSC-MSC-DLX3 compared with iPSC-MSC-GFP on day 7 (P<0.05). Similarly, the protein expression levels of ALP, OCN, OPN and COL-1 were significantly increased in iPSC-MSC-DLX3 compared with iPSC-MSC-GFP on day 7 (P<0.05). The number of mineralized nodules in iPSC-MSC-DLX3 was increased compared with that in iPSC-MSC-GFP on day 14 (P<0.05). Thus, the present study demonstrated that DLX3 serves a negative role in proliferation, but a positive role in the osteogenic differentiation of iPSC-MSCs. This may provide novel insight for treating osteoporosis.
Collapse
Affiliation(s)
- Junyuan Li
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Qiang Lin
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yixin Lin
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Renfa Lai
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wen Zhang
- Department of Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
8
|
Rahimzadeh S, Rahbarghazi R, Aslani S, Rajabi H, Latifi Z, Farshdousti Hagh M, Nourazarian A, Nozad Charoudeh H, Nouri M, Abhari A. Promoter methylation and expression pattern of DLX3, ATF4, and FRA1 genes during osteoblastic differentiation of adipose-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2019; 10:243-250. [PMID: 32983940 PMCID: PMC7502906 DOI: 10.34172/bi.2020.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Nowadays, mesenchymal stem cells are touted as suitable cell supply for the restoration of injured bone tissue. The existence of osteogenic differentiation makes these cells capable of replenishing damaged cells in the least possible time. It has been shown that epigenetic modifications, especially DNA methylation, contribute to the regulation of various transcription factors during phenotype acquisition. Hence, we concentrated on the correlation between the promoter methylation and the expression of genes DLX3, ATF4 , and FRA1 during osteoblastic differentiation of adipose-derived mesenchymal stem cells in vitro after 21 days.
Methods: Adipose-derived mesenchymal stem cells were cultured in osteogenesis differentiation medium supplemented with 0.1 µM dexamethasone, 10 mM β-glycerol phosphate, and 50 µM ascorbate-2-phosphate for 21 days. RNA and DNA extraction was done on days 0, 7, 14, and 21. Promoter methylation and expression levels of genes DLX3 , ATF4 , and FRA1 were analyzed by methylation-specific quantitative PCR and real-time PCR assays, respectively.
Results: We found an upward expression trend with the increasing time for genes DLX3, ATF4, and FRA1 in stem cells committed to osteoblast-like lineage compared to the control group (P <0.05). On the contrary, methylation-specific quantitative PCR displayed decreased methylation rates of DLX3 and ATF4 genes, but not FRA1 , over time compared to the non-treated control cells (P <0.05). Bright-field images exhibited red-colored calcified deposits around Alizarin Red S-stained cells after 21 days compared to the control group. Statistical analysis showed a strong correlation between the transcription of genes DLX3 and ATF4 and methylation rate (P <0.05).
Conclusion: In particular, osteoblastic differentiation of adipose-derived mesenchymal stem cells enhances DLX3 and ATF4 transcriptions by reducing methylation rate for 21 days.
Collapse
Affiliation(s)
- Sevda Rahimzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Aslani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
DLX3 regulates osteogenic differentiation of bone marrow mesenchymal stem cells via Wnt/β-catenin pathway mediated histone methylation of DKK4. Biochem Biophys Res Commun 2019; 516:171-176. [PMID: 31202458 DOI: 10.1016/j.bbrc.2019.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Distal-less homeobox 3 (DLX3) is an important transcription factor involved in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the underlying mechanism is not clear. This study investigated the underlying mechanism of DLX3 in osteogenic differentiation. METHODS DLX3 overexpression and knockdown in cells were achieved using lentiviruses. The osteogenic differentiation of BMSCs was detected using alkaline phosphatase expression, alizarin red staining, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and chromatin immunoprecipitation (ChIP) assays. RESULTS DLX3 overexpression promoted the osteogenic differentiation of BMSCs, whereas DLX3 knockdown reduced the osteogenic differentiation of BMSCs. RT-qPCR and Western blotting assays showed that DLX3 modulated osteogenic differentiation via the Wnt/β-catenin pathway. ChIP-qPCR showed that DLX3 knockdown promoted DKK4 expression by decreasing the enrichment of histone H3 lysine 27 trimethylation (H3K27me3) in the promotor region of DKK4. CONCLUSION Our data implied that DLX3 regulated Wnt/β-catenin pathway through histone modification of DKK4 during the osteogenic differentiation of BMSCs.
Collapse
|
10
|
Zeng L, Sun S, Dong L, Liu Y, Liu H, Han D, Ma Z, Wang Y, Feng H. DLX3 epigenetically regulates odontoblastic differentiation of hDPCs through H19/miR-675 axis. Arch Oral Biol 2019; 102:155-163. [PMID: 31029881 DOI: 10.1016/j.archoralbio.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/17/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES A novel mutation (c.533 A > G; Q178R) in DLX3 gene is responsible for Tricho-Dento-Osseous (TDO) syndrome. As one of features of TDO syndrome is dentin hypoplasia, we explored the mechanism regarding dentin defects in TDO syndrome. DESIGN hDPCs were obtained from the healthy premolars, stably expressing hDPCs were generated using recombinant lentiviruses. Quantitative methylation analysis, DNMT3B activity, CHIP, and evaluation of odonto-differentiation ability of hDPCs assays were performed. RESULTS Novel mutant DLX3 (MU-DLX3) significantly inhibited the expression of long non-coding RNA H19 and resulted in hyper-methylation of H19 in MU group, rescue studies showed that up-regulation the expression of H19 and demethylation of H19 in MU group were able to rescue the effect of MU-DLX3. Subsequently, miR-675, encoded by H19, was also able to rescue the above effects of MU-DLX3. Thus, we proposed that MU-DLX3 regulated odontoblastic differentiation of hDPCs through H19/miR-675 axis. Through CHIP and DNMT3B activity assays disclosed the underlying mechanism by which MU-DLX3 altered H19 expression and methylation status in MU group by increasing H3K9me3 enrichment and DNMT3B activity. CONCLUSIONS Our new findings, for the first time, suggest that MU-DLX3 significantly inhibits hDPCs differentiation via H19/miR-675 axis and provides a new mechanism insight into how MU-DLX3 epigenetically alters H19 methylation status and expression contributes to dentin hypoplasia in TDO syndrome.
Collapse
Affiliation(s)
- Li Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Liying Dong
- Department of Oral & Maxillofacial Surgery, PR China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China.
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, PR China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Bejing, PR China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| |
Collapse
|
11
|
Qadir AS, Lee J, Lee YS, Woo KM, Ryoo HM, Baek JH. Distal-less homeobox 3, a negative regulator of myogenesis, is downregulated by microRNA-133. J Cell Biochem 2019; 120:2226-2235. [PMID: 30277585 DOI: 10.1002/jcb.27533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/24/2023]
Abstract
Distal-less homeobox 3 (Dlx3), a member of the Dlx family of homeobox proteins, is a transcriptional activator of runt-related transcription factor 2 (Runx2) during osteogenic differentiation. It has been demonstrated that forced expression of Runx2 induces an osteogenic program and ectopic calcification in muscles. Therefore, it would be reasonable to predict that Dlx3 also affects myogenic differentiation. The relationship between Dlx3 and myogenesis, however, remains poorly understood. Therefore, in this study, the role and regulation of Dlx3 during myogenic differentiation were investigated. Expression level of Dlx3 was downregulated in human mesenchymal stem cells (MSCs), mouse MSCs, and C2C12 cells cultured in myogenic medium. Dlx3 level was inversely correlated with myogenic differentiation 1 and the muscle-specific microRNA, microRNA-133 (miR-133). The expression level of Runx2 was closely regulated by Dlx3 even under myogenic conditions. Overexpression of Dlx3 markedly downregulated expression levels of myogenic transcription factors and myotube formation in C2C12 cells, whereas Dlx3 knockdown enhanced myogenic differentiation. The Dlx3 3'-untranslated region (3'-UTR) has two potential binding sites for miR-133. Luciferase reporter assays demonstrated that Dlx3 is a direct target of miR-133a and miR-133b, and that the two target sites are redundantly active. Taken together, these results suggest that Dlx3 is a negative regulator of myogenic differentiation and that miR-133a and miR-133b enhance myogenic differentiation, partly through inhibition of Dlx3 expression via direct targeting of the Dlx3 3'-UTR.
Collapse
Affiliation(s)
- Abdul S Qadir
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.,Present address: Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeeyong Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Whitehouse LLE, Smith CEL, Poulter JA, Brown CJ, Patel A, Lamb T, Brown LR, O’Sullivan EA, Mitchell RE, Berry IR, Charlton R, Inglehearn CF, Mighell AJ. Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho-dento-osseous syndrome. Oral Dis 2019; 25:182-191. [PMID: 30095208 PMCID: PMC6334507 DOI: 10.1111/odi.12955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Variants in DLX3 cause tricho-dento-osseous syndrome (TDO, MIM #190320), a systemic condition with hair, nail and bony changes, taurodontism and amelogenesis imperfecta (AI), inherited in an autosomal dominant fashion. Different variants found within this gene are associated with different phenotypic presentations. To date, six different DLX3 variants have been reported in TDO. The aim of this paper was to explore and discuss three recently uncovered new variants in DLX3. SUBJECTS AND METHODS Whole-exome sequencing identified a new DLX3 variant in one family, recruited as part of an ongoing study of genetic variants associated with AI. Targeted clinical exome sequencing of two further families revealed another new variant of DLX3 and complete heterozygous deletion of DLX3. For all three families, the phenotypes were shown to consist of AI and taurodontism, together with other attenuated features of TDO. RESULTS c.574delG p.(E192Rfs*66), c.476G>T (p.R159L) and a heterozygous deletion of the entire DLX3 coding region were identified in our families. CONCLUSION These previously unreported variants add to the growing literature surrounding AI, allowing for more accurate genetic testing and better understanding of the associated clinical consequences.
Collapse
Affiliation(s)
| | - Claire E. L. Smith
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical SciencesUniversity of LeedsLeedsUK
| | | | | | - Anesha Patel
- Birmingham Dental Hospital and School of DentistryBirminghamUK
| | - Teresa Lamb
- Oxford University Hospitals NHS Foundation TrustOxfordUK
| | | | | | | | - Ian R. Berry
- Leeds Genetics LaboratorySt James’s University HospitalLeedsUK
| | - Ruth Charlton
- Leeds Genetics LaboratorySt James’s University HospitalLeedsUK
| | - Chris F. Inglehearn
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical SciencesUniversity of LeedsLeedsUK
| | | |
Collapse
|
13
|
Lee SH, Oh KN, Han Y, Choi YH, Lee KY. Estrogen Receptor α Regulates Dlx3-Mediated Osteoblast Differentiation. Mol Cells 2016; 39:156-62. [PMID: 26674964 PMCID: PMC4757804 DOI: 10.14348/molcells.2016.2291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
Estrogen receptor α (ER-α), which is involved in bone metabolism and breast cancer, has been shown to have transcriptional targets. Dlx3 is essential for the skeletal development and plays an important role in osteoblast differentiation. Various osteogenic stimulators and transcription factors can induce the protein expression of Dlx3. However, the regulatory function of ER-α in the Dlx3 mediated osteogenic process remains unknown. Therefore, we investigated the regulation of Dlx3 and found that ER-α is a positive regulator of Dlx3 transcription in BMP2-induced osteoblast differentiation. We also found that ER-α interacts with Dlx3 and increases its transcriptional activity and DNA binding affinity. Furthermore, we demonstrated that the regulation of Dlx3 activity by ER-α is independent of the ligand (estradiol) binding domain. These results indicate that Dlx3 is a novel target of ER-α, and that ER-α regulates the osteoblast differentiation through modulation of Dlx3 expression and/or interaction with Dlx3.
Collapse
Affiliation(s)
- Sung Ho Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| | - Kyo-Nyeo Oh
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| | - Younho Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| | - You Hee Choi
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| | - Kwang-Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
14
|
Li Y, Han D, Zhang H, Liu H, Wong S, Zhao N, Qiu L, Feng H. Morphological analyses and a novelde novo DLX3mutation associated with tricho-dento-osseous syndrome in a Chinese family. Eur J Oral Sci 2015; 123:228-34. [PMID: 26104267 DOI: 10.1111/eos.12197] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Yue Li
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Dong Han
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Hao Zhang
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Haochen Liu
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Singwai Wong
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Na Zhao
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing China
| | - Lixin Qiu
- The 4 Dental Division; Peking University School and Hospital of Stomatology; Beijing China
| | - Hailan Feng
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|
15
|
Zhang Z, Tian H, Lv P, Wang W, Jia Z, Wang S, Zhou C, Gao X. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis. PLoS One 2015; 10:e0121288. [PMID: 25815730 PMCID: PMC4376716 DOI: 10.1371/journal.pone.0121288] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/29/2015] [Indexed: 11/25/2022] Open
Abstract
Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.
Collapse
Affiliation(s)
- Zhichun Zhang
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Hua Tian
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
- * E-mail: (HT); (CZ)
| | - Ping Lv
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Sainan Wang
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
- * E-mail: (HT); (CZ)
| | - Xuejun Gao
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| |
Collapse
|
16
|
Choi YH, Choi HJ, Lee KY, Oh JW. Akt1 regulates phosphorylation and osteogenic activity of Dlx3. Biochem Biophys Res Commun 2012; 425:800-5. [DOI: 10.1016/j.bbrc.2012.07.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 02/01/2023]
|
17
|
Tricho-dento-osseous syndrome: diagnosis and dental management. Int J Dent 2012; 2012:514692. [PMID: 22969805 PMCID: PMC3434396 DOI: 10.1155/2012/514692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 11/17/2022] Open
Abstract
Tricho-dento-osseous (TDO) syndrome is a rare, autosomal dominant disorder principally characterised by curly hair at infancy, severe enamel hypomineralization and hypoplasia and taurodontism of teeth, sclerotic bone, and other defects. Diagnostic criteria are based on the generalized enamel defects, severe taurodontism especially of the mandibular first permanent molars, an autosomal dominant mode of inheritance, and at least one of the other features (i.e., nail defects, bone sclerosis, and curly, kinky or wavy hair present at a young age that may straighten out later). Confusion with amelogenesis imperfecta is common; however, taurodontism is not a constant feature of any of the types of amelogenesis imperfecta. Management of TDO requires a team approach, proper documentation, and a long-term treatment and follow-up plan. The aim of treatment is to prevent problems such as sensitivity, caries, dental abscesses, and loss of occlusal vertical dimension through attrition of hypoplastic tooth structure. Another aim is to restore function of the dentition and enhance the esthetics and self-esteem of the patient. This paper proposes treatment approaches that include preventive, restorative, endodontic, prosthetic, and surgical options to management. In addition, it sheds light on the difficulties faced during dental treatment of such cases.
Collapse
|
18
|
Viale-Bouroncle S, Felthaus O, Schmalz G, Brockhoff G, Reichert TE, Morsczeck C. The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells. Stem Cells Dev 2012; 21:1936-1947. [PMID: 22107079 PMCID: PMC3396153 DOI: 10.1089/scd.2011.0422] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/22/2011] [Indexed: 01/28/2023] Open
Abstract
The transcription factor DLX3 plays a decisive role in bone development of vertebrates. In neural-crest derived stem cells from the dental follicle (DFCs), DLX3 is differentially expressed during osteogenic differentiation, while other osteogenic transcription factors such as DLX5 or RUNX2 are not highly induced. DLX3 has therefore a decisive role in the differentiation of DFCs, but its actual biological effects and regulation are unknown. This study investigated the DLX3-regulated processes in DFCs. After DLX3 overexpression, DFCs acquired a spindle-like cell shape with reorganized actin filaments. Here, marker genes for cell morphology, proliferation, apoptosis, and osteogenic differentiation were significantly regulated as shown in a microarray analysis. Further experiments showed that DFCs viability is directly influenced by the expression of DLX3, for example, the amount of apoptotic cells was increased after DLX3 silencing. This transcription factor stimulates the osteogenic differentiation of DFCs and regulates the BMP/SMAD1-pathway. Interestingly, BMP2 did highly induce DLX3 and reverse the inhibitory effect of DLX3 silencing in osteogenic differentiation. However, after DLX3 overexpression in DFCs, a BMP2 supplementation did not improve the expression of DLX3 and the osteogenic differentiation. In conclusion, DLX3 influences cell viability and regulates osteogenic differentiation of DFCs via a BMP2-dependent pathway and a feedback control.
Collapse
Affiliation(s)
- Sandra Viale-Bouroncle
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany
| | - Oliver Felthaus
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University of Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Nguyen T, Phillips C, Frazier-Bower S, Wright T. Craniofacial variations in the tricho-dento-osseous syndrome. Clin Genet 2012; 83:375-9. [PMID: 22671030 DOI: 10.1111/j.1399-0004.2012.01907.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 11/29/2022]
Abstract
Tricho-dento-osseous (TDO) syndrome is an autosomal dominant trait characterized by curly kinky hair at birth, enamel hypoplasia, taurodontism, thickening of cortical bones and variable expression of craniofacial morphology. Genetic studies have identified a 4-bp deletion in the DLX3 gene that is associated with TDO; however, phenotypic characterization and classification of TDO remains unclear in the literature. This study compares the craniofacial variations between 53 TDO-affected subjects and 34 unaffected family members. Standardized cephalograms were obtained and digitized. Cephalometric measurements were analyzed using a general linear model with family as a random effect. Numerous craniofacial measurements from both groups showed marked variability. TDO-affected subjects showed a Class III skeletal pattern (smaller SNA and ANB angles), longer mandibular corpus length (GoGn) and shorter ramus height (p < 0.05).
Collapse
Affiliation(s)
- T Nguyen
- Department of Orthodontics, University of North Carolina, Chapel Hill, NC 27599–7450, USA.
| | | | | | | |
Collapse
|
20
|
Di Costanzo A, Festa L, Roscigno G, Vivo M, Pollice A, Morasso M, La Mantia G, Calabrò V. A dominant mutation etiologic for human tricho-dento-osseous syndrome impairs the ability of DLX3 to downregulate ΔNp63α. J Cell Physiol 2011; 226:2189-97. [DOI: 10.1002/jcp.22553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Nieminen P, Lukinmaa PL, Alapulli H, Methuen M, Suojärvi T, Kivirikko S, Peltola J, Asikainen M, Alaluusua S. DLX3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs 2011; 194:49-59. [PMID: 21252474 DOI: 10.1159/000322561] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2010] [Indexed: 11/19/2022] Open
Abstract
Tricho-dento-osseous syndrome (TDO) is a rare type of dominantly inherited ectodermal dysplasia so far described only in a few families and associated with 3 known mutations in the DLX3 homeobox gene. Here, we describe two families of Finnish origin that segregate features of TDO in several generations. The affected family members have sparse or curly/kinky hair at birth, markedly delayed or advanced dental maturity, defective tooth enamel and dentin, taurodontic molars, multiple dental abscesses and filling of tooth pulps with amorphous denticle-like material as well as an increased density and/or thickness of craniofacial bones. The disease is especially accentuated in one of the families in which the patients develop only lanugo-type hair and the dental abnormalities are severe. After mutational analysis of DLX3, we identified 2 missense mutations affecting the conserved homeodomain. We suggest that TDO is essentially caused by loss of function and haploinsufficiency of DLX3.
Collapse
Affiliation(s)
- Pekka Nieminen
- Institute of Dentistry, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Choi SJ, Song IS, Feng JQ, Gao T, Haruyama N, Gautam P, Robey PG, Hart TC. Mutant DLX 3 disrupts odontoblast polarization and dentin formation. Dev Biol 2010; 344:682-92. [PMID: 20510228 DOI: 10.1016/j.ydbio.2010.05.499] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 11/30/2022]
Abstract
Tricho-dento-osseous (TDO) syndrome is an autosomal dominant disorder characterized by abnormalities in the thickness and density of bones and teeth. A 4-bp deletion mutation in the Distal-Less 3 (DLX3) gene is etiologic for most cases of TDO. To investigate the in vivo role of mutant DLX3 (MT-DLX3) on dentin development, we generated transgenic (TG) mice expressing MT-DLX3 driven by a mouse 2.3 Col1A1 promoter. Dentin defects were radiographically evident in all teeth and the size of the nonmineralized pulp was enlarged in TG mice, consistent with clinical characteristics in patients with TDO. High-resolution radiography, microcomputed tomography, and SEM revealed a reduced zone of mineralized dentin with anomalies in the number and organization of dentinal tubules in MT-DLX3 TG mice. Histological and immunohistochemical studies demonstrated that the decreased dentin was accompanied by altered odontoblast cytology that included disruption of odontoblast polarization and reduced numbers of odontoblasts. TUNEL assays indicated enhanced odontoblast apoptosis. Expression levels of the apoptotic marker caspase-3 were increased in odontoblasts in TG mice as well as in odontoblastic-like MDPC-23 cells transfected with MT-DLX3 cDNA. Expression of Runx2, Wnt 10A, and TBC1D19 colocalized with DLX3 expression in odontoblasts, and MT-DLX3 significantly reduced expression of all three genes. TBC1D19 functions in cell polarity and decreased TBC1D19 expression may contribute to the observed disruption of odontoblast polarity and apoptosis. These data indicate that MT-DLX3 acts to disrupt odontoblast cytodifferentiation leading to odontoblast apoptosis, and aberrations of dentin tubule formation and dentin matrix production, resulting in decreased dentin and taurodontism. In summary, this TG model demonstrates that MT-DLX3 has differential effects on matrix production and mineralization in dentin and bone and provides a novel tool for the investigation of odontoblast biology.
Collapse
Affiliation(s)
- S J Choi
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Choi SJ, Marazita ML, Hart PS, Sulima PP, Field LL, McHenry TG, Govil M, Cooper ME, Letra A, Menezes R, Narayanan S, Mansilla MA, Granjeiro JM, Vieira AR, Lidral AC, Murray JC, Hart TC. The PDGF-C regulatory region SNP rs28999109 decreases promoter transcriptional activity and is associated with CL/P. Eur J Hum Genet 2008; 17:774-84. [PMID: 19092777 DOI: 10.1038/ejhg.2008.245] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human linkage and association studies suggest a gene(s) for nonsyndromic cleft lip with or without cleft palate (CL/P) on chromosome 4q31-q32 at or near the platelet-derived growth factor-C (PDGF-C) locus. The mouse Pdgfc(-/-) knockout shows that PDGF-C is essential for palatogenesis. To evaluate the role of PDGF-C in human clefting, we performed sequence analysis and SNP genotyping using 1048 multiplex CL/P families and 1000 case-control samples from multiple geographic origins. No coding region mutations were identified, but a novel -986 C>T SNP (rs28999109) was significantly associated with CL/P (P=0.01) in cases from Chinese families yielding evidence of linkage to 4q31-q32. Significant or near-significant association was also seen for this and several other PDGF-C SNPs in families from the United States, Spain, India, Turkey, China, and Colombia, whereas no association was seen in families from the Philippines, and Guatemala, and case-controls from Brazil. The -986T allele abolished six overlapping potential transcription regulatory motifs. Transfection assays of PDGF-C promoter reporter constructs show that the -986T allele is associated with a significant decrease (up to 80%) of PDGF-C gene promoter activity. This functional polymorphism acting on a susceptible genetic background may represent a component of human CL/P etiology.
Collapse
Affiliation(s)
- Sun J Choi
- Human Craniofacial Genetic Section, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892-1423, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
In vivo impact of a 4 bp deletion mutation in the DLX3 gene on bone development. Dev Biol 2008; 325:129-37. [PMID: 18996110 DOI: 10.1016/j.ydbio.2008.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 10/02/2008] [Indexed: 11/22/2022]
Abstract
Distal-less 3 (DLX3) gene mutations are etiologic for Tricho-Dento-Osseous syndrome. To investigate the in vivo impact of mutant DLX3 on bone development, we established transgenic (TG) mice expressing the c.571_574delGGGG DLX-3 gene mutation (MT-DLX3) driven by a mouse 2.3 Col1A1 promoter. Microcomputed tomographic analyses demonstrated markedly increased trabecular bone volume and bone mineral density in femora from TG mice. In ex vivo experiments, TG mice showed enhanced differentiation of bone marrow stromal cells to osteoblasts and increased expression levels of bone formation markers. However, TG mice did not show enhanced dynamic bone formation rates in in vivo fluorochrome double labeling experiments. Osteoclastic differentiation capacities of bone marrow monocytes were reduced in TG mice in the presence of osteoclastogenic factors and the numbers of TRAP(+) osteoclasts on distal metaphyseal trabecular bone surfaces were significantly decreased. TRACP 5b and CTX serum levels were significantly decreased in TG mice, while IFN-gamma levels were significantly increased. These data demonstrate that increased levels of IFN-gamma decrease osteoclast bone resorption activities, contributing to the enhanced trabecular bone volume and mineral density in these TG mice. These data suggest a novel role for this DLX-3 mutation in osteoclast differentiation and bone resorption.
Collapse
|
25
|
Duverger O, Lee D, Hassan MQ, Chen SX, Jaisser F, Lian JB, Morasso MI. Molecular consequences of a frameshifted DLX3 mutant leading to Tricho-Dento-Osseous syndrome. J Biol Chem 2008; 283:20198-208. [PMID: 18492670 DOI: 10.1074/jbc.m709562200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homeodomain protein Distal-less-3 (Dlx3) plays a crucial role during embryonic development. This transcription factor is known to be essential for placental formation and to be involved in skin and skeletal organogenesis. In humans, a frameshift mutation in the coding sequence of the DLX3 gene results in an ectodermal dysplasia called Tricho-Dento-Osseous syndrome (TDO). The main features of this autosomal dominant disorder are defects in hair, teeth, and bone. To investigate the functional alterations caused by the mutated DLX3(TDO) isoform ex vivo, we used tetracycline-inducible osteoblastic and keratinocyte cell lines and calvarial derived osteoblasts in which the expression of DLX3(WT) and/or DLX3(TDO) could be regulated and monitored. Immunocytochemical analysis revealed that both DLX3(WT) and DLX3(TDO) recombinant proteins are targeted to the nucleus. However, as demonstrated by electrophoresis mobility shift assay, DLX3(TDO) is not able to bind to the canonical Dlx3 binding site. Furthermore, we demonstrate that the frameshifted C-terminal domain in DLX3(TDO) is accountable for the loss of DNA binding activity because the C-terminal domain in DLX3(WT) is not required for DNA binding activity. Although DLX3(TDO) alone cannot bind to a Dlx3 responsive element, when DLX3(WT) and DLX3(TDO) are co-expressed they form a complex that can bind DNA. Concomitant with the inability to bind DNA, DLX3(TDO) has a defective transcriptional activity. Moreover, the transcriptional activity of DLX3(WT) is significantly reduced in the presence of the mutated isoform, indicating that DLX3(TDO) has a dominant negative effect on DLX3(WT) transcriptional activity.
Collapse
Affiliation(s)
- Olivier Duverger
- Developmental Skin Biology Unit, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|