1
|
Montoya-Sanhueza G, Bennett NC, Oosthuizen MK, Dengler-Crish CM, Chinsamy A. Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. J Anat 2020; 238:1259-1283. [PMID: 33305850 DOI: 10.1111/joa.13381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Lacking fur, living in eusocial colonies and having the longest lifespan of any rodent, makes naked mole-rats (NMRs) rather peculiar mammals. Although they exhibit a high degree of polymorphism, skeletal plasticity and are considered a novel model to assess the effects of delayed puberty on the skeletal system, scarce information on their morphogenesis exists. Here, we examined a large ontogenetic sample (n = 76) of subordinate individuals to assess the pattern of bone growth and bone microstructure of fore- and hindlimb bones by using histomorphological techniques. Over 290 undecalcified thin cross-sections from the midshaft of the humerus, ulna, femur, and tibia from pups, juveniles and adults were analyzed with polarized light microscopy. Similar to other fossorial mammals, NMRs exhibited a systematic cortical thickening of their long bones, which clearly indicates a conserved functional adaptation to withstand the mechanical strains imposed during digging, regardless of their chisel-tooth predominance. We describe a high histodiversity of bone matrices and the formation of secondary osteons in NMRs. The bones of pups are extremely thin-walled and grow by periosteal bone formation coupled with considerable expansion of the medullary cavity, a process probably tightly regulated and adapted to optimize the amount of minerals destined for skeletal development, to thus allow the female breeder to produce a higher number of pups, as well as several litters. Subsequent cortical thickening in juveniles involves high amounts of endosteal bone apposition, which contrasts with the bone modeling of other mammals where a periosteal predominance exists. Adults have bone matrices predominantly consisting of parallel-fibered bone and lamellar bone, which indicate intermediate to slow rates of osteogenesis, as well as the development of poorly vascularized lamellar-zonal tissues separated by lines of arrested growth (LAGs) and annuli. These features reflect the low metabolism, low body temperature and slow growth rates reported for this species, as well as indicate a cyclical pattern of osteogenesis. The presence of LAGs in captive individuals was striking and indicates that postnatal osteogenesis and its consequent cortical stratification most likely represents a plesiomorphic thermometabolic strategy among endotherms which has been suggested to be regulated by endogenous rhythms. However, the generalized presence of LAGs in this and other subterranean taxa in the wild, as well as recent investigations on variability of environmental conditions in burrow systems, supports the hypothesis that underground environments experience seasonal fluctuations that may influence the postnatal osteogenesis of animals by limiting the extension of burrow systems during the unfavorable dry seasons and therefore the finding of food resources. Additionally, the intraspecific variation found in the formation of bone tissue matrices and vascularization suggested a high degree of developmental plasticity in NMRs, which may help explaining the polymorphism reported for this species. The results obtained here represent a valuable contribution to understanding the relationship of several aspects involved in the morphogenesis of the skeletal system of a mammal with extraordinary adaptations.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa.,Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Maria K Oosthuizen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | | | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Montoya-Sanhueza G, Chinsamy A. Cortical bone adaptation and mineral mobilization in the subterranean mammal Bathyergus suillus (Rodentia: Bathyergidae): effects of age and sex. PeerJ 2018; 6:e4944. [PMID: 29910978 PMCID: PMC6001714 DOI: 10.7717/peerj.4944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023] Open
Abstract
The patterns of bone modeling and mineral mobilization (skeletal homeostasis) among mammals other than humans and laboratory rodents are still poorly known. In this study we assessed the pattern of bone formation and bone resorption in the femur of a wild population of Cape dune molerats, Bathyergus suillus (n = 41) (Bathyergidae), a solitary subterranean mammal with a marked extended longevity among rodents, and which also lives in a naturally deficient state of vitamin D. In order to determine ontogenetic and sex effects on histomorphometric parameters of transversal undecalcified bone sections, two-way ANOVA, linear mixed-effects model and regression statistical analyses were performed. During ontogeny, B. suillus increased their cross sectional area, cortical area and cortical thickness, and most importantly, they showed scarce endosteal bone resorption which resulted in a retained medullary cavity size during ontogeny. This resulted in a positively imbalanced bone modeling, where bone formation considerably surpasses bone loss by almost 100-fold in adulthood. This differs markedly from other terrestrial mammals with relatively thin cortical walls. Regarding bone loss and remodeling, three main processes involving intracortical resorption were observed: modeling-related bone loss in early postnatal growth; secondary osteon formation occurring in both sexes; and subendosteal secondary reconstruction observed only in females. The latter is accompanied by females having six-fold more relative bone loss than males, which is evidenced by the development of enlarged resorption cavities (RCs) distributed circumferentially around the medullary cavity. Males have smaller, more circular and randomly distributed RCs. In general, our data indicate no age-related decline in mineral content in B. suillus, and provides strong support for a pattern of sexual dimorphism in skeletal homeostasis, similar to that occurring in humans and other mammals, with females losing more bone throughout aging as compared to males due to reproductive factors. Interestingly as well, despite the high mechanical loads experienced during burrow construction, bone remodeling in B. suillus is kept at very low levels throughout their lifespan, and dense Haversian tissue never forms. This study represents the first comprehensive assessment of skeletal homeostasis in a subterranean mammal, and it enables a better understanding of the complex processes governing the acquisition and maintenance of bone properties in this species with extraordinary fossorial adaptations.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Biological Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
3
|
Yingling VR, Mitchell KA, Lunny M. Acute hypothalamic suppression significantly affects trabecular bone but not cortical bone following recovery and ovariectomy surgery in a rat model. PeerJ 2016; 4:e1575. [PMID: 26793427 PMCID: PMC4715452 DOI: 10.7717/peerj.1575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022] Open
Abstract
Background. Osteoporosis is “a pediatric disease with geriatric consequences.” Bone morphology and tissue quality co-adapt during ontogeny for sufficient bone stiffness. Altered bone morphology from hypothalamic amenorrhea, a risk factor for low bone mass in women, may affect bone strength later in life. Our purpose was to determine if altered morphology following hypothalamic suppression during development affects cortical bone strength and trabecular bone volume (BV/TV) at maturity. Methods. Female rats (25 days old) were assigned to a control (C) group (n = 45) that received saline injections (.2 cc) or an experimental group (GnRH-a) (n = 45) that received gonadotropin releasing hormone antagonist injections (.24 mg per dose) for 25 days. Fifteen animals from each group were sacrificed immediately after the injection protocol at Day 50 (C, GnRH-a). The remaining animals recovered for 135 days and a subset of each group was sacrificed at Day 185 ((C-R) (n = 15) and (G-R) (n = 15)). The remaining animals had an ovariectomy surgery (OVX) at 185 days of age and were sacrificed 40 days later (C-OVX) (n = 15) and (G-OVX) (n = 15). After sacrifice femurs were mechanically tested and scanned using micro CT. Serum C-terminal telopeptides (CTX) and insulin-like growth factor 1 (IGF-1) were measured. Two-way ANOVA (2 groups (GnRH-a and Control) X 3 time points (Injection Protocol, Recovery, post-OVX)) was computed. Results. GnRH-a injections suppressed uterine weights (72%) and increased CTX levels by 59%. Bone stiffness was greater in the GnRH-a groups compared to C. Ash content and cortical bone area were similar between groups at all time points. Polar moment of inertia, a measure of bone architecture, was 15% larger in the GnRH-a group and remained larger than C (19%) following recovery. Both the polar moment of inertia and cortical area increased linearly with the increases in body weight. Following the injection protocol, trabecular BV/TV was 31% lower in the GnRH-a group compared to C, a similar deficit in BV/TV was also measured following recovery and post-OVX. The trabecular number and thickness were lower in the GnRH-a group compared to control. Conclusion. These data suggest that following a transient delay in pubertal onset, trabecular bone volume was significantly lower and no restoration of bone volume occurred following recovery or post-OVX surgery. However, cortical bone strength was maintained through architectural adaptations in the cortical bone envelope. An increase in the polar moment of inertia offset increased bone resorption. The current data are the first to suppress trabecular bone during growth, and then add an OVX protocol at maturity. Trabecular bone and cortical bone differed in their response to hypothalamic suppression during development; trabecular bone was more sensitive to the negative effects of hypothalamic suppression.
Collapse
Affiliation(s)
- Vanessa R Yingling
- Department of Kinesiology, California State University, East Bay, Hayward, CA, United States; Department of Kinesiology, Temple University, Philadelphia, PA, United States; Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, United States
| | - Kathryn A Mitchell
- Department of Kinesiology, Temple University , Philadelphia, PA , United States
| | - Megan Lunny
- Department of Kinesiology, Temple University , Philadelphia, PA , United States
| |
Collapse
|
4
|
Abstract
BACKGROUND Many athletes are beginning intense training before puberty, a time of increased bone accrual when up to 25% of total bone mineral accrual occurs. Female athletes experiencing late or delayed pubertal onset may have open epiphyseal plates that are vulnerable to injury. This investigation's purpose was to determine whether a delay in puberty (primary amenorrhea) affects the growth plate immediately postpuberty and at maturity. METHODS Forty-eight female Sprague-Dawley rats (23 d old) were randomly assigned to 4 groups (n=12); short-term control (C-ST), long-term control (C-LT), short-term GnRH antagonist (G-ST), and long-term GnRH antagonist (G-LT). At 25 days of age, daily gonadotropin-releasing hormone antagonist (GnRH-a) injections were administered delaying pubertal onset. Left tibias were analyzed. Stained frontal slices of proximal tibia (5 µm thick) were analyzed in hypertrophic, proliferative, and reserve zones for total height, zone height, and cell/column counts. All procedures were approved by Institutional Animal Care and Use Committee at Brooklyn College. RESULTS Growth plate height was 19.7% wider in delayed puberty (G-ST) group and at maturity was 27.9% greater in G-LT group compared with control (C-LT) (P<0.05). No significant differences were found in short-term or long-term growth plate zone heights or cell/column counts between groups (P>0.05). Growth plate zone height normalized to total height resulted in 28.7% larger reserve zone in the short-term GnRH-a group but the proliferative zone was 8.5% larger in the long-term group compared with the control group (P<0.05). Normalized to growth plate height a significant decrease was found in column counts in proliferative zones of the short-term and long-term GnRH-a groups. CONCLUSIONS Current data illustrate that delayed puberty using GnRH-a injections results in significant growth plate height and decreases proliferative column counts and zone height, thus potentially contributing to decreases in bone mass at maturity. CLINICAL RELEVANCE Growth plate height increases indicate increased potential for growth and bone accrual. However, previous models report decreased bone volume following delayed puberty via GnRH-a injections that may have detrimental effects in the long term.
Collapse
|
5
|
de Mello WG, de Morais SRL, Dornelles RCM, Kagohara Elias LL, Antunes-Rodrigues J, Bedran de Castro JC. Effects of neonatal castration and androgenization on sexual dimorphism in bone, leptin and corticosterone secretion. Bone 2012; 50:893-900. [PMID: 22210233 DOI: 10.1016/j.bone.2011.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 11/22/2022]
Abstract
This study investigated the role of neonatal sex steroids in rats on sexual dimorphism in bone, as well as on leptin and corticosterone concentrations throughout the lifespan. Castration of males and androgenization of females were used as models to investigate the role of sex steroids shortly after birth. Newborn Wistar rats were divided into four groups, two male groups and two female groups. Male pups were cryoanesthetized and submitted to castration or sham-operation procedures within 24 h after birth. Female pups received a subcutaneous dose of testosterone propionate (100 μg) or vehicle. Rats were euthanized at 20, 40, or 120 postnatal days. Body weight was also measured at 20, 40, and 120 days of age, and blood samples and femurs were collected. The length and thickness of the femurs were measured and the areal bone mineral density (areal BMD) was determined by dual-energy X-ray absorptiometry (DEXA). Biomechanical three-point bending testing was used to evaluate bone breaking strength, energy to fracture, and extrinsic stiffness. Blood samples were submitted to a biochemical assay to estimate calcium, phosphorus, alkaline phosphatase, leptin, and corticosterone levels. Weight gain, areal BMD and bone biomechanical properties increased rapidly with respect to age in all groups. In control animals, skeletal sexual dimorphism, leptin concentration, and dimorphic corticosterone concentration patterns were evident after puberty. However, androgen treatment induced changes in growth, areal BMD, and bone mass properties in neonatal animals. In addition, neonatally-castrated males had bone development and mechanical properties similar to those of control females. These results suggest that the exposure to neonatal androgens may represent at least one covariate that mediates dimorphic variation in leptin and corticosterone secretions. The study indicates that manipulation of the androgen environment during the critical period of sexual differentiation of the brain causes long-lasting changes in bone development, as well as serum leptin and corticosterone concentrations. In addition, this study provides useful models for the investigation of bone disorders induced by hypothalamic hypogonadism.
Collapse
Affiliation(s)
- Wagner Garcez de Mello
- Multicentric Graduate Studies Program in Physiological Sciences, Brazilian Physiological Society/Univ. Estadual Paulista, SP, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Naked mole rats are mouse-sized rodents that have become an important animal model in biomedical research. They play a unique mammalian role in behavioral and ecophysiological research of life underground. This chapter studies the general physiology, anatomy of organ systems, husbandry, and uses in research of the naked mole rats. Naked mole rats belong to the order Rodentia in that they have two incisor teeth on the upper and lower arcade that continuously grow. The skin is loose, wrinkled, and brownish pink in color. The body is for the most part absent of hairs with the exception of tactile hairs that are regularly arranged throughout the body and which are particularly prominent around the face and to a lesser extent on the tail. They are typically housed at 28–30°C, and at 50–60% relative humidity. Because naked mole rats are social and have cooperative behaviors, the study of their conduct has more applicability to people. The chapter describes the models of experimental research on the naked mole rat such as the model of reproductive suppression, model of somatosensory processing, model of bone elongation, and model of aging.
Collapse
|
7
|
Joshi R, Safadi F, Barbe M, Carpio-Cano FD, Popoff S, Yingling V. Different effects on bone strength and cell differentiation in pre pubertal caloric restriction versus hypothalamic suppression. Bone 2011; 49:810-8. [PMID: 21807131 PMCID: PMC3772180 DOI: 10.1016/j.bone.2011.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/14/2011] [Accepted: 07/14/2011] [Indexed: 12/26/2022]
Abstract
Hypothalamic amenorrhea and energy restriction during puberty affect peak bone mass accrual. One hypothesis suggests energy restriction alters hypothalamic function resulting in suppressed estradiol levels leading to bone loss. However, both positive and negative results have been reported regarding energy restriction and bone strength. Therefore, the purpose of this study was to investigate energy restriction and hypothalamic suppression during pubertal onset on bone mechanical strength and the osteogenic capacity of bone marrow-derived cells in two models: female rats treated with gonadotropin releasing hormone antagonists (GnRH-a) or 30% energy restriction. At 23 days of age, female Sprague Dawley rats were assigned to three groups: control group (C, n=10), GnRH-a group (n=10), and Energy Restriction (ER, n=12) group. GnRH-a animals received daily injections for 27 days. The animals in the ER group received 70% of the control animals' intake. After sacrifice (50 days of age), body weight, uterine and muscle weights were measured. Bone marrow-derived stromal cells were cultured and assayed for proliferation and differentiation into osteoblasts. Outcome measures included bone strength, bone histomorphometry and architecture, serum IGF-1 and osteocalcin. GnRH-a suppressed uterine weight, decreased osteoblast proliferation, bone strength, trabecular bone volume and architecture compared to control. Elevated serum IGF-1 and osteocalcin levels and body weight were found. The ER model had an increase in osteoblast proliferation compared to the GnRH-a group, similar bone strength relative to body weight and increased trabecular bone volume in the lumbar spine compared to control. The ER animals were smaller but had developed bone strength sufficient for their size. In contrast, suppressed estradiol via hypothalamic suppression resulted in bone strength deficits and trabecular bone volume loss. In summary, our results support the hypothesis that during periods of nutritional stress the increased vertebral bone volume may be an adaptive mechanism to store mineral which differs from suppressed estradiol resulting from hypothalamic suppression.
Collapse
Affiliation(s)
- R.N. Joshi
- Department of Kinesiology, Temple University, Philadelphia, PA, 19122, USA
| | - F.F. Safadi
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, 19140, USA
| | - M.F. Barbe
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Fe Del Carpio-Cano
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, 19140, USA
| | - S.N. Popoff
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, 19140, USA
| | - V.R. Yingling
- Department of Kinesiology, Temple University, Philadelphia, PA, 19122, USA
- Correspondence author at: Department of Kinesiology, Temple University, 121 Pearson Hall, Broad Street and Montgomery Avenue, USA. Fax: +1 215 204 4414. (V.R. Yingling)
| |
Collapse
|
8
|
Abstract
PURPOSE The purposes of this study were to suppress estradiol levels in adolescent (postpubertal rats) using gonadotropin-releasing hormone antagonist (GnRH-a) injections and to determine the changes in bone structure and mechanical strength. METHODS In an Institutional Animal Care and Use Committee-approved study, female rats at 23 d of age were assigned to a baseline group (BL65; n = 10) sacrificed on day 65, a control group (Control; n = 15) sacrificed on day 90, or an experimental group (AMEN; n = 9) sacrificed on day 90 that received daily injections of GnRH-a for a 25-d period from 65 to 90 d of age (2.5 mg·kg(-1) per dose). RESULTS Body weights were similar on day 65; however, the AMEN group was significantly heavier than the Control group (17%, P = 0.001) on day 90. In the AMEN rats relative to the Control group, plasma estradiol levels were reduced by 36% (P = 0.0001) and plasma insulin-like growth factor 1 levels were 24% higher (P = 0.003). In the femur, there was no change in periosteal bone apposition or total cross-sectional area. The marrow area increased by 13.7% (P = 0.05) resulting in a 7.8% decrease in relative cortical area (P = 0.012), and endocortical bone formation rate increased by 39.4% (P = 0.04). Trabecular volume and number decreased by 51.5% (P = 0.0003) and 49.5% (P = 0.0003), respectively. The absolute peak moments of the tibiae and femurs were unchanged in the AMEN group relative to the Control group, but these were reduced by 8.8% (P = 0.03) and 7.5% (P = 0.09), respectively, when normalized by body weight. CONCLUSIONS Suppression of estradiol by 25 d of GnRH-a administration to 65-d-old (postpubertal) rats reduced trabecular volume and number by about 50%, increased endocortical bone turnover, and reduced relative cortical thickness without changing tibial and femoral total area. These changes in bone structure were associated with no change in absolute mechanical strength possibly because of increases in body weight or in insulin-like growth factor 1 concentrations.
Collapse
Affiliation(s)
- McKayla Elle Saine
- Department of Anthropology, College of Liberal Arts, Temple University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
9
|
Pinto M, Jepsen KJ, Terranova CJ, Buffenstein R. Lack of sexual dimorphism in femora of the eusocial and hypogonadic naked mole-rat: a novel animal model for the study of delayed puberty on the skeletal system. Bone 2010; 46:112-20. [PMID: 19761882 PMCID: PMC4783644 DOI: 10.1016/j.bone.2009.08.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/18/2009] [Accepted: 08/12/2009] [Indexed: 12/22/2022]
Abstract
Sex steroid hormones are major determinants of bone morphology and quality and are responsible for sexually dimorphic skeletal traits. Hypogonadism results in suboptimal skeletal development and may lead to an increased risk of bone fracture later in life. The etiology of delayed puberty and/or hypothalamic amenorrhea is poorly understood, and experimental animal models addressing this issue are predominantly based upon short-term experimental induction of hormonal suppression via gonadotropin releasing hormone antagonists (GnRH-a). This acute change in hormone profile does not necessarily emulate the natural progression of hypogonadic bone disorders. We propose a novel animal model with which to explore the effects of chronic hypogonadism on bone quality, the naked mole-rat (NMR; Heterocephalus glaber). This mouse-size rodent may remain reproductively suppressed throughout its life, if it remains as a subordinate within the eusocial mole-rat colony. NMRs live in large colonies with a single dominant breeding female. She, primarily by using aggressive social contact, naturally suppresses the hypothalamic gonadotropic axis of subordinate NMRs and thereby their reproductive expression. However, should an NMR be separated from the dominant breeder, within less than a week reproductive hormones may become elevated and the animal attains breeding status. We questioned if sexual suppression of subordinates impact upon the development and maintenance of the femora and lead to a sexually indistinct monomorphic skeleton. Femora were obtained from male and female NMRs that were either non-breeders (subordinate) or breeders at the time of sacrifice. Diaphyseal cross-sectional morphology, metaphyseal trabecular micro-architecture and tissue mineral density of the femur were measured using microcomputed tomography and diaphyseal mechanical properties were assessed by four-point bending tests to failure. Subordinates were sexually monomorphic and showed no significant differences in body weight or femoral bone structure and quality between males and females. Femora of subordinate females differed significantly from that of breeding animals, whereas in males, the divergent trend among breeders and non-breeders did not reach statistical significance. Subordinate NMRs, naturally suppressed from entering puberty, may prove to be a useful model to tease apart the relationship between bone morphology and hypogonadism and evaluate skeletal development during pubertal maturation.
Collapse
Affiliation(s)
- M Pinto
- City College of CUNY, New York, NY, USA
| | | | | | | |
Collapse
|
10
|
Yingling V, Elle Saine M, Joshi R. Hypothalamic suppression decreases bone strength before and after puberty in a rat model. Calcif Tissue Int 2009; 84:485-93. [PMID: 19350192 PMCID: PMC3730490 DOI: 10.1007/s00223-009-9241-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 03/04/2009] [Indexed: 10/20/2022]
Abstract
The incidence of menstrual irregularities, both primary and secondary amenorrhea, has been reported to be as high as 60%, with the highest incidence in younger athletes, suggesting possible adverse effects on bone development. It was hypothesized that in a rat model, suppressed hypothalamic activity via a gonadotropin-releasing hormone antagonist (GnRH-a) before onset of puberty would result in a relatively larger bone strength deficit compared with suppression after puberty. Hypothalamic suppression was achieved by providing GnRH injections. Animals received injections for 25 days either before puberty (pre group) (age 23-46 days) or after puberty (post group) (age 65-90 days). Body weights and uterine weights were measured. Serum estradiol was assayed. Mechanical strength of the right femora and histomorphometry of the left femur were measured. Suppression of the hypothalamic-pituitary-gonadal axis was confirmed by significant atrophy of uterine tissue and suppressed estradiol levels. The peak moment was significantly lower in the pre and post GnRH-a groups compared with control. The percentage difference of the average peak moment and stiffness values from the respective age-matched control groups yielded a greater percentage difference in the pre group. The cortical area was less in the GnRH-a-treated groups, but no significant difference between the relative deficits between pre and post groups were found. Hypothalamic-pituitary-gonadal axis suppression before puberty resulted in a significantly larger deficit in mechanical strength compared with postpubertal animals. The time before puberty may represent a time when skeletal strength is more compromised. Women experience both primary and secondary amenorrhea; however, the treatment may need to be different for each condition.
Collapse
Affiliation(s)
- Vanessa Yingling
- Department of Anatomy and Cell Biology, Temple University, 1800 N Broad Street, Philadelphia, PA 19122, USA.
| | | | | |
Collapse
|
11
|
Yingling VR. A delay in pubertal onset affects the covariation of body weight, estradiol, and bone size. Calcif Tissue Int 2009; 84:286-96. [PMID: 19283426 PMCID: PMC3729932 DOI: 10.1007/s00223-009-9231-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 02/04/2009] [Indexed: 02/07/2023]
Abstract
The skeletal system functions as a locomotive organ and a mineral reservoir and combinations of genetic and environmental factors affect the skeletal system. Although delayed puberty is associated with compromised bone mass, suppression of estrogen should be beneficial to cortical strength. The purpose was to employ path analysis to study bone strength and delayed puberty. Forty-five female rats were randomly assigned to a control group (n = 15) and an experimental group (n = 30) that received injections of gonadotropin releasing hormone antagonist (GnRH-a). Causal models were constructed by specifying directed paths between bone traits. The first model tested the hypothesis that the functional relationships between bone traits and body weight were altered by a delay in pubertal onset. GnRH-a injections during puberty altered the covariation between body weight and bone size. The second model was constructed to test the hypothesis that variability in stiffness was causally related to variability in body weight. The model also tested the relationship between the periosteal and endocortical surfaces and their relationship to stiffness. There was no change in the relationship between the surfaces in the GnRH-a group. The third model determined the effect of estradiol on both total area and relative cortical area in both groups. The relationship between periosteal surface and serum estradiol levels was only significant during estrogen suppression. These data suggest that increases in body weight during or prior to puberty may not be protective of bone strength.
Collapse
Affiliation(s)
- Vanessa R Yingling
- Department of Kinesiology, Temple University, 121 Pearson Hall, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|