1
|
Sun Q, Wu S, Liu K, Li Y, Mehmood K, Nazar M, Hu L, Pan J, Tang Z, Liao J, Zhang H. miR-181b-1-3p affects the proliferation and differentiation of chondrocytes in TD broilers through the WIF1/Wnt/β-catenin pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105649. [PMID: 38072524 DOI: 10.1016/j.pestbp.2023.105649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
Thiram is a plant fungicide, its excessive use has exceeded the required environmental standards. It causes tibial dyschondroplasia (TD) in broilers which is a common metabolic disease that affects the growth plate of tibia bone. It has been studied that many microRNAs (miRNAs) are involved in the differentiation of chondrocytes however, their specific roles and mechanisms have not been fully investigated. The selected features of tibial chondrocytes of broilers were studied in this experiment which included the expression of miR-181b-1-3p and the genes related to WIF1/Wnt/β-catenin pathway in chondrocytes through qRT-PCR, western blot and immunofluorescence. The correlation between miR-181b-1-3p and WIF1 was determined by dual luciferase reporter gene assay whereas, the role of miR-181b-1-3p and WIF1/Wnt/β-catenin in chondrocyte differentiation was determined by mimics and inhibitor transfection experiments. Results revealed that thiram exposure resulted in decreased expression of miR-181b-1-3p and increased expression of WIF1 in chondrocytes. A negative correlation was also observed between miR-181b-1-3p and WIF1. After overexpression of miR-181b-1-3p, the expression of ACAN, β-catenin and Col2a1 increased but the expression of GSK-3β decreased. It was observed that inhibition of WIF1 increased the expression of ALP, β-catenin, Col2a1 and ACAN but decreased the expression of GSK-3β. It is concluded that miR-181b-1-3p can reverse the inhibitory effect of thiram on cartilage proliferation and differentiation by inhibiting WIF1 expression and activating Wnt/β-catenin signaling pathway. This study provides a new molecular target for the early diagnosis and possible treatment of TD in broilers.
Collapse
Affiliation(s)
- Qiuyu Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mudassar Nazar
- University of Agriculture Faisalabad, Sub-Campus Burewala, 61010, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Liu Y, Chen Y, Li XH, Cao C, Zhang HX, Zhou C, Chen Y, Gong Y, Yang JX, Cheng L, Chen XD, Shen H, Xiao HM, Tan LJ, Deng HW. Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution. Int J Stem Cells 2023; 16:342-355. [PMID: 37105556 PMCID: PMC10465330 DOI: 10.15283/ijsc22101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Xi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
3
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
4
|
Gassel LC, Schneider S, Banke IJ, Braun KF, Volkering C, Zeeb L, Burgkart RHH, von Eisenhart-Rothe R, Biberthaler P, van Griensven M, Haug AT. Dysregulation of Wnt signaling in bone of type 2 diabetes mellitus and diabetic Charcot arthropathy. BMC Musculoskelet Disord 2022; 23:365. [PMID: 35436882 PMCID: PMC9017014 DOI: 10.1186/s12891-022-05314-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/04/2022] [Indexed: 12/03/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) patients show a markedly higher fracture risk and impaired fracture healing when compared to non-diabetic patients. However in contrast to type 1 diabetes mellitus, bone mineral density in T2DM is known to be normal or even regionally elevated, also known as diabetic bone disease. Charcot arthropathy is a severe and challenging complication leading to bone destruction and mutilating bone deformities. Wnt signaling is involved in increasing bone mineral density, bone homeostasis and apoptotic processes. It has been shown that type 2 diabetes mellitus is strongly associated with gene variants of the Wnt signaling pathway, specifically polymorphisms of TCF7L2 (transcription factor 7 like 2), which is an effector transcription factor of this pathway. Methods Bone samples of 19 T2DM patients and 7 T2DM patients with additional Charcot arthropathy were compared to 19 non-diabetic controls. qPCR analysis for selected members of the Wnt-signaling pathway (WNT3A, WNT5A, catenin beta, TCF7L2) and bone gamma-carboxyglutamate (BGLAP, Osteocalcin) was performed and analyzed using the 2-ΔΔCt- Method. Statistical analysis comprised one-way analysis of variance (ANOVA). Results In T2DM patients who had developed Charcot arthropathy WNT3A and WNT5A gene expression was down-regulated by 89 and 58% compared to healthy controls (p < 0.0001). TCF7L2 gene expression showed a significant reduction by 63% (p < 0.0001) and 18% (p = 0.0136) in diabetic Charcot arthropathy. In all diabetic patients BGLAP (Osteocalcin) was significantly decreased by at least 59% (p = 0.0019). Conclusions For the first time with this study downregulation of members of the Wnt-signaling pathway has been shown in the bone of diabetic patients with and without Charcot arthropathy. This may serve as future therapeutic target for this severe disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05314-9.
Collapse
Affiliation(s)
- Laurens Christian Gassel
- Department of Experimental Trauma Surgery, and Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Sandra Schneider
- Department of Experimental Trauma Surgery, and Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Ingo Jörg Banke
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Karl Friedrich Braun
- Charité - Berlin University of Medicine, Center for Musculoskeletal Surgery, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | | | - Leonie Zeeb
- Department of Experimental Trauma Surgery, and Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Rainer Hans Hermann Burgkart
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Rüdiger von Eisenhart-Rothe
- Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Peter Biberthaler
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, and Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.,Department cBITE, MERLN Institute, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Alexander Tobias Haug
- Department of Experimental Trauma Surgery and, Department of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.
| |
Collapse
|
5
|
Thomas S, Jaganathan BG. Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal 2022; 16:47-61. [PMID: 34236594 PMCID: PMC8688675 DOI: 10.1007/s12079-021-00635-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Osteogenesis is an important developmental event that results in bone formation. Bone forming cells or osteoblasts develop from mesenchymal stem cells (MSCs) through a highly controlled process regulated by several signaling pathways. The osteogenic lineage commitment of MSCs is controlled by cell-cell interactions, paracrine factors, mechanical signals, hormones, and cytokines present in their niche, which activate a plethora of signaling molecules belonging to bone morphogenetic proteins, Wnt, Hedgehog, and Notch signaling. These signaling pathways individually as well as in coordination with other signaling molecules, regulate the osteogenic lineage commitment of MSCs by activating several osteo-lineage specific transcription factors. Here, we discuss the key signaling pathways that regulate osteogenic differentiation of MSCs and the cross-talk between them during osteogenic differentiation. We also discuss how these signaling pathways can be modified for therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Sachin Thomas
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
6
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
7
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Wei Y, Ma H, Zhou H, Yin H, Yang J, Song Y, Yang B. miR-424-5p shuttled by bone marrow stem cells-derived exosomes attenuates osteogenesis via regulating WIF1-mediated Wnt/β-catenin axis. Aging (Albany NY) 2021; 13:17190-17201. [PMID: 34229300 PMCID: PMC8312462 DOI: 10.18632/aging.203169] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence proves that exosomes contain specific microRNAs(miRNAs) contribute to osteogenic differentiation of bone marrow stem cells (BMSCs). However, the role and mechanism of bone marrow stem cells (BMSCs)-derived exosomes overexpressing miR-424-5p in osteoblasts remains unclear. Firstly, the BMSCs-derived exosomes were isolated, and identified by Western blot with the exosome surface markers CD9, CD81 and CD63. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the level of miR-424-5p in exosomes, and western blot was implemented to verify the WIF1/Wnt/β-catenin expression. The binding association between miR-424-5p and WIF1 was determined by the dual-luciferase reporter gene assay. Functional enhancement experiments were adopted to determine the role of exosome-carried miR-424-5p and WIF1/Wnt/β-catenin in osteogenic differentiation. ALP staining was adopted, and levels of RUNX2, OCN, and OPN were monitored using qRT-PCR to determine osteogenic differentiation. As a result, In vivo experiments showed that RUNX2, OCN and OPN levels decreased and the ALP activity was dampened after miR-424-5p overexpression in exosomes. Besides, exosomes overexpressing miR-424-5p attenuated osteogenic development via WIF1/Wnt/β-catenin. Our findings may bring evidence for miR-424-5p as a new biomarker for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yongkun Wei
- Departments of Orthopedics and Pathology, 3201 Hospital, Hanzhong 723000, Shaanxi, China
| | - Huiling Ma
- Hanzhong Vocational and Technical College, Hanzhong 723002, Shaanxi, China
| | - Haiqing Zhou
- Departments of Orthopedics and Pathology, 3201 Hospital, Hanzhong 723000, Shaanxi, China
| | - Hanrong Yin
- Departments of Orthopedics and Pathology, 3201 Hospital, Hanzhong 723000, Shaanxi, China
| | - Jie Yang
- Departments of Orthopedics and Pathology, 3201 Hospital, Hanzhong 723000, Shaanxi, China
| | - Yongcai Song
- Departments of Orthopedics and Pathology, 3201 Hospital, Hanzhong 723000, Shaanxi, China
| | - Binhui Yang
- Departments of Orthopedics and Pathology, 3201 Hospital, Hanzhong 723000, Shaanxi, China
| |
Collapse
|
9
|
Loss of Wnt16 Leads to Skeletal Deformities and Downregulation of Bone Developmental Pathway in Zebrafish. Int J Mol Sci 2021; 22:ijms22136673. [PMID: 34206401 PMCID: PMC8268848 DOI: 10.3390/ijms22136673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Wingless-type MMTV integration site family, member 16 (wnt16), is a wnt ligand that participates in the regulation of vertebrate skeletal development. Studies have shown that wnt16 can regulate bone metabolism, but its molecular mechanism remains largely undefined. We obtained the wnt16−/− zebrafish model using the CRISPR-Cas9-mediated gene knockout screen with 11 bp deletion in wnt16, which led to the premature termination of amino acid translation and significantly reduced wnt16 expression, thus obtaining the wnt16−/− zebrafish model. The expression of wnt16 in bone-related parts was detected via in situ hybridization. The head, spine, and tail exhibited significant deformities, and the bone mineral density and trabecular bone decreased in wnt16−/− using light microscopy and micro-CT analysis. RNA sequencing was performed to explore the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the down-regulated DEGs are mainly concentrated in mTOR, FoxO, and VEGF pathways. Protein–protein interaction (PPI) network analysis was performed with the detected DEGs. Eight down-regulated DEGs including akt1, bnip4, ptena, vegfaa, twsg1b, prkab1a, prkab1b, and pla2g4f.2 were validated by qRT-PCR and the results were consistent with the RNA-seq data. Overall, our work provides key insights into the influence of wnt16 gene on skeletal development.
Collapse
|
10
|
Shen Z, Chen C, Sun J, Huang J, Liu S. The status of WIF1 methylation in cell-free DNA is associated with the insusceptibility for gefitinib in the treatment of lung cancer. J Cancer Res Clin Oncol 2021; 147:2239-2248. [PMID: 34037837 DOI: 10.1007/s00432-021-03640-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Targeted cancer therapy has shed light on the treatment of tumor, especially for patients with non-small cell lung cancer. However, only a limited portion of NSCLC patients carrying specific mutations showed an ideal drug response. In addition, DNA methylation status showed a great potential for cancer detection and prognosis prediction. METHODS Bisulfite sequencing was performed to analyze the DNA methylation of WIF1 promoter in cfDNA and tumor tissue samples collected from NSCLC patients. PFS and OS analyses were carried out to evaluate the prognosis of gefitinib treatment in patients with differential levels of WIF1 DNA methylation. Quantitative real-time PCR was used to analyze the expression of WIF1 mRNA, while immunohistochemistry was performed to assess the expression of WIF1 protein. Furthermore, ELISA was carried out to evaluate the WIF1 activity in plasma. RESULTS The DNA methylation level of WIF1 promoter was lower in the cfDNA of NSCLC patients with a complete or partial response to gefitinib, and NSCLC patients with hypomethylated WIF1 showed better PFS and OS. The DNA methylation of WIF1 promoter in the resected tumor tissues was consistent with WIF1 DNA methylation in cfDNA, indicating that cfDNA was mainly derived from lung cancer tissues. As a result, the expression of WIF1 in tissue samples and the WIF1 activity in plasma was inhibited in patients with hypermethylated WIF1. Moreover, the cell viability of gefitinib-resistant cells was decreased by the suppressed WIF1 methylation in vitro. And the expression level of WIF1 mRNA was higher in gefitinib-resistant cells overexpressing ALKBH5, a known suppressor of WIF1 methylation. CONCLUSION In summary, the findings of this study demonstrated that the level of WIF1 methylation in cfDNA was associated with the insusceptibility of gefitinib in the treatment of lung cancer.
Collapse
Affiliation(s)
- Zhijun Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, No. 26 Zhongshan Avenue, Wuhan, 430033, Hubei, China
| | - Chen Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jianhai Sun
- Department of Oncology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, 430033, Hubei, China
| | - Jingsong Huang
- Department of Transfusion, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, Fujian, China.
| | - Shiguo Liu
- Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, No. 26 Zhongshan Avenue, Wuhan, 430033, Hubei, China.
| |
Collapse
|
11
|
Zheng M, Weng M, Zhang X, Li R, Tong Q, Chen Z. Beta-tricalcium phosphate promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells through macrophages. Biomed Mater 2021; 16:025005. [PMID: 33445164 DOI: 10.1088/1748-605x/abdbdc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are vital regulators of skeletal remodeling and osseous repair. Beta-tricalcium phosphate (β-TCP) is a synthetic ceramic biomaterial that has shown promise as bone substitute. However, whether and how β-TCP affects osteogenesis-related responses of macrophages has rarely been studied. The aims of this study were to explore (a) the effects of β-TCP on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) co-cultured with macrophages and (b) on macrophage polarization as well as macrophage gene and protein expression profiles. BMSC osteogenic differentiation capacity in vitro was enhanced in β-TCP-induced co-cultured BMSCs compared to that in BMSC monocultures. We also found that macrophages induced with 25 mg ml-1 β-TCP extract had more significant immune responses and switched to the M2 phenotype. Expression levels of the Wnt signaling pathway modulators wingless-type MMTV integration site family, member 6 (WNT6) and Wnt inhibitory factor 1 (WIF1) were upregulated and downregulated, respectively, in macrophages treated with β-TCP extract. Our findings suggest that β-TCP enhances osteogenic differentiation of BMSCs by inducing macrophage polarization and by regulating the Wnt signaling pathway, thereby highlighting its therapeutic potential for bone healing through osteoimmunomodulatory properties.
Collapse
Affiliation(s)
- Mengting Zheng
- Department of Orthodontics, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Gao L, Gou N, Yao M, Amakye WK, Ren J. Food-derived natural compounds in the management of chronic diseases via Wnt signaling pathway. Crit Rev Food Sci Nutr 2021; 62:4769-4799. [PMID: 33554630 DOI: 10.1080/10408398.2021.1879001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway that control embryonic development, adult tissue homeostasis, and pathological processes of organisms throughout life. However, dysregulation of the Wnt signaling is associated with the occurrence of chronic diseases. In comparison with the application of chemical drugs as traditional treatment for chronic diseases, dietary agents have unique advantages, such as less side effects, multiple targets, convenience in accessibility and higher acceptability in long-term intervention. In this review, we summarized current progress in manipulating the Wnt signaling using food components and its benefits in managing chronic diseases. The underlying mechanisms of bioactive food components in the management of the disease progression via the Wnt signaling was illustrated. Then, the review focused on the function of dietary pattern (which might act via combination of foods with multiple nutrients or food ingredients) on targeting Wnt signaling at multiple level. The potential caveats and challenges in developing new strategy via modulating Wnt-associated diseases with food-based agents and appropriate dietary pattern are also discussed in detail. This review shed light on the understanding of the regulatory effect of food bioactive components on chronic diseases management through the Wnt signaling, which can be expanded to other specific signaling pathway associated with disease.
Collapse
Affiliation(s)
- Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Gou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| |
Collapse
|
13
|
Parra-Torres AY, Enríquez J, Jiménez-Ortega RF, Patiño N, Castillejos-López MDJ, Torres-Espíndola LM, Ramírez-Salazar EG, Velázquez-Cruz R. Expression profiles of the Wnt/β-catenin signaling-related extracellular antagonists during proliferation and differentiation in human osteoblast-like cells. Exp Ther Med 2020; 20:254. [PMID: 33178352 PMCID: PMC7654218 DOI: 10.3892/etm.2020.9384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Bone formation is a dynamic process directed by osteoblast activity. The transition from the proliferation to differentiation stage during osteoblast maturation involves the downregulation of the Wnt/β-catenin signaling pathway, and extracellular antagonists are important for the regulation of Wnt signaling. However, the expression levels of Wnt antagonists in these stages of human osteoblast maturation have not been fully elucidated. Therefore, the aim of the present study was to investigate the expression levels of extracellular Wnt antagonists during proliferation and differentiation in osteoblast-like cell lines. The results demonstrated an overlap between the differential expression of secreted Frizzled-related protein (SFPR)2, SFRP3, SFRP4 and Dickkopf (DKK) 2 genes during the differentiation stage in the MG-63 and Saos-2 cells. Furthermore, high expression levels of DKK3 in MG-63 cells, Wnt inhibitory factor 1 (WIF1) in Saos-2 cells and DKK4 in hFOB 1.19 cells during the same stage (differentiation), were observed. The upregulated expression levels of Wnt antagonists were also correlated with the high expression of anxin 2 during the differentiation stage. These findings suggested that Wnt-related antagonists could modulate the Wnt/β-catenin signaling pathway. By contrast, DKK1 was the only gene that was found to be upregulated during the proliferation stage in hFOB 1.19 and Saos-2 cells. To the best of our knowledge, the present study provides, for the first time, the expression profile of Wnt antagonists during the proliferation stage and the initial phases of differentiation in osteoblast-like cell lines. The current results offer a basis to investigate potential targets for bone-related Wnt-signaling modulation in bone metabolism research.
Collapse
Affiliation(s)
- Alma Y Parra-Torres
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Juana Enríquez
- Department of Reproduction Biology Carlos Gual Castro, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Rogelio F Jiménez-Ortega
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Nelly Patiño
- Subdirection of Clinical Applications Development, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Manuel De Jesús Castillejos-López
- Epidemiological Surveillance Unit, National Institute of Respiratory Diseases (INER) 'Ismael Cosío Villegas', Mexico City 14080, Mexico
| | - Luz M Torres-Espíndola
- Pharmacology Laboratory, National Institute of Pediatrics (INP), Mexico City 04530, Mexico
| | - Eric G Ramírez-Salazar
- National Council for Science and Technology (CONACYT)-National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
14
|
Subclinical inflammation in the preclinical phase of rheumatoid arthritis might contribute to articular joint damage. Hum Immunol 2020; 81:726-731. [PMID: 32690328 DOI: 10.1016/j.humimm.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
The first degree relatives of rheumatoid arthritis (RA) patients have a higher risk of developing RA, which is related to the expression of autoantibodies against citrullinated proteins (ACPA). Remarkably, prior to the onset of RA, cartilage damage is already initiated, whereas ACPA autoantibodies are already expressed. Here we show that both TNF-α and IL-6 are also increased prior to the onset of RA. Furthermore, when the levels of DKK1 and Sclerostin were evaluated in first degree relatives of RA patients, we found that the serum levels of TNF- α correlate with the expression levels of both DKK1 and Sclerostin. Interestingly, when the disease is already established, the correlation of TNF- α with DKK1 is lost in RA patients, whereas the correlation of Sclerostin with both TNF- α and IL-6 is further increased. Our data suggest a subclinical inflammation in patients at high risk of developing RA, which might lead to an increase in the levels of both DKK1 and Sclerostin, contributing to joint damage in the preclinical phase of the disease linked to the expression of ACPA autoantibodies.
Collapse
|
15
|
Wang H, Cao Y. WIF1 enhanced dentinogenic differentiation in stem cells from apical papilla. BMC Oral Health 2019; 19:25. [PMID: 30691423 PMCID: PMC6350383 DOI: 10.1186/s12903-018-0700-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 12/19/2018] [Indexed: 01/26/2023] Open
Abstract
Background Odontogenic mesenchymal stem cells (MSCs) isolated from tooth tissues are a reliable resource that can be utilized for dental tissue regeneration. Exploration of the mechanisms underlying the regulation of their differentiation may be helpful for investigating potential clinical applications. The stem cell niche plays an important role in maintaining cell functioning. Previous studies found that Wnt inhibitory factor 1 (WIF1) is more highly expressed in apical papilla tissues than in stem cells from apical papilla (SCAPs) using microarray analysis. However, the function of WIF1 in SCAPs remains unclear. In the present study, we investigated the function of WIF1 during dentinogenic differentiation in SCAPs. Methods A retrovirus containing HA-WIF1 was used to overexpress WIF1 in SCAPs. Using Western blot analysis, we verified the expression of HA-WIF1. Alkaline phosphatase (ALP) activity assays, Alizarin Red staining and quantitative calcium analysis were performed to investigate the in vitro potential for dentinogenic differentiation in SCAPs. The expression of dentinogenesis-associated genes DSPP, DMP1, Runx2 and OSX were assayed using real-time RT-PCR. Transplantation experiments were used to measure dentinogenesis potential in vivo. Results The real time RT-PCR results showed that WIF1 was more highly expressed in apical papilla tissues than in SCAPs, and its expression was increased during the process of dentinogenic differentiation. Overexpression of WIF1 enhanced ALP activity and mineralization in vitro, as well as the expression of DSPP, DMP1 and OSX in SCAPs. Moreover, in vivo transplantation experiments revealed that dentinogenesis in SCAPs was enhanced by WIF1 overexpression. Conclusion These results suggest that WIF1 may enhance dentinogenic differentiation potential in dental MSCs via its regulation of OSX and identified potential target genes that could be useful for improving dental tissue regeneration.
Collapse
Affiliation(s)
- Haifeng Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China.,Department of Stomatology, Beijing Bo'ai hospital, China Rehabilitation Research Center, School of Rehabilitation Capital Medical University, No.10 Jiao Men Bei Lu, Beijing, 100068, China
| | - Yu Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
16
|
Holdsworth G, Greenslade K, Jose J, Stencel Z, Kirby H, Moore A, Ke HZ, Robinson MK. Dampening of the bone formation response following repeat dosing with sclerostin antibody in mice is associated with up-regulation of Wnt antagonists. Bone 2018; 107:93-103. [PMID: 29129759 DOI: 10.1016/j.bone.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/03/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023]
Abstract
Administration of antibodies to sclerostin (Scl-Ab) has been shown to increase bone mass, bone mineral density (BMD) and bone strength by increasing bone formation and decreasing bone resorption in both animal studies and human clinical trials. In these studies, the magnitude and rate of increase in bone formation markers is attenuated upon repeat dosing with Scl-Ab despite a continuous and progressive increase in BMD. Here, we investigated whether the attenuation in the bone formation response following repeated administration of Scl-Ab was associated with increased expression of secreted antagonists of Wnt signalling and determined how the circulating marker of bone formation, P1NP, responded to single, or multiple doses, of Scl-Ab four days post-dosing. Female Balb/c mice were treated with Scl-Ab and we demonstrated that the large increase in serum P1NP observed following the first dose was reduced following administration of multiple doses of Scl-Ab. This dampening of the P1NP response was not due to a change in the kinetics of the bone formation marker response, or differences in exposure to the drug. The abundance of transcripts encoding several secreted Wnt antagonists was determined in femurs collected from mice following one or six doses of Scl-Ab, or vehicle treatment. Compared with vehicle controls, expression of SOST, SOST-DC1, DKK1, DKK2, SFRP1, SFRP2, FRZB, SFRP4 and WIF1 transcripts was significantly increased (approximately 1.5-4.2 fold) following a single dose of Scl-Ab. With the exception of SFRP1, these changes were maintained or further increased following six doses of Scl-Ab and the abundance of SFRP5 was also increased. Up-regulation of these Wnt antagonists may exert a negative feedback to increased Wnt signalling induced by repeated administration of Scl-Ab and could contribute to self-regulation of the bone formation response over time. After an antibody-free period of four weeks or more, the P1NP response was comparable to the naïve response, and a second phase of treatment with Scl-Ab following an antibody-free period elicited additional gains in BMD. Together, these data demonstrate that the rapid dampening of the bone formation response in the immediate post-dose period which occurs after repeat dosing of Scl-Ab is associated with increased expression of Wnt antagonists, and a treatment-free period can restore the full bone formation response to Scl-Ab.
Collapse
Affiliation(s)
| | | | | | | | - Hishani Kirby
- UCB Pharma, Slough, UK; Hishani Kirby Associates Ltd, Reading, UK
| | | | | | | |
Collapse
|
17
|
Pettinato G, Ramanathan R, Fisher RA, Mangino MJ, Zhang N, Wen X. Scalable Differentiation of Human iPSCs in a Multicellular Spheroid-based 3D Culture into Hepatocyte-like Cells through Direct Wnt/β-catenin Pathway Inhibition. Sci Rep 2016; 6:32888. [PMID: 27616299 PMCID: PMC5018737 DOI: 10.1038/srep32888] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of acute liver failure by cell transplantation is hindered by a shortage of human hepatocytes. Current protocols for hepatic differentiation of human induced pluripotent stem cells (hiPSCs) result in low yields, cellular heterogeneity, and limited scalability. In the present study, we have developed a novel multicellular spheroid-based hepatic differentiation protocol starting from embryoid bodies of hiPSCs (hiPSC-EBs) for robust mass production of human hepatocyte-like cells (HLCs) using two novel inhibitors of the Wnt pathway. The resultant hiPSC-EB-HLCs expressed liver-specific genes, secreted hepatic proteins such as Albumin, Alpha Fetoprotein, and Fibrinogen, metabolized ammonia, and displayed cytochrome P450 activities and functional activities typical of mature primary hepatocytes, such as LDL storage and uptake, ICG uptake and release, and glycogen storage. Cell transplantation of hiPSC-EB-HLC in a rat model of acute liver failure significantly prolonged the mean survival time and resolved the liver injury when compared to the no-transplantation control animals. The transplanted hiPSC-EB-HLCs secreted human albumin into the host plasma throughout the examination period (2 weeks). Transplantation successfully bridged the animals through the critical period for survival after acute liver failure, providing promising clues of integration and full in vivo functionality of these cells after treatment with WIF-1 and DKK-1.
Collapse
Affiliation(s)
- Giuseppe Pettinato
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rajesh Ramanathan
- Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Robert A Fisher
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Martin J. Mangino
- Department of Surgery, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Ning Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200120, People’s Republic of China
| |
Collapse
|
18
|
Cao Z, Fu Y, Sun X, Zhang Q, Xu F, Li Y. Aluminum trichloride inhibits osteoblastic differentiation through inactivation of Wnt/β-catenin signaling pathway in rat osteoblasts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:198-204. [PMID: 26878280 DOI: 10.1016/j.etap.2015.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Exposure to aluminum (Al) suppresses bone formation. Osteoblastic differentiation plays a key role in the process of bone formation. However, the effect of Al on osteoblastic differentiation is still controversial, and the mechanism remains unclear. To investigate the effect of Al on osteoblastic differentiation and whether Wnt signaling pathway was involved in it, the primary rat osteoblasts were exposed to 1/40 IC50, 1/20 IC50 and 1/10 IC50 of aluminum trichloride (AlCl3) for 24h, respectively. The activity analysis of alkaline phosphate, qRT-PCR analysis of type I collagen, alkaline phosphate, Wnt3a and Dkk-1, Western blot analysis of p-GSK3β, GSK3β and β-catenin protein and Immunofluorescence staining for β-catenin suggested that AlCl3 inhibited osteoblastic differentiation and Wnt/β-catenin pathway. Moreover, we found exogenous Wnt3a application reversed the inhibitory effect of AlCl3 on osteoblastic differentiation, accompanied by activating the Wnt/β-catenin pathway. Taken together, these findings suggest that AlCl3 inhibites osteoblastic differentiation through inactivation of Wnt/β-catenin pathway in osteoblasts.
Collapse
Affiliation(s)
- Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Xudong Sun
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Qiuyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, NO. 59 Mucai Street, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
19
|
Abstract
Tilapia type I atelocollagen (TAC) is a strong candidate for clinical application as its biological scaffold due to a high degeneration temperature and biologically safe properties. The aim of this study was to confirm the biological effects of TACin vitroon osteoblastic cells, simulating its clinical application. The proliferation and differentiation of typical preosteoblasts, MC3T3-E1 cells, were investigated using a microarray analysis, staining assay for mineralization, and real-time PCR analysis of the expression of mineralization-related genes. The mRNA expression of 10 genes involved in proliferation and differentiation increased after 3-day culture on an TAC gel, with an average balanced score ratio exceeding 1.5 compared to the control. After two weeks of culture, all three experimental groups showed stronger alkaline phosphatase staining than after one week. The genes expression of alkaline phosphatase, osteocalcin, and bone sialoprotein increased under the experimental conditions. The gene expression of osteopontin did not increase, and no statistical differences were noted among the three experimental groups. The present and previous findings suggest that TAC is not only a suitable alternative to collagen products originating from mammals but also a novel biomaterial with cell differentiation ability for regenerative medicine.
Collapse
|
20
|
Abstract
The postnatal skeleton undergoes growth, remodeling, and repair. We hypothesized that skeletal progenitor cells active during these disparate phases are genetically and phenotypically distinct. We identified a highly potent regenerative cell type that we term the fracture-induced bone, cartilage, stromal progenitor (f-BCSP) in the fracture callus of adult mice. The f-BCSP possesses significantly enhanced skeletogenic potential compared with BCSPs harvested from uninjured bone. It also recapitulates many gene expression patterns involved in perinatal skeletogenesis. Our results indicate that the skeletal progenitor population is functionally stratified, containing distinct subsets responsible for growth, regeneration, and repair. Furthermore, our findings suggest that injury-induced changes to the skeletal stem and progenitor microenvironments could activate these cells and enhance their regenerative potential.
Collapse
|
21
|
Genetic polymorphism in extracellular regulators of Wnt signaling pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:847529. [PMID: 25945348 PMCID: PMC4402192 DOI: 10.1155/2015/847529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/05/2015] [Indexed: 11/18/2022]
Abstract
The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.
Collapse
|
22
|
Bulycheva E, Rauner M, Medyouf H, Theurl I, Bornhäuser M, Hofbauer LC, Platzbecker U. Myelodysplasia is in the niche: novel concepts and emerging therapies. Leukemia 2014; 29:259-68. [PMID: 25394715 PMCID: PMC4320287 DOI: 10.1038/leu.2014.325] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022]
Abstract
Myelodysplastic syndromes (MDSs) represent clonal disorders mainly of the elderly that are characterized by ineffective hematopoiesis and an increased risk of transformation into acute myeloid leukemia. The pathogenesis of MDS is thought to evolve from accumulation and selection of specific genetic or epigenetic events. Emerging evidence indicates that MDS is not solely a hematopoietic disease but rather affects the entire bone marrow microenvironment, including bone metabolism. Many of these cells, in particular mesenchymal stem and progenitor cells (MSPCs) and osteoblasts, express a number of adhesion molecules and secreted factors that regulate blood regeneration throughout life by contributing to hematopoietic stem and progenitor cell (HSPC) maintenance, self-renewal and differentiation. Several endocrine factors, such as erythropoietin, parathyroid hormone and estrogens, as well as deranged iron metabolism modulate these processes. Thus, interactions between MSPC and HSPC contribute to the pathogenesis of MDS and associated pathologies. A detailed understanding of these mechanisms may help to define novel targets for diagnosis and possibly therapy. In this review, we will discuss the scientific rationale of ‘osteohematology' as an emerging research field in MDS and outline clinical implications.
Collapse
Affiliation(s)
- E Bulycheva
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| | - M Rauner
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| | - H Medyouf
- Georg-Speyer-Haus, Institut for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - I Theurl
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - M Bornhäuser
- 1] Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany [2] Center for Regenerative Therapies Dresden, Technical University, Dresden, Germany
| | - L C Hofbauer
- 1] Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany [2] Center for Regenerative Therapies Dresden, Technical University, Dresden, Germany
| | - U Platzbecker
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| |
Collapse
|
23
|
Ji B, Middleton JL, Ernest B, Saxton AM, Lamont SJ, Campagna SR, Voy BH. Molecular and metabolic profiles suggest that increased lipid catabolism in adipose tissue contributes to leanness in domestic chickens. Physiol Genomics 2014; 46:315-27. [PMID: 24550212 DOI: 10.1152/physiolgenomics.00163.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Domestic broiler chickens rapidly accumulate fat and are naturally hyperglycemic and insulin resistant, making them an attractive model for studies of human obesity. We previously demonstrated that short-term (5 h) fasting rapidly upregulates pathways of fatty acid oxidation in broiler chickens and proposed that activation of these pathways may promote leanness. The objective of the current study was to characterize adipose tissue from relatively lean and fatty lines of chickens and determine if heritable leanness in chickens is associated with activation of some of the same pathways induced by fasting. We compared adipose gene expression and metabolite profiles in white adipose tissue of lean Leghorn and Fayoumi breeds to those of fattier commercial broiler chickens. Both lipolysis and expression of genes involved in fatty acid oxidation were upregulated in lean chickens compared with broilers. Although there were strong similarities between the lean lines compared with broilers, distinct expression signatures were also found between Fayoumi and Leghorn, including differences in adipogenic genes. Similarities between genetically lean and fasted chickens suggest that fatty acid oxidation in white adipose tissue is adaptively coupled to lipolysis and plays a role in heritable differences in fatness. Unique signatures of leanness in Fayoumi and Leghorn lines highlight distinct pathways that may provide insight into the basis for leanness in humans. Collectively, our results provide a number of future directions through which to fully exploit chickens as unique models for the study of human obesity and adipose metabolism.
Collapse
Affiliation(s)
- Bo Ji
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee
| | | | | | | | | | | | | |
Collapse
|
24
|
Bao B, Li Y, Ahmad A, Azmi AS, Bao G, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets 2013; 13:1858-68. [PMID: 23140295 DOI: 10.2174/138945012804545515] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/09/2012] [Accepted: 11/03/2012] [Indexed: 12/22/2022]
Abstract
The theory of cancer stem cells (CSCs) has provided evidence on fundamental clinical implications because of the involvement of CSCs in cell migration, invasion, metastasis, and treatment resistance, which leads to the poor clinical outcome of cancer patients. Therefore, targeting CSCs will provide a novel therapeutic strategy for the treatment and/or prevention of tumors. However, the regulation of CSCs and its signaling pathways during tumorigenesis are not well understood. MicroRNAs (miRNAs) have been proved to act as key regulators of the post-transcriptional regulation of genes, which involve in a wide array of biological processes including tumorigenesis. The altered expressions of miRNAs are associated with poor clinical outcome of patients diagnosed with a variety of tumors. Therefore, emerging evidence strongly suggest that miRMAs play critical roles in tumor development and progression. Emerging evidence also suggest that miRNAs participate in the regulation of tumor cell growth, migration, invasion, angiogenesis, drug resistance, and metastasis. Moreover, miRNAs such as let-7, miR-21, miR-22, miR-34, miR-101, miR-146a, and miR-200 have been found to be associated with CSC phenotype and function mediated through targeting oncogenic signaling pathways. In this article, we will discuss the role of miRNAs in the regulation of CSC phenotype and function during tumor development and progression. We will also discuss the potential role of naturally occurring agents (nutraceuticals) as potent anti-tumor agents that are believed to function by targeting CSC-related miRNAs.
Collapse
Affiliation(s)
- Bin Bao
- Departments of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park TJ, Kim M, Kim H, Park SY, Park KC, Ortonne JP, Kang HY. Wnt inhibitory factor (WIF)-1 promotes melanogenesis in normal human melanocytes. Pigment Cell Melanoma Res 2013; 27:72-81. [DOI: 10.1111/pcmr.12168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/16/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Tae Jun Park
- Department of Biochemistry; Ajou University School of Medicine; Suwon Korea
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
| | - Misun Kim
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Hyeran Kim
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Sun Yi Park
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - Kyoung-Chan Park
- Department of Dermatology; Seoul National University Bundang Hospital; Seongnam Korea
| | | | - Hee Young Kang
- Department of Biomedical Science; Ajou University School of Medicine; Suwon Korea
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| |
Collapse
|
26
|
Cho SW, An JH, Park H, Yang JY, Choi HJ, Kim SW, Park YJ, Kim SY, Yim M, Baek WY, Kim JE, Shin CS. Positive regulation of osteogenesis by bile acid through FXR. J Bone Miner Res 2013; 28:2109-21. [PMID: 23609136 DOI: 10.1002/jbmr.1961] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 03/11/2013] [Accepted: 04/08/2013] [Indexed: 01/17/2023]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that functions as a bile acid sensor controlling bile acid homeostasis. We investigated the role of FXR in regulating bone metabolism. We identified the expression of FXR in calvaria and bone marrow cells, which gradually increased during osteoblastic differentiation in vitro. In male mice, deletion of FXR (FXR(-/-) ) in vivo resulted in a significant reduction in bone mineral density by 4.3% to 6.6% in mice 8 to 20 weeks of age compared with FXR(+/+) mice. Histological analysis of the lumbar spine showed that FXR deficiency reduced the bone formation rate as well as the trabecular bone volume and thickness. Moreover, tartrate-resistant acid phosphatase (TRACP) staining of the femurs revealed that both the osteoclast number and osteoclast surface were significantly increased in FXR(-/-) mice compared with FXR(+/+) mice. At the cellular level, induction of alkaline phosphatase (ALP) activities was blunted in primary calvarial cells in FXR(-/-) mice compared with FXR(+/+) mice in concert with a significant reduction in type I collagen a1(Col1a1), ALP, and runt-related transcription factor 2 (Runx2) gene expressions. Cultures of bone marrow-derived macrophages from FXR(-/-) mice exhibited an increased number of osteoclast formations and protein expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). In female FXR(-/-) mice, although bone mineral density (BMD) was not significantly different from that in FXR(+/+) mice, bone loss was accelerated after an ovariectomy compared with FXR(+/+) mice. In vitro, activation of FXR by bile acids (chenodeoxycholic acid [CDCA] or 6-ECDCA) or FXR agonists (GW4064 or Fexaramine) significantly enhanced osteoblastic differentiation through the upregulation of Runx2 and enhanced extracellular signal-regulated kinase (ERK) and β-catenin signaling. FXR agonists also suppressed osteoclast differentiation from bone marrow macrophages. Finally, administration of a farnesol (FOH 1%) diet marginally prevented ovariectomy (OVX)-induced bone loss and enhanced bone mass gain in growing C57BL/6J mice. Taken together, these results suggest that FXR positively regulates bone metabolism through both arms of the bone remodeling pathways; ie, bone formation and resorption.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Boudin E, Fijalkowski I, Piters E, Van Hul W. The role of extracellular modulators of canonical Wnt signaling in bone metabolism and diseases. Semin Arthritis Rheum 2013; 43:220-40. [DOI: 10.1016/j.semarthrit.2013.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/17/2022]
|
28
|
Kristensen IB, Christensen JH, Lyng MB, Møller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard N. Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease. Leuk Lymphoma 2013; 55:911-9. [PMID: 23915193 DOI: 10.3109/10428194.2013.820288] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple myeloma (MM) lytic bone disease (LBD) is caused by osteoclast activation and osteoblast inhibition. RANK/RANKL/OPG play central roles in osteoclast activation and Wnt inhibitor DKK1 in osteoblast inhibition. The role of other Wnt inhibitors is less clear. We evaluated gene expression of osteoclast regulators (RANK, RANKL, OPG, TRAIL, MIP1A), Wnt inhibitors (DKK1, SFRP2, SFRP3, sclerostin, WIF1) and osteoblast transcription factors (RUNX2, osterix) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in the bone marrow (BM) microenvironment using snap-frozen BM biopsies, thereby achieving minimal post-sampling manipulation, and gene expression profiling (GEP) data, reflecting the in vivo situation. We analyzed 110 biopsies from newly diagnosed patients with MM and monoclonal gammopathy of unknown significance (MGUS) and healthy volunteers. LBD was evaluated using standard radiographs and the bone resorption marker CTX-1. Protein levels were evaluated by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. Among Wnt inhibitors, only SFRP3 and DKK1 were significantly overexpressed in advanced LBD, correlating with protein levels. SFRP3 correlated with CTX-1. Our findings support osteoblast inhibition as the driving force behind MM LBD.
Collapse
|
29
|
López-Herradón A, Portal-Núñez S, García-Martín A, Lozano D, Pérez-Martínez FC, Ceña V, Esbrit P. Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormone-related protein in osteoblastic cells. J Cell Biochem 2013; 114:1908-16. [DOI: 10.1002/jcb.24535] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 01/17/2023]
|
30
|
WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19:179-92. [PMID: 23389618 DOI: 10.1038/nm.3074] [Citation(s) in RCA: 1520] [Impact Index Per Article: 126.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
Abstract
Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
Collapse
|
31
|
Liu Y, Zhang ZC, Qian SW, Zhang YY, Huang HY, Tang Y, Guo L, Li X, Tang QQ. MicroRNA-140 promotes adipocyte lineage commitment of C3H10T1/2 pluripotent stem cells via targeting osteopetrosis-associated transmembrane protein 1. J Biol Chem 2013; 288:8222-8230. [PMID: 23389033 DOI: 10.1074/jbc.m112.426163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BMP4 has been shown to induce C3H10T1/2 pluripotent stem cells to commit to adipocyte lineage. In addition to several proteins identified, microRNAs also play a critical role in the process. In this study, we identified microRNA-140 (miR-140) as a direct downstream component of the BMP4 signaling pathway during the commitment of C3H10T1/2 cells to adipocyte lineage. Overexpression of miR-140 in C3H10T1/2 cells promoted commitment, whereas knockdown of its expression led to impairment. Additional studies indicated that Ostm1 is a bona fide target of miR-140, which is significantly decreased during commitment, and Ostm1 was also demonstrated to function as an anti-adipogenic factor.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhi-Chun Zhang
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - You-You Zhang
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hai-Yan Huang
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Tang
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Liang Guo
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xi Li
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Qi-Qun Tang
- Key Laboratory of Molecular Medicine, Ministry of Education, and the Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China; Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Kim JY, Lee TR, Lee AY. Reduced WIF-1 Expression Stimulates Skin Hyperpigmentation in Patients with Melasma. J Invest Dermatol 2013; 133:191-200. [DOI: 10.1038/jid.2012.270] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Askevold ET, Gullestad L, Aakhus S, Ranheim T, Tønnessen T, Solberg OG, Aukrust P, Ueland T. Secreted Wnt modulators in symptomatic aortic stenosis. J Am Heart Assoc 2012; 1:e002261. [PMID: 23316316 PMCID: PMC3540657 DOI: 10.1161/jaha.112.002261] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Background Valve calcification and inflammation play key roles in the development of aortic stenosis (AS). The Wnt pathways have been linked to inflammation, bone metabolism, angiogenesis, and heart valve formation. We hypothesized that soluble Wnt modulators may be dysregulated in symptomatic AS. Methods and Results We measured circulating levels (n=136) and aortic valve tissue expression (n=16) of the secreted Wnt modulators secreted frizzled related protein-3, dickkopf-1 (DKK-1), and Wnt inhibitory factor-1 (WIF-1) by enzyme immunoassay, immunostaining, and RT-PCR in patients with symptomatic, severe AS and investigated associations with echocardiographic parameters of AS and cardiac function. Finally, we assessed the prognostic value of these Wnt modulators in relation to all-cause mortality (n=35) during long-term follow-up (median 4.6 years; survivors, 4.8 years; nonsurvivors, 1.9 years) in these patients. Our main findings were: (1) serum levels of all Wnt modulators were markedly elevated in patients with symptomatic AS (mean increase 231% to 278%, P<0.001), (2) all Wnt modulators were present in calcified aortic valves but correlated poorly with systemic levels or degree of AS, (3) some modulators (ie, WIF-1) were associated with the degree of myocardial function and valvular calcification, (4) all Wnt modulators, and DKK-1 in particular, predicted long-term mortality in these patients also after adjusting for conventional predictors including NT-proBNP. Conclusions Together, these in vivo data support the involvement of Wnt signaling in the development of AS and suggest that circulating Wnt modulators should be further investigated as risk markers in larger AS populations, including patients with asymptomatic disease.
Collapse
Affiliation(s)
- Erik Tandberg Askevold
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:272-96. [PMID: 22579961 PMCID: PMC3788359 DOI: 10.1016/j.bbcan.2012.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia is one of the fundamental biological phenomena that are intricately associated with the development and aggressiveness of a variety of solid tumors. Hypoxia-inducible factors (HIF) function as a master transcription factor, which regulates hypoxia responsive genes and has been recognized to play critical roles in tumor invasion, metastasis, and chemo-radiation resistance, and contributes to increased cell proliferation, survival, angiogenesis and metastasis. Therefore, tumor hypoxia with deregulated expression of HIF and its biological consequence lead to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) phenotypic cells are associated with therapeutic resistance and contribute to aggressive tumor growth, invasion, metastasis and believed to be the cause of tumor recurrence. Interestingly, hypoxia and HIF signaling pathway are known to play an important role in the regulation and sustenance of CSCs and EMT phenotype. However, the molecular relationship between HIF signaling pathway with the biology of CSCs and EMT remains unclear although NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and Hedgehog signaling pathways have been recognized as important regulators of CSCs and EMT. In this article, we will discuss the state of our knowledge on the role of HIF-hypoxia signaling pathway and its kinship with CSCs and EMT within the tumor microenvironment. We will also discuss the potential role of hypoxia-induced microRNAs (miRNAs) in tumor development and aggressiveness, and finally discuss the potential effects of nutraceuticals on the biology of CSCs and EMT in the context of tumor hypoxia.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
35
|
Inhibition of Wnt/β-catenin signaling by dexamethasone promotes adipocyte differentiation in mesenchymal progenitor cells, ROB-C26. Histochem Cell Biol 2012; 138:833-45. [DOI: 10.1007/s00418-012-1007-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
|
36
|
Oliveira DV, Silva TS, Cordeiro OD, Cavaco SI, Simes DC. Identification of proteins with potential osteogenic activity present in the water-soluble matrix proteins from Crassostrea gigas nacre using a proteomic approach. ScientificWorldJournal 2012; 2012:765909. [PMID: 22666151 PMCID: PMC3361287 DOI: 10.1100/2012/765909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/30/2011] [Indexed: 01/22/2023] Open
Abstract
Nacre, when implanted in vivo in bones of dogs, sheep, mice, and humans, induces a biological response that includes integration and osteogenic activity on the host tissue that seems to be activated by a set of proteins present in the nacre water-soluble matrix (WSM). We describe here an experimental approach that can accurately identify the proteins present in the WSM of shell mollusk nacre. Four proteins (three gigasin-2 isoforms and a cystatin A2) were for the first time identified in WSM of Crassostrea gigas nacre using 2DE and LC-MS/MS for protein identification. These proteins are thought to be involved in bone remodeling processes and could be responsible for the biocompatibility shown between bone and nacre grafts. These results represent a contribution to the study of shell biomineralization process and opens new perspectives for the development of new nacre biomaterials for orthopedic applications.
Collapse
Affiliation(s)
- Daniel V Oliveira
- Center of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
37
|
Cho SW, Sun HJ, Yang JY, Jung JY, Choi HJ, An JH, Kim SW, Kim SY, Park KJ, Shin CS. Human Adipose Tissue-Derived Stromal Cell Therapy Prevents Bone Loss in Ovariectomized Nude Mouse. Tissue Eng Part A 2012; 18:1067-78. [DOI: 10.1089/ten.tea.2011.0355] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jin Sun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Yeon Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Jin Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun An
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Yeon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu-Joo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 2012; 112:3491-501. [PMID: 21793042 DOI: 10.1002/jcb.23287] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent progenitors that can commit to osteoblast, chondrocyte, adipocyte, and several other lineages. The proper utilization of stem cells for clinical applications requires an integrated understanding of multiple signal inputs that control maintenance of stemness, proliferation, commitment, and differentiation. Various signaling pathways have been implicated in the regulation of MSC differentiation; however, complexities of pathway interactions, as well as seemingly contradictory results in the literature, create an often confusing and disjointed knowledge base. Several recent publications explore the integration of signaling pathways such as BMP, Wnt, Notch, Hedgehog, and Fibroblast Growth Factors in MSC osteoblast differentiation. The transcription factor Cbfa1/Runx2 has been implicated in these pathways as a potential focal point for signaling integration. This review will outline the current understanding of these pathways and indicate where both spatiotemporal effects during differentiation and comparable experimental conditions need to be considered in order to clarify the outcome(s) of differing regulatory levels of these signaling pathways.
Collapse
Affiliation(s)
- Grace L Lin
- Medical Scientist Training Program, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
39
|
Surmann-Schmitt C, Sasaki T, Hattori T, Eitzinger N, Schett G, von der Mark K, Stock M. The Wnt antagonist Wif-1 interacts with CTGF and inhibits CTGF activity. J Cell Physiol 2012; 227:2207-16. [PMID: 21928342 DOI: 10.1002/jcp.22957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wnt inhibitory factor 1 (Wif-1) is a secreted antagonist of Wnt signalling. We recently demonstrated that this molecule is expressed predominantly in superficial layers of epiphyseal cartilage but also in bone and tendon. Moreover, we showed that Wif-1 is capable of binding to several cartilage-related Wnt ligands and interferes with Wnt3a-dependent Wnt signalling in chondrogenic cells. Here we provide evidence that the biological function of Wif-1 may not be confined to the modulation of Wnt signalling but appears to include the regulation of other signalling pathways. Thus, we show that Wif-1 physically binds to connective tissue growth factor (CTGF/CCN2) in vitro, predominantly by interaction with the C-terminal cysteine knot domain of CTGF. In vivo such an interaction appears also likely since the expression patterns of these two secreted proteins overlap in peripheral zones of epiphyseal cartilage. In chondrocytes CTGF has been shown to induce the expression of cartilage matrix genes such as aggrecan (Acan) and collagen2a1 (Col2a1). In this study we demonstrate that Wif-1 is capable to interfere with CTGF-dependent induction of Acan and Col2a1 gene expression in primary murine chondrocytes. Conversely, CTGF does not interfere with Wif-1-dependent inhibition of Wnt signalling. These results indicate that Wif-1 may be a multifunctional modulator of signalling pathways in the cartilage compartment.
Collapse
Affiliation(s)
- Cordula Surmann-Schmitt
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Miron RJ, Hedbom E, Ruggiero S, Bosshardt DD, Zhang Y, Mauth C, Gemperli AC, Iizuka T, Buser D, Sculean A. Premature osteoblast clustering by enamel matrix proteins induces osteoblast differentiation through up-regulation of connexin 43 and N-cadherin. PLoS One 2011; 6:e23375. [PMID: 21858092 PMCID: PMC3156132 DOI: 10.1371/journal.pone.0023375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/14/2011] [Indexed: 01/17/2023] Open
Abstract
In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kawai M, Mödder UI, Khosla S, Rosen CJ. Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov 2011; 10:141-56. [PMID: 21283108 PMCID: PMC3135105 DOI: 10.1038/nrd3299] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporosis, a syndrome characterized by thin bones and fractures, has become more prevalent in both women and men. Established therapies for treating this disorder consist primarily of drugs that prevent bone loss, such as the bisphosphonates and selective oestrogen receptor modulators. Although these drugs have been shown to reduce fractures in randomized trials, there is an urgent need for treatments that could lower fracture risk further without additional adverse effects. The introduction of parathyroid hormone (teriparatide), which significantly increases bone mineral density, albeit for a relatively short duration, raised expectations that drugs that stimulate bone formation might cure osteoporosis. After outlining current approaches for treating osteoporosis, this Review focuses on emerging therapeutic opportunities for osteoporosis that are based on recent insights into skeletal physiology. Such novel strategies offer promise not only for reducing age-related bone loss and the associated risk of fractures but also for restoring bone mineral density to healthy levels.
Collapse
Affiliation(s)
- Masanobu Kawai
- Center for clinical and translational research, Maine Medical Center Research Institute, Scarborough, Maine, USA
- Department of Bone and Mineral research, Osaka medical center and research institute for maternal and child health, Izumi, Osaka, Japan
| | | | | | - Clifford J Rosen
- Center for clinical and translational research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| |
Collapse
|
42
|
Abstract
Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3'-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 John R Street, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
43
|
Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, McQueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi X. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer 2010. [PMID: 20573255 DOI: 10.1186/1476-4598-9-162.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrations in the Wnt pathway have been reported to be involved in the metastasis of prostate cancer (PCa) to bone. We investigated the effect and underlying mechanism of a naturally-occurring Wnt inhibitor, WIF1, on the growth and cellular invasiveness of a bone metastatic PCa cell line, PC3. RESULTS The WIF1 gene promoter was hypermethylated and its expression down-regulated in the majority (7 of 8) of PCa cell lines. Restoration of WIF1 expression in PC-3 cells resulted in a decreased cell motility and invasiveness via up-regulation of epithelial markers (E-cadherin, Keratin-8 and-18), down-regulation of mesenchymal markers (N-cadherin, Fibronectin and Vimentin) and decreased activity of MMP-2 and -9. PC3 cells transfected with WIF1 consistently demonstrated reduced expression of Epithelial-to-Mesenchymal Transition (EMT) transcription factors, Slug and Twist, and a change in morphology from mesenchymal to epithelial. Moreover, WIF1 expression significantly reduced tumor growth by approximately 63% in a xenograft mouse model. This was accompanied by an increased expression of E-cadherin and Keratin-18 and a decreased expression of vimentin in tumor tissues. CONCLUSION These data suggest that WIF1 regulates tumor invasion through EMT process and thus, may play an important role in controlling metastatic disease in PCa patients. Blocking Wnt signaling in PCa by WIF1 may represent a novel strategy in the future to reduce metastatic disease burden in PCa patients.
Collapse
Affiliation(s)
- David S Yee
- Department of Urology and Chao Family Comprehensive Cancer Center, University of California at Irvine Orange, CA 92868, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, McQueen P, Atreya D, Xie J, Simoneau AR, Hoang BH, Zi X. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer 2010; 9:162. [PMID: 20573255 PMCID: PMC2907330 DOI: 10.1186/1476-4598-9-162] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 06/23/2010] [Indexed: 12/30/2022] Open
Abstract
Background Aberrations in the Wnt pathway have been reported to be involved in the metastasis of prostate cancer (PCa) to bone. We investigated the effect and underlying mechanism of a naturally-occurring Wnt inhibitor, WIF1, on the growth and cellular invasiveness of a bone metastatic PCa cell line, PC3. Results The WIF1 gene promoter was hypermethylated and its expression down-regulated in the majority (7 of 8) of PCa cell lines. Restoration of WIF1 expression in PC-3 cells resulted in a decreased cell motility and invasiveness via up-regulation of epithelial markers (E-cadherin, Keratin-8 and-18), down-regulation of mesenchymal markers (N-cadherin, Fibronectin and Vimentin) and decreased activity of MMP-2 and -9. PC3 cells transfected with WIF1 consistently demonstrated reduced expression of Epithelial-to-Mesenchymal Transition (EMT) transcription factors, Slug and Twist, and a change in morphology from mesenchymal to epithelial. Moreover, WIF1 expression significantly reduced tumor growth by approximately 63% in a xenograft mouse model. This was accompanied by an increased expression of E-cadherin and Keratin-18 and a decreased expression of vimentin in tumor tissues. Conclusion These data suggest that WIF1 regulates tumor invasion through EMT process and thus, may play an important role in controlling metastatic disease in PCa patients. Blocking Wnt signaling in PCa by WIF1 may represent a novel strategy in the future to reduce metastatic disease burden in PCa patients.
Collapse
Affiliation(s)
- David S Yee
- Department of Urology and Chao Family Comprehensive Cancer Center, University of California at Irvine Orange, CA 92868, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A 2010; 16:1009-19. [PMID: 19842915 DOI: 10.1089/ten.tea.2009.0100] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We compared human mesenchymal stem cells (hMSCs), expanded long term with and without fibroblast growth factor (FGF) supplementation, with respect to proliferation, and the ability to undergo chondrogenesis in vitro. hMSCs expanded in FGF-supplemented medium proliferated more rapidly than the control cells. Aggregates of FGF-treated cells exhibited chondrogenic differentiation at all passages tested although, in some preparations, differentiation was diminished after seventh passage. Aggregates made with control cells differentiated along the chondrogenic lineage after first passage but exhibited only marginal differentiation after fourth and failed to form cartilage after seventh passage. Microarray analysis of gene expression identified 334 transcripts differentially expressed in fourth passage control cells that had reduced chondrogenic potential, compared with the fourth passage FGF-treated cells that retained this capacity, and 243 transcripts that were differentially expressed when comparing them to the first passage control cells that were also capable of differentiating into chondrocytes. The intersection of these analyses yielded 49 transcripts differentially expressed in cells that exhibited chondrogenic differentiation in vitro compared with the cells that did not. Among these, angiopoietin 1, secreted frizzled-related protein 1, and six transmembrane epithelial antigen of the prostate 1 appear to be of higher relevance. These preliminary data must now be validated to verify whether different gene expression profiles translate into functional differences. In summary, these findings suggest that the chondrogenic potential of hMSCs is vulnerable to cell expansion and that care should be exercised when expanding these cells for cartilage tissue engineering applications. Supplementation with FGF-2 allows reaching target cell numbers more rapidly and extends the level of expansion within which these cells are useful for tissue-engineered cartilage repair.
Collapse
Affiliation(s)
- Luis A Solchaga
- Division of Hematology and Oncology, Department of General Medical Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-7080, USA.
| | | | | | | | | |
Collapse
|
46
|
Portal-Núñez S, Lozano D, de Castro LF, de Gortázar AR, Nogués X, Esbrit P. Alterations of the Wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormone-related protein in bone from diabetic mice. FEBS Lett 2010; 584:3095-100. [PMID: 20621835 DOI: 10.1016/j.febslet.2010.05.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/20/2010] [Accepted: 05/20/2010] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1D) is associated with bone loss. Given that the Wnt/beta-catenin pathway is a major regulator of bone accrual, we assessed this pathway in mice with streptozotozin-induced T1D. In diabetic mouse long bones, we found alterations favouring the suppression of this pathway by using PCR arrays and beta-catenin immunostaining. Downregulation of sclerostin, an inhibitor of this pathway, also occurred, and related to increased osteocyte apoptosis. Our data show that both N- and C-terminal parathyroid hormone-related peptide fragments might exert osteogenic effects in this setting by targeting several genes of this pathway and increasing beta-catenin in osteoblastic cells.
Collapse
Affiliation(s)
- S Portal-Núñez
- Laboratorio de Metabolismo Mineral y Oseo, Fundación Jiménez Díaz (Capio Group), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
McCarthy HS, Marshall MJ. Dickkopf-1 as a potential therapeutic target in Paget's disease of bone. Expert Opin Ther Targets 2010; 14:221-30. [PMID: 20055719 DOI: 10.1517/14728220903525720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE OF THE FIELD Wnt signalling plays a role in maintaining healthy bone mass. Dickkopf-1 (DKK-1) is a soluble inhibitor of Wnt signalling and its excessive expression contributes to bone loss in rheumatoid arthritis and multiple myeloma. New therapeutics have been developed for treatment of these conditions that target DKK-1 expression. DKK-1 is elevated in serum of patients with Paget's disease of the bone (PDB) and evidence is accumulating for a role of DKK-1 in PDB. AREAS COVERED IN THIS REVIEW The role of Wnt signalling and DKK-1 in bone health and disease and the aetiology of PDB in the light of recent advances in understanding of Wnt signalling. WHAT THE READER WILL GAIN PDB is a disorder of unknown aetiology characterised by localised increase in unregulated bone remodelling resulting in osteolytic and osteosclerotic lesions. Evidence is adduced for the involvement of Wnt signalling, DKK-1 and osteoblasts in PDB pathogenesis. TAKE HOME MESSAGE At present there is no cure for PDB and the current treatment of choice are bisphosphonates. These treat the resorptive phase of PDB but do not prevent its return. We present a new perspective on the aetiology of PDB and speculate on DKK-1 as a therapeutic target.
Collapse
Affiliation(s)
- Helen S McCarthy
- RJAH Orthopaedic Hospital, Charles Salt Centre, Oswestry, Shropshire, SY10 7AG, UK.
| | | |
Collapse
|
48
|
Abstract
Mechanical loading is of pivotal importance in the maintenance of skeletal homeostasis, but the players involved in the transduction of mechanical stimuli to promote bone maintenance have long remained elusive. Osteocytes, the most abundant cells in bone, possess mechanosensing appendices stretching through a system of bone canaliculi. Mechanical stimulation plays an important role in osteocyte survival and hence in the preservation of bone mechanical properties, through the maintenance of bone hydratation. Osteocytes can also control the osteoblastic differentiation of mesenchymal precursors in response to mechanical loading by modulating WNT signaling pathways, essential regulators of cell fate and commitment, through the protein sclerostin. Mutations of Sost, the sclerostin-encoding gene, have dramatic effects on the skeleton, indicating that osteocytes may act as master regulators of bone formation and localized bone remodeling. Moreover, the development of sclerostin inhibitors is opening new possibilities for bone regeneration in orthopedics and the dental field.
Collapse
|