1
|
Liu R, Liu Y, Zhang L, Li X, Li N, Lu F, Gao W, Jia Z, Huang Z, Yang J. The Oncopromoting Gene RBM6 Inhibits Prostate Tumour Cell Migration During Epithelial-to-Mesenchymal Transition. J Cell Mol Med 2025; 29:e70397. [PMID: 39900560 PMCID: PMC11790351 DOI: 10.1111/jcmm.70397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/05/2025] Open
Abstract
RBM6, implicated in the progression of multiple tumour types but unexplored in prostate tumours, was found to indicate potential therapeutic implications due to its elevated expression in prostate tumours. To elucidate its molecular function, scratch tests, transwell migration and invasion assays were conducted, with PCR and western blot analyses verifying molecular regulatory relationships. RNA pulldown and RNA immunoprecipitation tests were also employed to investigate underlying mechanisms. Results indicate that RBM6 enhances prostate cell migration by suppressing CDH1, yet ZEB1 overexpression alleviates this suppression. Notably, under these conditions, RBM6's inhibitory effect on MMP16 becomes more pronounced, reducing cell migration ability. Thus, under normal conditions, RBM6 promotes prostate tumour cell migration, but in the context of high ZEB1 expression, it inhibits migration. This shift in RBM6's regulatory capacity towards downstream genes underscores the importance of considering objective conditions in studying RBM6 molecules.
Collapse
Affiliation(s)
- Ruoyang Liu
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| | - Yu Liu
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| | - Long Zhang
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| | - Xiang Li
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| | - Ningyang Li
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| | - Fubo Lu
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| | - Wansheng Gao
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhankui Jia
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| | - Zhenlin Huang
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| | - Jinjian Yang
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Key Laboratory of Urinary TumorsHenan Provincial Health CommissionZhengzhouHenanChina
| |
Collapse
|
2
|
Adekiya TA, Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat Res Commun 2023; 37:100778. [PMID: 37992539 DOI: 10.1016/j.ctarc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Prostate cancer is a prevalent cancer in men, often treated with chemotherapy. However, it tumor cells are clinically grows slowly and is heterogeneous, leading to treatment resistance and recurrence. Nanomedicines, through targeted delivery using nanocarriers, can enhance drug accumulation at the tumor site, sustain drug release, and counteract drug resistance. In addition, combination therapy using nanomedicines can target multiple cancer pathways, improving effectiveness and addressing tumor heterogeneity. The application of nanomedicine in prostate cancer treatment would be an important strategy in controlling tumor dynamic process as well as improve survival. Thus, this review highlights therapeutic nanoparticles as a solution for prostate cancer chemotherapy, exploring targeting strategies and approaches to combat drug resistance.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States.
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States
| |
Collapse
|
3
|
Anloague A, Delgado-Calle J. Osteocytes: New Kids on the Block for Cancer in Bone Therapy. Cancers (Basel) 2023; 15:2645. [PMID: 37174109 PMCID: PMC10177382 DOI: 10.3390/cancers15092645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment plays a central role in the onset and progression of cancer in the bone. Cancer cells, either from tumors originating in the bone or from metastatic cancer cells from other body systems, are located in specialized niches where they interact with different cells of the bone marrow. These interactions transform the bone into an ideal niche for cancer cell migration, proliferation, and survival and cause an imbalance in bone homeostasis that severely affects the integrity of the skeleton. During the last decade, preclinical studies have identified new cellular mechanisms responsible for the dependency between cancer cells and bone cells. In this review, we focus on osteocytes, long-lived cells residing in the mineral matrix that have recently been identified as key players in the spread of cancer in bone. We highlight the most recent discoveries on how osteocytes support tumor growth and promote bone disease. Additionally, we discuss how the reciprocal crosstalk between osteocytes and cancer cells provides the opportunity to develop new therapeutic strategies to treat cancer in the bone.
Collapse
Affiliation(s)
- Aric Anloague
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Zer NS, Ben-Ghedalia-Peled N, Gheber LA, Vago R. CD44 in Bone Metastasis Development: A Key Player in the Fate Decisions of the Invading Cells? Clin Exp Metastasis 2023; 40:125-135. [PMID: 37038009 DOI: 10.1007/s10585-023-10203-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/10/2023] [Indexed: 04/12/2023]
Abstract
A participant in key developmental processes, the adhesion glycoprotein CD44 is also expressed in several types of malignancies and can promote metastasis. In addition, the expression of CD44 isoforms in different types of cancer such as prostate and breast cancers may facilitate bone metastases by enhancing tumorigenicity, osteomimicry, cell migration, homing to bone, and anchorage within the bone specialized domains. Moreover, there is evidence that the CD44-ICD fragments in breast cancer cells may promote the cells' osteolytic nature. Yet the mechanisms by which CD44 and its downstream effectors promote the establishment of these cells within the bone are not fully elucidated. In this review, we summarize the current data on the roles played by CD44 in cancer progression and bone metastasis and the possible effects of its interaction with the different components of the bone marrow milieu.
Collapse
Affiliation(s)
- Noy Shir Zer
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Noa Ben-Ghedalia-Peled
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Levi A Gheber
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Razi Vago
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
5
|
Verma P, Shukla N, Kumari S, Ansari M, Gautam NK, Patel GK. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer 2023; 1878:188887. [PMID: 36997008 DOI: 10.1016/j.bbcan.2023.188887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.
Collapse
|
6
|
Al-Shehri A, Bakhashab S. Oncogenic Long Noncoding RNAs in Prostate Cancer, Osteosarcoma, and Metastasis. Biomedicines 2023; 11:biomedicines11020633. [PMID: 36831169 PMCID: PMC9953056 DOI: 10.3390/biomedicines11020633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Prostate cancer (PC) is a common malignancy and is one of the leading causes of cancer-related death in men worldwide. Osteosarcoma (OS) is the most common bone cancer, representing 20-40% of all bone malignancy cases. Cancer metastasis is a process by which malignant tumor cells detach from the primary tumor site via a cascade of processes and migrate to secondary sites through the blood circulation or lymphatic system to colonize and form secondary tumors. PC has a specific affinity to the bone based on the "seed and soil" theory; once PC reach the bone, it becomes incurable. Several studies have identified long noncoding RNAs (lncRNAs) as potential targets for cancer therapy or as diagnostic and prognostic biomarkers. The dysregulation of various lncRNAs has been found in various cancer types, including PC, OS, and metastasis. However, the mechanisms underlying lncRNA oncogenic activity in tumor progression and metastasis are extremely complex and remain incompletely understood. Therefore, understanding oncogenic lncRNAs and their role in OS, PC, and metastasis and the underlying mechanism may help better manage and treat this malignancy. The aim of this review is to summarize current knowledge of oncogenic lncRNAs and their involvement in PC, OS, and bone metastasis.
Collapse
Affiliation(s)
- Aishah Al-Shehri
- Biochemistry Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-12-6400000
| |
Collapse
|
7
|
Ferguson AM, Rubin MA. Lineage plasticity in prostate cancer: Looking beyond intrinsic alterations. Cancer Lett 2022; 548:215901. [PMID: 36075486 DOI: 10.1016/j.canlet.2022.215901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/22/2023]
Abstract
Emergence of small cell prostate cancer is linked to the plasticity of tumour cells and avoidance of environmental pressures. This process is thought to be reversable, however to-date evidence of this has been demonstrated in small-cell prostate cancer. To study the plasticity of prostate tumours, we look to clinical cohorts of patients covering the spectra of malignancy subtypes and utilise in vitro and in vivo models of disease progression. Current models have assisted in the understanding of the extremities of this plasticity, elucidating internal mechanisms and adaptations to stressors through transition to altered cell states. By interrogating the tumour microenvironment and earlier time points, we are beginning to form a deeper understanding of the full spectra of tumour plasticity. It could be proffered that this deeper understanding will lead to better patient outcome, with earlier interventions more likely to reverse plasticity and prevent trans-differentiation to the aggressive, small cell phenotype.
Collapse
Affiliation(s)
- Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
8
|
Shan Q, Takabatake K, Kawai H, Oo MW, Inada Y, Sukegawa S, Fushimi S, Nakano K, Nagatsuka H. Significance of cancer stroma for bone destruction in oral squamous cell carcinoma using different cancer stroma subtypes. Oncol Rep 2022; 47:81. [PMID: 35211756 PMCID: PMC8892615 DOI: 10.3892/or.2022.8292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Stromal cells in the tumor microenvironment (TME) can regulate the progression of numerous types of cancer; however, the bone invasion of oral squamous cell carcinoma (OSCC) has been poorly investigated. In the present study, the effect of verrucous SCC-associated stromal cells (VSCC-SCs), SCC-associated stromal cells (SCC-SCs) and human dermal fibroblasts on bone resorption and the activation of HSC-3 osteoclasts in vivo were examined by hematoxylin and eosin, AE1/3 (pan-cytokeratin) and tartrate-resistant acid phosphatase staining. In addition, the expression levels of matrix metalloproteinase (MMP)9, membrane-type 1 MMP (MT1-MMP), Snail, receptor activator of NF-κB ligand (RANKL) and parathyroid hormone-related peptide (PTHrP) in the bone invasion regions of HSC-3 cells were examined by immunohistochemistry. The results suggested that both SCC-SCs and VSCC-SCs promoted bone resorption, the activation of osteoclasts, and the expression levels of MMP9, MT1-MMP, Snail, RANKL and PTHrP. However, SCC-SCs had a more prominent effect compared with VSCC-SCs. Finally, microarray data were used to predict potential genes underlying the differential effects of VSCC-SCs and SCC-SCs on bone invasion in OSCC. The results revealed that IL1B, ICAM1, FOS, CXCL12, INS and NGF may underlie these differential effects. In conclusion, both VSCC-SCs and SCC-SCs may promote bone invasion in OSCC by enhancing the expression levels of RANKL in cancer and stromal cells mediated by PTHrP; however, SCC-SCs had a more prominent effect. These findings may represent a potential regulatory mechanism underlying the bone invasion of OSCC.
Collapse
Affiliation(s)
- Qiusheng Shan
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Yasunori Inada
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Shintaro Sukegawa
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760‑8557, Japan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8525, Japan
| |
Collapse
|
9
|
Li CH, Hsu TI, Chang YC, Chan MH, Lu PJ, Hsiao M. Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis. Biomedicines 2021; 9:1265. [PMID: 34572451 PMCID: PMC8472300 DOI: 10.3390/biomedicines9091265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial and mesenchymal transition mechanisms continue to occur during the cell cycle and throughout human development from the embryo stage to death. In embryo development, epithelial-mesenchymal transition (EMT) can be divided into three essential steps. First, endoderm, mesoderm, and neural crest cells form, then the cells are subdivided, and finally, cardiac valve formation occurs. After the embryonic period, the human body will be subjected to ongoing mechanical stress or injury. The formation of a wound requires EMT to recruit fibroblasts to generate granulation tissues, repair the wound and re-create an intact skin barrier. However, once cells transform into a malignant tumor, the tumor cells acquire the characteristic of immortality. Local cell growth with no growth inhibition creates a solid tumor. If the tumor cannot obtain enough nutrition in situ, the tumor cells will undergo EMT and invade the basal membrane of nearby blood vessels. The tumor cells are transported through the bloodstream to secondary sites and then begin to form colonies and undergo reverse EMT, the so-called "mesenchymal-epithelial transition (MET)." This dynamic change involves cell morphology, environmental conditions, and external stimuli. Therefore, in this manuscript, the similarities and differences between EMT and MET will be dissected from embryonic development to the stage of cancer metastasis.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Tai-I Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Zhuang QS, Sun XB, Chong QY, Banerjee A, Zhang M, Wu ZS, Zhu T, Pandey V, Lobie PE. ARTEMIN Promotes Oncogenicity and Resistance to 5-Fluorouracil in Colorectal Carcinoma by p44/42 MAPK Dependent Expression of CDH2. Front Oncol 2021; 11:712348. [PMID: 34422665 PMCID: PMC8377398 DOI: 10.3389/fonc.2021.712348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
ARTEMIN (ARTN), one of the glial-cell derived neurotrophic factor family of ligands, has been reported to be associated with a number of human malignancies. In this study, the enhanced expression of ARTN in colorectal carcinoma (CRC) was observed; the expression of ARTN positively correlated with lymph node metastases and advanced tumor stages and predicted poor prognosis. Forced expression of ARTN in CRC cells enhanced oncogenic behavior, mesenchymal phenotype, stem cell-like properties and tumor growth and metastasis in a xenograft model. These functions were conversely inhibited by depletion of endogenous ARTN. Forced expression of ARTN reduced the sensitivity of CRC cells to 5-FU treatment; and 5-FU resistant CRC cells harbored enhanced expression of ARTN. The oncogenic functions of ARTN were demonstrated to be mediated by p44/42 MAP kinase dependent expression of CDH2 (CADHERIN 2, also known as N-CADHERIN). Inhibition of p44/42 MAP kinase activity or siRNA mediated depletion of endogenous CDH2 reduced the enhanced oncogenicity and chemoresistance consequent to forced expression of ARTN induced cell functions; and forced expression of CDH2 rescued the reduced mesenchymal properties and resistance to 5-FU after ARTN depletion. In conclusion, ARTN may be of prognostic and theranostic utility in CRC.
Collapse
Affiliation(s)
- Qiu-Shi Zhuang
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xin-Bao Sun
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Arindam Banerjee
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Min Zhang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Tao Zhu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
11
|
Jia M, Wang Y, Guo Y, Yu P, Sun Y, Song Y, Zhao L. Nitidine chloride suppresses epithelial-mesenchymal transition and stem cell-like properties in glioblastoma by regulating JAK2/STAT3 signaling. Cancer Med 2021; 10:3113-3128. [PMID: 33788424 PMCID: PMC8085923 DOI: 10.1002/cam4.3869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is the most aggressive and common intracranial malignant tumor, and the prognosis is still poor after various treatments. Based on the poor prognosis of glioma, new drugs that suppress the rapid progression and aggressive growth of glioma are urgently needed. It has been reported that nitidine chloride (NC) can inhibit tumor growth and epithelial‐mesenchymal transition (EMT), and EMT is associated with cancer stem cell properties. The present study aimed to investigate the inhibitory effect of NC on the EMT process and stem cell‐like properties in glioma cells. The results showed that the migration and invasion abilities in U87 and LN18 glioma cells were significantly increased after the induction of EMT and these effects were inhibited by NC in a concentration‐dependent manner. NC treatment decreased the expression of EMT markers in glioma cells and self‐renewal capacity of glioma stem‐like cells. We demonstrated that these effects of NC were achieved via JAK2/STAT3 signaling. Taken together, these results indicate that NC inhibits the EMT process and glioma stem‐like properties via JAK2/STAT3 signaling pathway, suggesting that NC may be a potential anti‐glioma drug.
Collapse
Affiliation(s)
- Mingbo Jia
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yingxue Guo
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Pengyue Yu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yanke Song
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Liyan Zhao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
van de Merbel AF, van Hooij O, van der Horst G, van Rijt-van de Westerlo CCM, van der Mark MH, Cheung H, Kroon J, Verhaegh GW, Tijhuis J, Wellink A, Maas P, Viëtor H, Schalken JA, van der Pluijm G. The Identification of Small Molecule Inhibitors That Reduce Invasion and Metastasis of Aggressive Cancers. Int J Mol Sci 2021; 22:ijms22041688. [PMID: 33567533 PMCID: PMC7915539 DOI: 10.3390/ijms22041688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Transformed epithelial cells can activate programs of epithelial plasticity and switch from a sessile, epithelial phenotype to a motile, mesenchymal phenotype. This process is linked to the acquisition of an invasive phenotype and the formation of distant metastases. The development of compounds that block the acquisition of an invasive phenotype or revert the invasive mesenchymal phenotype into a more differentiated epithelial phenotype represent a promising anticancer strategy. In a high-throughput assay based on E-cadherin (re)induction and the inhibition of tumor cell invasion, 44,475 low molecular weight (LMW) compounds were screened. The screening resulted in the identification of candidate compounds from the PROAM02 class. Selected LMW compounds activated E-cadherin promoter activity and inhibited cancer cell invasion in multiple metastatic human cancer cell lines. The intraperitoneal administration of selected LMW compounds reduced the tumor burden in human prostate and breast cancer in vivo mouse models. Moreover, selected LMW compounds decreased the intra-bone growth of xenografted human prostate cancer cells. This study describes the identification of the PROAM02 class of small molecules that can be exploited to reduce cancer cell invasion and metastases. Further clinical evaluation of selected candidate inhibitors is warranted to address their safety, bioavailability and antitumor efficacy in the management of patients with aggressive cancers.
Collapse
Affiliation(s)
- Arjanneke F. van de Merbel
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
| | - Onno van Hooij
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.v.H.); (C.C.M.v.R.-v.d.W.); (G.W.V.); (J.A.S.)
| | - Geertje van der Horst
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
| | - Cindy C. M. van Rijt-van de Westerlo
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.v.H.); (C.C.M.v.R.-v.d.W.); (G.W.V.); (J.A.S.)
- Oncodrone BV, 6525 GA Nijmegen, The Netherlands; (A.W.); (H.V.)
| | - Maaike H. van der Mark
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
| | - Henry Cheung
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
| | - Jan Kroon
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
- Department of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gerald W. Verhaegh
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.v.H.); (C.C.M.v.R.-v.d.W.); (G.W.V.); (J.A.S.)
| | - Johan Tijhuis
- Specs, 2712 PB Zoetermeer, The Netherlands; (J.T.); (P.M.)
| | - Antoine Wellink
- Oncodrone BV, 6525 GA Nijmegen, The Netherlands; (A.W.); (H.V.)
| | - Peter Maas
- Specs, 2712 PB Zoetermeer, The Netherlands; (J.T.); (P.M.)
| | - Henk Viëtor
- Oncodrone BV, 6525 GA Nijmegen, The Netherlands; (A.W.); (H.V.)
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (O.v.H.); (C.C.M.v.R.-v.d.W.); (G.W.V.); (J.A.S.)
- Oncodrone BV, 6525 GA Nijmegen, The Netherlands; (A.W.); (H.V.)
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.F.v.d.M.); (G.v.d.H.); (M.H.v.d.M.); (H.C.); (J.K.)
- Correspondence: ; Tel.: +31-715265255
| |
Collapse
|
13
|
STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT-MET switch and cancer metastasis. Oncogene 2020; 40:791-805. [PMID: 33262462 PMCID: PMC7843420 DOI: 10.1038/s41388-020-01566-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022]
Abstract
Epithelial–mesenchymal transition (EMT)/mesenchymal–epithelial transition (MET) processes are proposed to be a driving force of cancer metastasis. By studying metastasis in bone marrow-derived mesenchymal stem cell (BM-MSC)-driven lung cancer models, microarray time-series data analysis by systems biology approaches revealed BM-MSC-induced signaling triggers early dissemination of CD133+/CD83+ cancer stem cells (CSCs) from primary sites shortly after STAT3 activation but promotes proliferation towards secondary sites. The switch from migration to proliferation was regulated by BM-MSC-secreted LIF and activated LIFR/p-ERK/pS727-STAT3 signaling to promote early disseminated cancer cells MET and premetastatic niche formation. Then, tumor-tropic BM-MSCs circulated to primary sites and triggered CD151+/CD38+ cells acquiring EMT-associated CSC properties through IL6R/pY705-STAT3 signaling to promote tumor initiation and were also attracted by and migrated towards the premetastatic niche. In summary, STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates the EMT–MET switch within the distinct molecular subtypes of CSCs to complete the metastatic process.
Collapse
|
14
|
Kong L, Lu X, Chen X, Wu Y, Zhang Y, Shi H, Li J. Qigesan inhibits esophageal cancer cell invasion and migration by inhibiting Gas6/Axl-induced epithelial-mesenchymal transition. Aging (Albany NY) 2020; 12:9714-9725. [PMID: 32432570 PMCID: PMC7288918 DOI: 10.18632/aging.103238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Qigesan (QGS) has been used to effectively treat esophageal cancer (EC) for decades in China, but the mechanism by which it suppresses EC metastasis remains unknown. In this study, we examined the effects of QGS on EC cell mobility. Using immunohistochemistry and immunofluorescence, expression of Gas6 and Axl, which promote tumor cell migration and invasion, was examined in carcinoma tissues and adjacent normal tissues from EC patients. Levels of Gas6, Axl, and the Gas6/Axl complex were also examined in ECA109 and TE13 EC cells treated with QGS. In addition, immunofluorescent staining and quantitative protein analysis were used to examine E-cadherin, N-cadherin, and Snail levels in ECA109 and TE13 EC cells after QSG administration, and cell mobility was assessed. The results demonstrated that levels of Gas6 and Axl expression are higher in EC tissues than in adjacent normal tissues. Moreover, QGS decreased Gas6/Axl levels, increased E-cadherin expression, decreased Snail and N-cadherin expression, and inhibited epithelial-mesenchymal transition (EMT) in EC cells. QGS thus suppresses EMT in EC by inhibiting Gas6/Axl binding.
Collapse
Affiliation(s)
- Lingyu Kong
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Xin Lu
- Department of Clinical Laboratory, Tangshan Maternal and Children Hospital, Tangshan 063000, Hebei, China
| | - Xuanyu Chen
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yunyan Wu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Yushuang Zhang
- Department of Traditional Chinese Medicine, Tumor Hospital of Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Huijuan Shi
- Department of Traditional Chinese Medicine, Tumor Hospital of Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China,Department of Traditional Chinese Medicine, Tumor Hospital of Hebei Province, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
15
|
Integrated Therapeutic Targeting of the Prostate Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:183-198. [PMID: 34185293 DOI: 10.1007/978-3-030-59038-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Prostate cancer is a common and deadly cancer among men. The heterogeneity that characterizes prostate tumors contributes to clinical challenges in the diagnosis, prognosis, and treatment of this malignancy. While localized prostate cancer can be treated with surgery or radiotherapy, metastatic disease to the lymph nodes and the bone requires aggressive treatment with androgen deprivation treatment (ADT). Unfortunately, this often eventually progresses to metastatic castration-resistant prostate cancer (mCRPC). Advanced prostate cancer treatment today involves 1st- and 2nd-line taxane chemotherapy and 2nd-generation antiandrogens. The process of epithelial mesenchymal transition (EMT), during which epithelial cells lose their adhesions and their polarity, is a critical contributor to prostate cancer metastasis. In this article, we aim to integrate the current understanding of mechanisms dictating the dynamics of phenotypic EMT, with apoptosis outcomes in prostate tumors in response to antiandrogen and taxane chemotherapy for the treatment of advanced disease. Novel insights into the signaling mechanisms that target the functional interface between apoptosis and EMT will be considered in the context of potential clinical markers of tumor prognosis, as well as for effective therapeutic targeting of α- and β- adrenergic signaling (by novel and existing chemotherapeutic agents and antiandrogens). Interfering with EMT and apoptosis simultaneously toward eradicating the tumor mass is of major significance in combating the lethal disease and increasing patient survival.
Collapse
|
16
|
Abedini Bakhshmand E, Soltani BM. Regulatory effect of hsa-miR-5590-3P on TGFβ signaling through targeting of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 transcripts. Biol Chem 2019; 400:677-685. [PMID: 30391930 DOI: 10.1515/hsz-2018-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022]
Abstract
Transforming growth factor-β (TGFβ) signaling acts as suppressor and inducer of tumor progression during the early and late stages of cancer, respectively. Some miRNAs have shown a regulatory effect on TGFβ signaling and here, we have used a combination of bioinformatics and experimental tools to show that hsa-miR-5590-3p is a regulator of multiple genes expression in the TGFβ signaling pathway. Consistent with the bioinformatics predictions, hsa-miR-5590-3p had a negative correlation of expression with TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 genes, detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Then, the dual luciferase assay supported the direct interaction between hsa-miR-5590-3p and TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4-3'UTR sequences. Consistently, the TGFβ-R1 protein level was reduced following the overexpression of hsa-miR-5590-3p, detected by Western analysis. Also, hsa-miR-5590-3p overexpression brought about the downregulation of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 expression in HCT-116 cells, detected by RT-qPCR, followed by cell cycle arrest in the sub-G1 phase, detected by flow cytometry. RT-qPCR results indicated that hsa-miR-5590-3p is significantly downregulated in breast tumor tissues (late stage) compared to their normal pairs. Altogether, data introduces hsa-miR-5590-3p as a negative regulator of the TGFβ/SMAD signaling pathway which acts through downregulation of TGFβ-R1, TGFβ-R2, SMAD3 and SMAD4 transcripts. Therefore, it can be tested as a therapy target in cancers in which the TGFβ/SMAD pathway is deregulated.
Collapse
Affiliation(s)
- Elham Abedini Bakhshmand
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
17
|
Altieri B, Di Dato C, Martini C, Sciammarella C, Di Sarno A, Colao A, Faggiano A. Bone Metastases in Neuroendocrine Neoplasms: From Pathogenesis to Clinical Management. Cancers (Basel) 2019; 11:cancers11091332. [PMID: 31500357 PMCID: PMC6770134 DOI: 10.3390/cancers11091332] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Bone represents a common site of metastases for several solid tumors. However, the ability of neuroendocrine neoplasms (NENs) to localize to bone has always been considered a rare and late event. Thanks to the improvement of therapeutic options, which results in longer survival, and of imaging techniques, particularly after the introduction of positron emission tomography (PET) with gallium peptides, the diagnosis of bone metastases (BMs) in NENs is increasing. The onset of BMs can be associated with severe skeletal complications that impair the patient’s quality of life. Moreover, BMs negatively affect the prognosis of NEN patients, bringing out the lack of curative treatment options for advanced NENs. The current knowledge on BMs in gastro-entero-pancreatic (GEP) and bronchopulmonary (BP) NENs is still scant and is derived from a few retrospective studies and case reports. This review aims to perform a critical analysis of the evidence regarding the role of BMs in GEP- and BP-NENs, focusing on the molecular mechanisms underlining the development of BMs, as well as clinical presentation, diagnosis, and treatment of BMs, in an attempt to provide suggestions that can be used in clinical practice.
Collapse
Affiliation(s)
- Barbara Altieri
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Carla Di Dato
- Department of Clinical Medicine, Bufalini Hospital, 47521 Cesena, Italy.
| | - Chiara Martini
- Clinica Medica 3, Department of Medicine, DIMED, University of Padova, 35128 Padova, Italy.
| | - Concetta Sciammarella
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37126 Verona, Italy.
| | | | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
| | - Antongiulio Faggiano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
18
|
Human-specific RNA analysis shows uncoupled epithelial-mesenchymal plasticity in circulating and disseminated tumour cells from human breast cancer xenografts. Clin Exp Metastasis 2019; 36:393-409. [PMID: 31190270 DOI: 10.1007/s10585-019-09977-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022]
Abstract
Blood samples, bone marrow, tumours and metastases where possible were collected from SCID mice bearing orthotopic xenografts of the triple-negative MDA-MB-468 cell line or a transplantable ER-positive patient derived xenograft (ED-03), and assessed using human-specific, tandem-nested RT-qPCR for markers relating to detection of circulating (CTCs) and disseminated tumour cells (DTCs), breast cancer clinicopathology, the 'cancer stem cell' phenotype, metabolism, hypoxia and epithelial-mesenchymal plasticity (EMP). Increased levels of SNAI1, ILK, NOTCH1, CK20, and PGR, and a decrease/loss of EPCAM in CTCs/DTCs were observed relative to the primary xenograft across both models. Decreased CD24 and EGFR was restricted to the MDA-MB-468 model, while increased TFF1 was seen in the ED-03 model. The major metabolic regulator PPARGC1A, and several hypoxia-related markers (HIF1A, APLN and BNIP3) were significantly elevated in both models. Increased expression of mesenchymal markers including SNAI1 was seen across both models, however CDH1 did not decrease concordantly, and several other epithelial markers were increased, suggesting an uncoupling of EMP to produce an EMP hybrid or partial-EMT. Single cell analysis of ED-03 CTCs, although limited, indicated uncoupling of the EMP axis in single hybrid cells, rather than distinct pools of epithelial or mesenchymal-enriched cells, however dynamic heterogeneity between CTCs/DTCs cannot be ruled out. Reduced CD24 expression was observed in the MDA-MB-468 CTCs, consistent with the 'breast cancer stem cell' phenotype, and metastatic deposits in this model mostly resembled the primary xenografts, consistent with the mesenchymal-epithelial transition paradigm.
Collapse
|
19
|
Manna FL, Karkampouna S, Zoni E, De Menna M, Hensel J, Thalmann GN, Kruithof-de Julio M. Metastases in Prostate Cancer. Cold Spring Harb Perspect Med 2019; 9:a033688. [PMID: 29661810 PMCID: PMC6396340 DOI: 10.1101/cshperspect.a033688] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prostate cancer (PCa) prognosis and clinical outcome is directly dependent on metastatic occurrence. The bone microenvironment is a favorable metastatic niche. Different biological processes have been suggested to contribute to the osteotropism of PCa such as hemodynamics, bone-specific signaling interactions, and the "seed and soil" hypothesis. However, prevalence of disseminating tumor cells in the bone is not proportional to the actual occurrence of metastases, as not all patients will develop bone metastases. The fate and tumor-reforming ability of a metastatic cell is greatly influenced by the microenvironment. In this review, the molecular mechanisms of bone and soft-tissue metastasis in PCa are discussed. Specific attention is dedicated to the residual disease, novel approaches, and animal models used in oncological translational research are illustrated.
Collapse
Affiliation(s)
- Federico La Manna
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Sofia Karkampouna
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Eugenio Zoni
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marta De Menna
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Janine Hensel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - George N Thalmann
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department of Urology, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
20
|
Salamanna F, Borsari V, Contartese D, Nicoli Aldini N, Fini M. Link between estrogen deficiency osteoporosis and susceptibility to bone metastases: A way towards precision medicine in cancer patients. Breast 2018; 41:42-50. [PMID: 30007267 DOI: 10.1016/j.breast.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 01/18/2023] Open
Abstract
Different fields of cancer management consider bone health to be of increasing clinical importance for patients: 1) presence of bone metastases in many solid tumors, 2) use of bone-targeted treatments in the reduction of bone metastasis, 3) effects of cancer treatment on reproductive hormones, critical for normal bone remodeling maintenance. Additionally, bone microenvironment is further complicated by the decline of ovarian sex steroid production and by the related increase in inflammatory factors linked to menopause, which result in accelerated bone loss and increased risk of osteoporosis (OP). Similarly, cancers and metastasis to bone showed a close relationship with sex hormones (particularly estrogen). Thus, these findings raise a question: Could pre-existing estrogen deficiency OP promote and/or influence cancer cell homing and tumor growth in bone? Although some preclinical and clinical evidence exists, it is mandatory to understand this aspect that would be relevant in the clinical theatre, where physicians need to understand the treatments available to reduce the risk of skeletal disease in cancer patients. This descriptive systematic review summarizes preclinical and clinical studies dealing with bimodal interactions between pre-existing estrogen deficiency OP and bone metastasis development and provides evidence supporting differences in tumor growth and colonization between healthy and OP status. Few studies evaluated the impact of estrogen deficiency OP on the susceptibility to bone metastases. Therefore, implementing biological knowledge, could help researchers and clinicians to have a better comprehension of the importance of pre- and post-menopausal bone microenvironment and its clinical implications for precision medicine in cancer patients.
Collapse
Affiliation(s)
- F Salamanna
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - V Borsari
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - D Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - N Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - M Fini
- Laboratory of Biomechanics and Technology Innovation, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| |
Collapse
|
21
|
Ma M, Zhao J, Wu Q, Xiao K, Li S, Zhu H, Liu C, Xie H, Zuo C. MiRNA-545 negatively regulates the oncogenic activity of EMS1 in gastric cancer. Cancer Med 2018; 7:2452-2462. [PMID: 29733519 PMCID: PMC6010719 DOI: 10.1002/cam4.1520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/17/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a common malignant tumor of the digestive system. In addition, GC metastasis is an extremely complicated process. In this article, high expression levels of EMS1 mRNA and protein were found to be positively correlated with an enhanced malignant potential of GC cells and a poor clinical prognosis of GC patients. Interestingly, the expression levels of EMS1 mRNA and protein in GC cells were inhibited by microRNA-545 (miR-545), which was identified by a bioinformatics analysis. The expression level of miR-545 in carcinoma tissues was significantly lower than that in para-carcinoma tissues. The proliferation and epithelial-mesenchymal transition (EMT) of GC cells were suppressed by exogenous oligonucleotides of miR-545 mimics. In addition, the expression levels of EMT-associated markers were altered with the expression of miR-545. Notably, the growth rates of tumors in nude mice were seriously restrained by an intratumoral injection of oligonucleotides of the miR-545 mimics. These results suggest a negative regulatory role of miR-545 on the oncogenic activity of EMS1. In addition, EMS1 and miR-545 may be potential biomarkers for GC diagnosis. Synthesized oligonucleotides of miR-545 mimics may be developed as important gene medicines for GC therapy in the future.
Collapse
Affiliation(s)
- Min Ma
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Juanxia Zhao
- Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Qunfeng Wu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, 07103
| | - Ke Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Shuang Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Haizhen Zhu
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, 07103
| | - Hailong Xie
- Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Chaohui Zuo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| |
Collapse
|
22
|
Roato I, Ferracini R. Cancer Stem Cells, Bone and Tumor Microenvironment: Key Players in Bone Metastases. Cancers (Basel) 2018; 10:cancers10020056. [PMID: 29461491 PMCID: PMC5836088 DOI: 10.3390/cancers10020056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor mass is constituted by a heterogeneous group of cells, among which a key role is played by the cancer stem cells (CSCs), possessing high regenerative properties. CSCs directly metastasize to bone, since bone microenvironment represents a fertile environment that protects CSCs against the immune system, and maintains their properties and plasticity. CSCs can migrate from the primary tumor to the bone marrow (BM), due to their capacity to perform the epithelial-to-mesenchymal transition. Once in BM, they can also perform the mesenchymal-to-epithelial transition, allowing them to proliferate and initiate bone lesions. Another factor explaining the osteotropism of CSCs is their ability to recognize chemokine gradients toward BM, through the CXCL12–CXCR4 axis, also known to be involved in tumor metastasis to other organs. Moreover, the expression of CXCR4 is associated with the maintenance of CSCs’ stemness, and CXCL12 expression by osteoblasts attracts CSCs to the BM niches. CSCs localize in the pre-metastatic niches, which are anatomically distinct regions within the tumor microenvironment and govern the metastatic progression. According to the stimuli received in the niches, CSCs can remain dormant for long time or outgrow from dormancy and create bone lesions. This review resumes different aspects of the CSCs’ bone metastastic process and discusses available treatments to target CSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza, Turin 10126, Italy.
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U. San Martino, Genoa 16132, Italy.
| |
Collapse
|
23
|
Verhoef EI, Kolijn K, De Herdt MJ, van der Steen B, Hoogland AM, Sleddens HFBM, Looijenga LHJ, van Leenders GJLH. MET expression during prostate cancer progression. Oncotarget 2018; 7:31029-36. [PMID: 27105539 PMCID: PMC5058736 DOI: 10.18632/oncotarget.8829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
Tyrosine-kinase inhibitors of the hepatocyte growth factor receptor MET are under investigation for the treatment of hormone-refractory prostate cancer (HRPC) metastasis. Analysis of MET protein expression and genetic alterations might contribute to therapeutic stratification of prostate cancer patients. Our objective was to investigate MET on protein, DNA and RNA level in clinical prostate cancer at various stages of progression. Expression of MET was analyzed in hormone-naive primary prostate cancers (N=481), lymph node (N=40) and bone (N=8) metastases, as well as HRPC (N=54) and bone metastases (N=15). MET protein expression was analyzed by immunohistochemistry (D1C2 C-terminal antibody). MET mRNA levels and MET DNA copy numbers were determined by in situ hybridization. None of the hormone-naive primary prostate cancer or lymph node metastases demonstrated MET protein or mRNA expression. In contrast, MET protein was expressed in 12/52 (23%) evaluable HRPC resections. RNA in situ demonstrated cytoplasmic signals in 14/54 (26%) of the HRPC patients, and was associated with MET protein expression (p=0.025, χ2), in absence of MET amplification or polysomy. MET protein expression was present in 7/8 (88%) hormone-naive and 10/15 (67%) HRPC bone metastases, without association of HRPC (p=0.37; χ2), with MET polysomy in 8/13 (61%) evaluable cases. In conclusion, MET was almost exclusively expressed in HRPC and prostate cancer bone metastasis, but was not related to MET amplification or polysomy. Evaluation of MET status could be relevant for therapeutic stratification of late stage prostate cancer.
Collapse
Affiliation(s)
- Esther I Verhoef
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Kimberley Kolijn
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Maria J De Herdt
- Othorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Berdine van der Steen
- Othorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - A Marije Hoogland
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
24
|
Begemann D, Anastos H, Kyprianou N. Cell death under epithelial-mesenchymal transition control in prostate cancer therapeutic response. Int J Urol 2018; 25:318-326. [DOI: 10.1111/iju.13505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Diane Begemann
- Department of Urology; University of Kentucky College of Medicine; Lexington Kentucky USA
- Department of Toxicology and Cancer Biology; University of Kentucky College of Medicine; Lexington Kentucky USA
| | - Harry Anastos
- Department of Urology; University of Kentucky College of Medicine; Lexington Kentucky USA
| | - Natasha Kyprianou
- Department of Urology; University of Kentucky College of Medicine; Lexington Kentucky USA
- Department of Toxicology and Cancer Biology; University of Kentucky College of Medicine; Lexington Kentucky USA
- Department of Molecular Biochemistry; University of Kentucky College of Medicine; Lexington Kentucky USA
| |
Collapse
|
25
|
Tumor microenvironment promotes prostate cancer cell dissemination via the Akt/mTOR pathway. Oncotarget 2018; 9:9206-9218. [PMID: 29507684 PMCID: PMC5823632 DOI: 10.18632/oncotarget.24104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022] Open
Abstract
Metastasis causes high mortality in various malignancies, including prostate cancer (PCa). Accumulating data has suggested that cancer cells spread from the primary tumor to distant sites at early stage, which is characterized by disseminated tumor cells (DTCs). However, lack of direct evidence of partial localized PCa cells occurring epithelial-to-mesenchymal transition (EMT) and disseminating to distant sites (e.g bone marrow). In this study, we used luciferase labeled PCa cells to establish an EMT mouse model and to detect whether DTCs spread into the bone marrow. We observed tumor cells existing in mouse bone marrow when tumor grew subcutaneously at palpable stage. Studies also showed that ex vivo tumor cells exhibited increased proliferative, migratory, invasive and angiogenesis abilities. When compared ex vivo tumor cells with parental cells, hallmarks of EMT including E-cadherin, Vimentin, Snail, and ZO-1 were altered significantly. Specifically, the ex vivo tumor cells showed more mesenchymal properties. Angiogenesis markers, including VEGFR2, VEGFR3, MCP-3, I-TAC, I309, uPAR and GROα, were also increased in the ex vivo tumor cells. Intriguingly, MCP-1 expression was dramatically increased in those cells. Mechanistic analyses indicated that AP1 mediates PCa EMT and the appearance of DTCs via the Akt/mTOR pathway. This study may provide potential therapeutic targets and diagnostic biomarkers of PCa progression and metastasis.
Collapse
|
26
|
van de Merbel AF, van der Horst G, Buijs JT, van der Pluijm G. Protocols for Migration and Invasion Studies in Prostate Cancer. Methods Mol Biol 2018; 1786:67-79. [PMID: 29786787 DOI: 10.1007/978-1-4939-7845-8_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Prostate cancer is the most common malignancy diagnosed in men in the western world. The development of distant metastases and therapy resistance are major clinical problems in the management of prostate cancer patients. In order for prostate cancer to metastasize to distant sites in the human body, prostate cancer cells have to migrate and invade neighboring tissue. Cancer cells can acquire a migratory and invasive phenotype in several ways, including single cell and collective migration. As a requisite for migration, epithelial prostate cancer cells often need to acquire a motile, mesenchymal-like phenotype. This way prostate cancer cells often lose polarity and epithelial characteristics (e.g., expression of E-cadherin homotypic adhesion receptor), and acquire mesenchymal phenotype (for example, cytoskeletal rearrangements, enhanced expression of proteolytic enzymes and other repertory of integrins). This process is referred to as epithelial-to-mesenchymal transition (EMT). Cellular invasion, one of the hallmarks of cancer, is characterized by the movement of cells through a three-dimensional matrix, resulting in remodeling of the cellular environment. Cellular invasion requires adhesion, proteolysis of the extracellular matrix, and migration of cells. Studying the migratory and invasive ability of cells in vitro represents a useful tool to assess the aggressiveness of solid cancers, including those of the prostate.This chapter provides a comprehensive description of the Transwell migration assay, a commonly used technique to investigate the migratory behavior of prostate cancer cells in vitro. Furthermore, we will provide an overview of the adaptations to the Transwell migration protocol to study the invasive capacity of prostate cancer cells, i.e., the Transwell invasion assay. Finally, we will present a detailed description of the procedures required to stain the Transwell filter inserts and quantify the migration and/or invasion.
Collapse
Affiliation(s)
| | | | - Jeroen T Buijs
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
27
|
Stark TW, Hensley PJ, Spear A, Pu H, Strup SS, Kyprianou N. Predictive value of epithelial-mesenchymal-transition (EMT) signature and PARP-1 in prostate cancer radioresistance. Prostate 2017; 77:1583-1591. [PMID: 29063620 DOI: 10.1002/pros.23435] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Epithelial-mesenchymal-transition (EMT) has been previously identified as a contributor to prostate cancer progression to metastasis and therapeutic resistance to antiandrogens and radiotherapy. In this study we conducted a retrospective analysis to investigate the significance of radiation-induced EMT and consequential changes to the tumor microenvironment in biochemical recurrence and response to radiotherapy in prostate cancer patients. METHODS Expression profiling and localization for EMT effectors, E-Cadherin, N-Cadherin, β-catenin and Vimentin was assessed in human prostate tumor specimens pre- and post-radiotherapy and correlated with biochemical recurrence. In addition, immunoreactivity of the DNA repair enzyme, polymerase (PARP-1) and the cytoskeletal-remodeling regulator, cofilin was evaluated in prostate tumor specimens pre- and post-radiotherapy and correlated with pre-treatment prostate-specific antigen levels (PSA). RESULTS Our findings identified that characteristic changes associated with the EMT phenotype and its reversal to mesenchymal-epithelial-transition (MET) within the tumor microenvironment correlate with biochemical recurrence and resistance to radiotherapy among prostate cancer patients. Moreover, elevated PARP-1 expression among the tumor cells undergoing EMT implicates that DNA repair mechanisms may potentially reverse the cytotoxic effects of radiotherapy-induced DNA breaks. CONCLUSIONS Our results suggest that EMT programming effectors, integrated with the actin cytoskeleton regulator cofilin and mesenchymal PARP-1 expression profile provide a signature of potential predictive significance of therapeutic response to radiotherapy in a subset of prostate cancer patients.
Collapse
Affiliation(s)
- Timothy W Stark
- Departments of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Patrick J Hensley
- Departments of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Amanda Spear
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hong Pu
- Departments of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Stephen S Strup
- Departments of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Natasha Kyprianou
- Departments of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Molecular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
28
|
Abstract
Distant metastasis during the advanced stage of malignant tumor progression can cause considerable morbidity in cancer patients. Bone is known to be one of the most common sites of distant metastasis in patients with breast cancer (BC). BC metastases in bone are associated with excessive skeletal complications. These complications can be fatal and reduce quality of life of patients. It is important to understand the metastatic process of BC to bone to improve quality of life and design new therapeutic methods. At present, the molecular mechanisms leading to the BC metastasis to bone are not fully understood. Studying the molecular basis of BC metastasis to bone might improve our insight into this complex process. In addition, it can provide novel approaches for designing advanced and effective targeted therapies. The present article aimed to review the published papers on the molecular basis of the metastatic process of BC to bone, focusing on involved genes and signaling networks. Furthermore, we propose potential therapeutic targets that may be more effective for the inhibition and treatment of BC metastasis to bone.
Collapse
|
29
|
O'Brien R, Marignol L. The Notch-1 receptor in prostate tumorigenesis. Cancer Treat Rev 2017; 56:36-46. [PMID: 28457880 DOI: 10.1016/j.ctrv.2017.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
The Notch signalling pathway plays a fundamental role in tissue development due to its involvement in cell fate determination and postnatal tissue differentiation. Its capacity to regulate cell growth and development has been linked to the occurrence of several cancers including that of the prostate. The transmembrane receptor Notch-1 of this pathway has been linked to the oncogenic role of Notch signalling in prostate adenocarcinoma. Other studies have suggested a tumour suppressive function for Notch-1. This review focuses on the role of Notch-1 in prostate cancer development and maintenance and relates this to the fundamental role of Notch in normal prostate development. The current understanding of the aberrant Notch signalling characteristic of prostate cancer is discussed, and recent therapeutic advances in this field are presented.
Collapse
Affiliation(s)
- Rebecca O'Brien
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin, Ireland
| | - Laure Marignol
- Translational Radiobiology and Molecular Oncology, Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
CRIPTO and its signaling partner GRP78 drive the metastatic phenotype in human osteotropic prostate cancer. Oncogene 2017; 36:4739-4749. [PMID: 28394345 PMCID: PMC5562855 DOI: 10.1038/onc.2017.87] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 02/10/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
CRIPTO (CR-1, TDGF1) is a cell surface/secreted oncoprotein actively involved in development and cancer. Here, we report that high expression of CRIPTO correlates with poor survival in stratified risk groups of prostate cancer (PCa) patients. CRIPTO and its signaling partner glucose-regulated protein 78 (GRP78) are highly expressed in PCa metastases and display higher levels in the metastatic ALDHhigh sub-population of PC-3M-Pro4Luc2 PCa cells compared with non-metastatic ALDHlow. Coculture of the osteotropic PC-3M-Pro4Luc2 PCa cells with differentiated primary human osteoblasts induced CRIPTO and GRP78 expression in cancer cells and increases the size of the ALDHhigh sub-population. Additionally, CRIPTO or GRP78 knockdown decreases proliferation, migration, clonogenicity and the size of the metastasis-initiating ALDHhigh sub-population. CRIPTO knockdown reduces the invasion of PC-3M-Pro4Luc2 cells in zebrafish and inhibits bone metastasis in a preclinical mouse model. These results highlight a functional role for CRIPTO and GRP78 in PCa metastasis and suggest that targeting CRIPTO/GRP78 signaling may have significant therapeutic potential.
Collapse
|
31
|
Bellanger A, Donini CF, Vendrell JA, Lavaud J, Machuca-Gayet I, Ruel M, Vollaire J, Grisard E, Győrffy B, Bièche I, Peyruchaud O, Coll JL, Treilleux I, Maguer-Satta V, Josserand V, Cohen PA. The critical role of the ZNF217 oncogene in promoting breast cancer metastasis to the bone. J Pathol 2017; 242:73-89. [PMID: 28207159 DOI: 10.1002/path.4882] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/10/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
Abstract
Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Caterina F Donini
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Unité Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Julie A Vendrell
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jonathan Lavaud
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Irma Machuca-Gayet
- Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,INSERM, Unit 1033 (Faculté de Médecine Lyon Est), Lyon, France
| | - Maëva Ruel
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julien Vollaire
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Evelyne Grisard
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Institut Curie, Paris, France
| | - Olivier Peyruchaud
- Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France.,INSERM, Unit 1033 (Faculté de Médecine Lyon Est), Lyon, France
| | - Jean-Luc Coll
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | | | - Véronique Maguer-Satta
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Véronique Josserand
- INSERM U1209, Institut Albert Bonniot, Grenoble, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Pascale A Cohen
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
32
|
Lu ZH, Kaliberov S, Sohn RE, Kaliberova L, Du Y, Prior JL, Leib DJ, Chauchereau A, Sehn JK, Curiel DT, Arbeit JM. A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget 2017; 8:12272-12289. [PMID: 28103576 PMCID: PMC5355343 DOI: 10.18632/oncotarget.14699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022] Open
Abstract
While modern therapies for metastatic prostate cancer (PCa) have improved survival they are associated with an increasingly prevalent entity, aggressive variant PCa (AVPCa), lacking androgen receptor (AR) expression, enriched for cancer stem cells (CSCs), and evidencing epithelial-mesenchymal plasticity with a varying extent of neuroendocrine transdifferentiation. Parallel work revealed that endothelial cells (ECs) create a perivascular CSC niche mediated by juxtacrine and membrane tethered signaling. There is increasing interest in pharmacological metastatic niche targeting, however, targeted access has been impossible. Here, we discovered that the Gleason 7 derived, androgen receptor negative, IGR-CaP1 cell line possessed some but not all of the molecular features of AVPCa. Intracardiac injection into NOD/SCID/IL2Rg -/- (NSG) mice produced a completely penetrant bone, liver, adrenal, and brain metastatic phenotype; noninvasively and histologically detectable at 2 weeks, and necessitating sacrifice 4-5 weeks post injection. Bone metastases were osteoblastic, and osteolytic. IGR-CaP1 cells expressed the neuroendocrine marker synaptophysin, near equivalent levels of vimentin and e-cadherin, all of the EMT transcription factors, and activation of NOTCH and WNT pathways. In parallel, we created a new triple-targeted adenoviral vector containing a fiber knob RGD peptide, a hexon mutation, and an EC specific ROBO4 promoter (Ad.RGD.H5/3.ROBO4). This vector was expressed in metastatic microvessels tightly juxtaposed to IGR-CaP1 cells in bone and visceral niches. Thus, the combination of IGR-CaP1 cells and NSG mice produces a completely penetrant metastatic PCa model emulating end-stage human disease. In addition, the metastatic niche access provided by our novel Ad vector could be therapeutically leveraged for future disease control or cure.
Collapse
Affiliation(s)
- Zhi Hong Lu
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Sergey Kaliberov
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca E. Sohn
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Lyudmila Kaliberova
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Yingqiu Du
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Julie L. Prior
- Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J. Leib
- Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Anne Chauchereau
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
| | - Jennifer K. Sehn
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Anatomic and Molecular Pathology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David T. Curiel
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey M. Arbeit
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
33
|
Nakazawa M, Kyprianou N. Epithelial-mesenchymal-transition regulators in prostate cancer: Androgens and beyond. J Steroid Biochem Mol Biol 2017; 166:84-90. [PMID: 27189666 DOI: 10.1016/j.jsbmb.2016.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/20/2016] [Accepted: 05/07/2016] [Indexed: 12/16/2022]
Abstract
Castration resistant prostate cancer (CRPC) remains one of the leading causes of cancer deaths among men. Conventional therapies targeting androgen signaling driven tumor growth have provided limited survival benefit in patients. Recent identification of the critical molecular and cellular events surrounding tumor progression, invasion, and metastasis to the bone as well as other sites provide new insights in targeting advanced disease. Epithelial mesenchymal transition (EMT) is a process via which epithelial cells undergo morphological changes to a motile mesenchymal phenotype, a phenomenon implicated in cancer metastasis but also therapeutic resistance. Therapeutic targeting of EMT has the potential to open a new avenue in the treatment paradigm of CRPC through the reversion of the invasive mesenchymal phenotype to the well differentiated tumor epithelial tumor phenotype. Overcoming therapeutic resistance in metastatic prostate cancer is an unmet need in today's clinical management of advanced disease. This review outlines our current understanding of the contribution of EMT and its reversal to MET in prostate cancer progression and therapeutic resistance, and the impact of selected targeting of mechanisms of resistance via EMT towards a therapeutic benefit in patients with CRPC.
Collapse
Affiliation(s)
- Mary Nakazawa
- Departments of Urology, Biochemistry, Pathology and Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States, United States
| | - Natasha Kyprianou
- Departments of Urology, Biochemistry, Pathology and Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States, United States.
| |
Collapse
|
34
|
Archer LK, Frame FM, Maitland NJ. Stem cells and the role of ETS transcription factors in the differentiation hierarchy of normal and malignant prostate epithelium. J Steroid Biochem Mol Biol 2017; 166:68-83. [PMID: 27185499 DOI: 10.1016/j.jsbmb.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/07/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most common cancer of men in the UK and accounts for a quarter of all new cases. Although treatment of localised cancer can be successful, there is no cure for patients presenting with invasive prostate cancer and there are less treatment options. They are generally treated with androgen-ablation therapies but eventually the tumours become hormone resistant and patients develop castration-resistant prostate cancer (CRPC) for which there are no further successful or curative treatments. This highlights the need for new treatment strategies. In order to prevent prostate cancer recurrence and treatment resistance, all the cell populations in a heterogeneous prostate tumour must be targeted, including the rare cancer stem cell (CSC) population. The ETS transcription factor family members are now recognised as a common feature in multiple cancers including prostate cancer; with aberrant expression, loss of tumour suppressor function, inactivating mutations and the formation of fusion genes observed. Most notably, the TMPRSS2-ERG gene fusion is present in approximately 50% of prostate cancers and in prostate CSCs. However, the role of other ETS transcription factors in prostate cancer is less well understood. This review will describe the prostate epithelial cell hierarchy and discuss the evidence behind prostate CSCs and their inherent resistance to conventional cancer therapies. The known and proposed roles of the ETS family of transcription factors in prostate epithelial cell differentiation and regulation of the CSC phenotype will be discussed, as well as how they might be targeted for therapy.
Collapse
Affiliation(s)
- Leanne K Archer
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom.
| |
Collapse
|
35
|
Abstract
Prostate cancer is the second leading cause of cancer deaths in the USA. The challenge in managing castration-resistant prostate cancer (CRPC) stems not from the lack of therapeutic options but from the limited duration of clinical and survival benefit offered by treatments in this setting due to primary and acquired resistance. The remarkable molecular heterogeneity and tumor adaptability in advanced prostate cancer necessitate optimization of such treatment strategies. While the future of CRPC management will involve newer targeted therapies in deliberately biomarker-selected patients, interventions using current approaches may exhibit improved clinical benefit if employed in the context of optimal sequencing and combinations. This review outlines our current understanding of mechanisms of therapeutic resistance in progression to and after the development of castration resistance, highlighting targetable and reversible mechanisms of resistance.
Collapse
Affiliation(s)
- Mary Nakazawa
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA
| | - Channing Paller
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Natasha Kyprianou
- Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
36
|
Rao SR, Snaith AE, Marino D, Cheng X, Lwin ST, Orriss IR, Hamdy FC, Edwards CM. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br J Cancer 2017; 116:227-236. [PMID: 28006818 PMCID: PMC5243990 DOI: 10.1038/bjc.2016.402] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/04/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent evidence suggests that bone-related parameters are the main prognostic factors for overall survival in advanced prostate cancer (PCa), with elevated circulating levels of alkaline phosphatase (ALP) thought to reflect the dysregulated bone formation accompanying distant metastases. We have identified that PCa cells express ALPL, the gene that encodes for tissue nonspecific ALP, and hypothesised that tumour-derived ALPL may contribute to disease progression. METHODS Functional effects of ALPL inhibition were investigated in metastatic PCa cell lines. ALPL gene expression was analysed from published PCa data sets, and correlated with disease-free survival and metastasis. RESULTS ALPL expression was increased in PCa cells from metastatic sites. A reduction in tumour-derived ALPL expression or ALP activity increased cell death, mesenchymal-to-epithelial transition and reduced migration. Alkaline phosphatase activity was decreased by the EMT repressor Snail. In men with PCa, tumour-derived ALPL correlated with EMT markers, and high ALPL expression was associated with a significant reduction in disease-free survival. CONCLUSIONS Our studies reveal the function of tumour-derived ALPL in regulating cell death and epithelial plasticity, and demonstrate a strong association between ALPL expression in PCa cells and metastasis or disease-free survival, thus identifying tumour-derived ALPL as a major contributor to the pathogenesis of PCa progression.
Collapse
Affiliation(s)
- S R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - A E Snaith
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - D Marino
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - X Cheng
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - S T Lwin
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - I R Orriss
- Royal Veterinary College, University of London, London NW1 0TU, UK
| | - F C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - C M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
37
|
Adipocytes promote prostate cancer stem cell self-renewal through amplification of the cholecystokinin autocrine loop. Oncotarget 2016; 7:4939-48. [PMID: 26700819 PMCID: PMC4826255 DOI: 10.18632/oncotarget.6643] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Obesity has long been linked with prostate cancer progression, although the underlying mechanism is still largely unknown. Here, we report that adipocytes promote the enrichment of prostate cancer stem cells (CSCs) through a vicious cycle of autocrine amplification. In the presence of adipocytes, prostate cancer cells actively secrete the peptide hormone cholecystokinin (CCK), which not only stimulates prostate CSC self-renewal, but also induces cathepsin B (CTSB) production of the adipocytes. In return, CTSB facilitates further CCK secretion by the cancer cells. More importantly, inactivation of CCK receptor not only suppresses CTSB secretion by the adipocytes, but also synergizes the inhibitory effect of CTSB inhibitor on adipocyte-promoted prostate CSC self-renewal. In summary, we have uncovered a novel mechanism underlying the mutual interplay between adipocytes and prostate CSCs, which may help explaining the role of adipocytes in prostate cancer progression and provide opportunities for effective intervention.
Collapse
|
38
|
Chkourko Gusky H, Diedrich J, MacDougald OA, Podgorski I. Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obes Rev 2016; 17:1015-1029. [PMID: 27432523 PMCID: PMC5056818 DOI: 10.1111/obr.12450] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
A number of clinical studies have linked adiposity with increased cancer incidence, progression and metastasis, and adipose tissue is now being credited with both systemic and local effects on tumour development and survival. Adipocytes, a major component of benign adipose tissue, represent a significant source of lipids, cytokines and adipokines, and their presence in the tumour microenvironment substantially affects cellular trafficking, signalling and metabolism. Cancers that have a high predisposition to metastasize to the adipocyte-rich host organs are likely to be particularly affected by the presence of adipocytes. Although our understanding of how adipocytes influence tumour progression has grown significantly over the last several years, the mechanisms by which adipocytes regulate the metastatic niche are not well-understood. In this review, we focus on the omentum, a visceral white adipose tissue depot, and the bone, a depot for marrow adipose tissue, as two distinct adipocyte-rich organs that share common characteristic: they are both sites of significant metastatic growth. We highlight major differences in origin and function of each of these adipose depots and reveal potential common characteristics that make them environments that are attractive and conducive to secondary tumour growth. Special attention is given to how omental and marrow adipocytes modulate the tumour microenvironment by promoting angiogenesis, affecting immune cells and altering metabolism to support growth and survival of metastatic cancer cells.
Collapse
Affiliation(s)
- H Chkourko Gusky
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - O A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - I Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
39
|
Tachtsidis A, McInnes LM, Jacobsen N, Thompson EW, Saunders CM. Minimal residual disease in breast cancer: an overview of circulating and disseminated tumour cells. Clin Exp Metastasis 2016; 33:521-50. [PMID: 27189371 PMCID: PMC4947105 DOI: 10.1007/s10585-016-9796-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/22/2016] [Indexed: 12/11/2022]
Abstract
Within the field of cancer research, focus on the study of minimal residual disease (MRD) in the context of carcinoma has grown exponentially over the past several years. MRD encompasses circulating tumour cells (CTCs)—cancer cells on the move via the circulatory or lymphatic system, disseminated tumour cells (DTCs)—cancer cells which have escaped into a distant site (most studies have focused on bone marrow), and resistant cancer cells surviving therapy—be they local or distant, all of which may ultimately give rise to local relapse or overt metastasis. Initial studies simply recorded the presence and number of CTCs and DTCs; however recent advances are allowing assessment of the relationship between their persistence, patient prognosis and the biological properties of MRD, leading to a better understanding of the metastatic process. Technological developments for the isolation and analysis of circulating and disseminated tumour cells continue to emerge, creating new opportunities to monitor disease progression and perhaps alter disease outcome. This review outlines our knowledge to date on both measurement and categorisation of MRD in the form of CTCs and DTCs with respect to how this relates to cancer outcomes, and the hurdles and future of research into both CTCs and DTCs.
Collapse
Affiliation(s)
- A Tachtsidis
- St. Vincent's Institute, Melbourne, VIC, Australia
- University of Melbourne, Department of Surgery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - L M McInnes
- School of Surgery, The University of Western Australia, Perth, WA, Australia
| | - N Jacobsen
- School of Surgery, The University of Western Australia, Perth, WA, Australia
| | - E W Thompson
- University of Melbourne, Department of Surgery, St. Vincent's Hospital, Melbourne, VIC, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - C M Saunders
- School of Surgery, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
40
|
Li M, Wang YX, Luo Y, Zhao J, Li Q, Zhang J, Jiang Y. Hypoxia inducible factor-1α-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells. Oncol Rep 2016; 36:521-7. [PMID: 27108616 DOI: 10.3892/or.2016.4766] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/17/2016] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death. Hypoxia is an environmental stimulus that plays an important role in the development and cancer progression especially for solid tumors. The key regulator under hypoxic conditions is stabilized hypoxia-inducible factor (HIF)-1α. In the present study, immune-fluorescent staining, siRNAs, qRT-PC, immunoblotting, cell migration and invasion assays were carried out to test typical epithelial to mesenchymal transition under hypoxia and the key regulators of this process in PC3, a human prostate cancer cell line. Our data demonstrated that hypoxia induces diverse molecular, phenotypic and functional changes in prostate cancer cells that are consistent with EMT. We also showed that a cell signal factor such as HIF-1α, which might be stabilized under hypoxic environment, is involved in EMT and cancer cell invasive potency. The induced hypoxia could be blocked by HIF-1α gene silencing and reoxygenation of EMT in prostate cancer cells, hypoxia partially reversed accompanied by a process of mesenchymal-epithelial reverting transition (MErT). EMT might be induced by activation of HIF-1α-dependent cell signaling in hypoxic prostate cancer cells.
Collapse
Affiliation(s)
- Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yong Xing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Qing Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jiao Zhang
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC 27834, USA
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
41
|
Tang KD, Holzapfel BM, Liu J, Lee TKW, Ma S, Jovanovic L, An J, Russell PJ, Clements JA, Hutmacher DW, Ling MT. Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget 2016; 7:2572-84. [PMID: 25978029 PMCID: PMC4823056 DOI: 10.18632/oncotarget.3950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 04/08/2015] [Indexed: 11/27/2022] Open
Abstract
Ample evidence supports that prostate tumor metastasis originates from a rare population of cancer cells, known as cancer stem cells (CSCs). Unfortunately, little is known about the identity of these cells, making it difficult to target the metastatic prostate tumor. Here, for the first time, we report the identification of a rare population of prostate cancer cells that express the Tie-2 protein. We found that this Tie-2High population exists mainly in prostate cancer cell lines that are capable of metastasizing to the bone. These cells not only express a higher level of CSC markers but also demonstrate enhanced resistance to the chemotherapeutic drug Cabazitaxel. In addition, knockdown of the expression of the Tie-2 ligand angiopoietin (Ang-1) led to suppression of CSC markers, suggesting that the Ang-1/Tie-2 signaling pathway functions as an autocrine loop for the maintenance of prostate CSCs. More importantly, we found that Tie-2High prostate cancer cells are more adhesive than the Tie-2Low population to both osteoblasts and endothelial cells. Moreover, only the Tie-2High, but not the Tie-2Low cells developed tumor metastasis in vivo when injected at a low number. Taken together, our data suggest that Tie-2 may play an important role during the development of prostate tumor metastasis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Adhesion
- Cell Proliferation
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Humans
- Immunoenzyme Techniques
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Osteoblasts/metabolism
- Osteoblasts/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/secondary
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, TIE-2/antagonists & inhibitors
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kai-Dun Tang
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Boris M. Holzapfel
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Ji Liu
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Terence Kin-Wah Lee
- Department of Pathology, Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Stephanie Ma
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Lidija Jovanovic
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Jiyuan An
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Dietmar W. Hutmacher
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| | - Ming-Tat Ling
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology and Translational Research Institute, Woolloongabba, Qld, Australia
| |
Collapse
|
42
|
Wang H, Zhao Q, Deng K, Guo X, Xia J. Lin28: an emerging important oncogene connecting several aspects of cancer. Tumour Biol 2016; 37:2841-8. [PMID: 26762415 DOI: 10.1007/s13277-015-4759-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
RNA-binding protein Lin28 was originally found as a heterochronic gene which played a significant role in the development of Caenorhabditis elegans. The tumor suppressor let-7 is a downstream target of Lin28, which has a wide variety of target genes which are involved in many aspects of cellular activities. By inhibition of let-7 and directly binding the target RNAs, Lin28 plays an important role in different biological and pathological processes including differentiation, metabolism, proliferation, pluripotency, and tumorigenesis. Overexpression of Lin28 has been reported in several kinds of cancers and is correlated with poor outcomes. It has been shown that Lin28 could affect the progression of cancers in several ways, such as promoting proliferation, increasing glucose metabolism, and inducing epithelial-mesenchymal transition (EMT) and cancer stem cells. Decrease of Lin28 expression or reactivation of let-7 in cancer cells could induce a reverse effect, indicating their therapeutic values in developing novel strategies for cancer treatment. Here, we will overview the regulatory mechanisms and functions of Lin28 in cancers.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Qin Zhao
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Xiaoqiang Guo
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
43
|
Cives M, Rizzo F, Simone V, Bisceglia F, Stucci S, Seeber A, Spizzo G, Montrone T, Resta L, Silvestris F. Reviewing the Osteotropism in Neuroendocrine Tumors: The Role of Epithelial-Mesenchymal Transition. Neuroendocrinology 2016; 103:321-34. [PMID: 26227818 DOI: 10.1159/000438902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuroendocrine tumors (NETs) metastasize to the bone. However, the incidence, clinical features, management and pathogenesis of bone involvement in NET patients have been poorly investigated. METHODS We reviewed all published reports of histologically confirmed bone metastatic NETs and explored clinical, radiological, prognostic and therapeutic characteristics in a population of 152 patients. We then evaluated immunohistochemical expression of a panel of eight epithelial-mesenchymal transition (EMT)-related factors including SNAIL, TGF-β1, CTGF, IL-11, PTHrP, EpCAM, CXCR4 and RANK in an independent cohort of 44 archival primary NETs. Biomarker expression was correlated with clinicopathological variables, including skeletal involvement, and tested for survival prediction. RESULTS We found that 55% of NET patients with bone metastases were male, with a median age of 55 years at diagnosis. Metastases were restricted to the skeleton in 34% of the NET population, and axial and osteoblastic lesions were prevalent. NETs differently expressed proteins involved in EMT activation. High CXCR4 (p < 0.0001) and low TGF-β1 levels (p = 0.0015) were significantly associated with increased risk of skeletal metastases, suggesting that EMT is implicated in NET osteotropism. By applying an algorithm measuring distinct immunohistochemical predictors of osteotropism on primary tumors, we were able to identify NET patients with bone metastases with a sensitivity and specificity of 91 and 100%, respectively (p < 0.0001). Patients whose primary tumors expressed CTGF (p = 0.0007) as well as the truncated form of EpCAM (p = 0.06) showed shorter survival. CONCLUSION Although underestimated, bone metastases are a prominent feature of NETs, and the tumor expression of EMT markers at diagnosis may predict concurrent or subsequent skeleton colonization.
Collapse
Affiliation(s)
- Mauro Cives
- Department of Biomedical Sciences and Clinical Oncology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Santoni M, Piva F, Scarpelli M, Cheng L, Lopez-Beltran A, Massari F, Iacovelli R, Berardi R, Santini D, Montironi R. The origin of prostate metastases: emerging insights. Cancer Metastasis Rev 2015; 34:765-773. [PMID: 26363603 DOI: 10.1007/s10555-015-9597-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The outcome of patients with prostate cancer (PCa) is mainly dependent on the presence or absence of distant metastases. Although several advances have been made in understanding the biological basis of this tumor, the mechanisms underlying PCa metastatic spread are not fully clear. The lack of a clear origin for PCa metastasis may be partially due to the evidence of PCa heterogeneity between primary tumor and metastases and among different metastatic sites. Cross-metastatic seeding and the de novo monoclonal seeding of daughter metastases have been proposed as crucial events during metastasis. This process requires the contribution of tumor environment, which modulates cancer cell homing and growth, and involves several components including cancer stem cells (CSCs), tumor secreted microvesicles, circulating tumor cells (CTCs), and immune cells. In this review, we have focused on the recent findings on the origin of prostate metastasis, showing the contribution of tumor microenvironment to this evolutionary process.
Collapse
Affiliation(s)
- Matteo Santoni
- Medical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi, Ancona, Italy.
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Francesco Massari
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Piazzale L.A. Scuro 10, 37124, Verona, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit of Urogenital and Head & Neck Tumors, European Institute of Oncology|, Via Ripamonti 435, 20141, Milan, Italy
| | - Rossana Berardi
- Medical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi, Ancona, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| |
Collapse
|
45
|
SUN ZHIFENG, HU WEIMING, XU JINFENG, KAUFMANN ANDREASM, ALBERS ANDREASE. MicroRNA-34a regulates epithelial-mesenchymal transition and cancer stem cell phenotype of head and neck squamous cell carcinoma in vitro. Int J Oncol 2015; 47:1339-50. [DOI: 10.3892/ijo.2015.3142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/26/2015] [Indexed: 11/05/2022] Open
|
46
|
Cellular Plasticity in Prostate Cancer Bone Metastasis. Prostate Cancer 2015; 2015:651580. [PMID: 26146569 PMCID: PMC4469842 DOI: 10.1155/2015/651580] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022] Open
Abstract
Purpose. Experimental data suggest that tumour cells can reversibly transition between epithelial and mesenchymal states (EMT and MET), a phenomenon known as cellular plasticity. The aim of this review was to appraise the clinical evidence for the role of cellular plasticity in prostate cancer (PC) bone metastasis. Methods. An electronic search was performed using PubMed for studies that have examined the differential expression of epithelial, mesenchymal, and stem cell markers in human PC bone metastasis tissues. Results. The review included nineteen studies. More than 60% of the studies used ≤20 bone metastasis samples, and there were several sources of heterogeneity between studies. Overall, most stem cell markers analysed, except for CXCR4, were positively expressed in bone metastasis tissues, while the expression of EMT and MET markers was heterogeneous between and within samples. Several EMT and stemness markers that are involved in osteomimicry, such as Notch, Met receptor, and Wnt/β pathway, were highly expressed in bone metastases. Conclusions. Clinical findings support the role of cellular plasticity in PC bone metastasis and suggest that epithelial and mesenchymal states cannot be taken in isolation when targeting PC bone metastasis. The paper also highlights several challenges in the clinical detection of cellular plasticity.
Collapse
|
47
|
Gallagher MF, Salley Y, Spillane CD, Ffrench B, El Baruni S, Blacksheilds G, Smyth P, Martin C, Sheils O, Watson W, O'Leary JJ. Enhanced regulation of cell cycle and suppression of osteoblast differentiation molecular signatures by prostate cancer stem-like holoclones. J Clin Pathol 2015; 68:692-702. [PMID: 26038242 DOI: 10.1136/jclinpath-2015-203001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/12/2015] [Indexed: 12/25/2022]
Abstract
AIMS Targeting the stem cell properties of tumor-initiating cells is an avenue through which cancer treatment may be improved. Before this can be achieved, so-called 'cancer stem cell' (CSC) models must be developed and characterized in specific malignancies. METHODS In this study, holoclone formation assays were used to characterise stem-like molecular signatures in prostate cancer (PCa) cells. RESULTS LNCaP and PC3 parent cells were capable of responding to stem cell differentiation morphogen retinoic acid (RA), suggesting the presence of inherent stem-like properties. LNCaP cells, which represent early, androgen-responsive disease, formed holoclones after twenty six days. PC3 cells, which represent advanced, metastatic, castration-resistant disease, formed holoclones after only six days. Holoclones displayed decreased expression of RA-genes, suggesting a more immature, less differentiated phenotype. Gene and microRNA arrays demonstrated that holoclones downregulated a number of stem cell differentiation regulators while displaying enhanced regulation of G2 to M transition and the mitotic spindle checkpoint components of the cell cycle. PC3 holoclones displayed pronounced downregulation of known regulators of osteoblast differentiation from mesenchymal stem cells and Epithelial Mesenchymal Transition. CONCLUSIONS Our results suggest that some PCa cells retain the ability to transition to a more immature state in which differentiation and metastatic mechanisms are suppressed. The highlighting of osteoblast differentiation regulators in this mechanism is particularly notable, considering the propensity of PCa to metastasise to bone.
Collapse
Affiliation(s)
- Michael F Gallagher
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Yvonne Salley
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Cathy D Spillane
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Brendan Ffrench
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Salah El Baruni
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Gordon Blacksheilds
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland
| | - Paul Smyth
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland
| | - Cara Martin
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| | - Orla Sheils
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland
| | - William Watson
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - John J O'Leary
- Department of Histopathology, Central Pathology Laboratory, University of Dublin, Trinity College, St James Hospital, Dublin 8, Ireland Pathology Department, Coombe Women's and Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
48
|
Park SB, Ryu YJ, Chung YS, Kim CH, Chung CK. Overexpressions of Vimentin and Integrins in Human Metastatic Spine Tumors. J Korean Neurosurg Soc 2015; 57:329-34. [PMID: 26113959 PMCID: PMC4479713 DOI: 10.3340/jkns.2015.57.5.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/27/2022] Open
Abstract
Objective To comparatively investigate the expression of several integrins in specimens of human bone metastases and degenerative bone tissue. Methods Degenerative cancellous tissue was obtained from a sample of human degenerative spine. Thirteen human specimens were obtained from metastatic spine tumors, whose primary cancer was colon cancer (n=3), hepatocellular cancer (n=3), lung cancer (n=4), and breast cancer (n=3). The expression of vimentin and integrins αv, β1, and β3 was assessed in metastatic and degenerative specimens by immunohistochemistry and real-time reverse transcription-polymerase chain reaction (qRT-PCR). Results Immunohistochemical staining showed that vimentin and integrin αv was broadly expressed in all tissues examined. By contrast, integrin β1 was weakly expressed only in 38.4% (5/13) of tissues. Integrin β3 was consistently negative in all cases examined. qRT-PCR analysis showed that vimentin gene expression was higher in all metastatic specimens, as compared to degenerative bone. The gene expression of integrin αv in breast specimen was significantly higher than others (p=0.045). The gene expression of integrin β1 was also higher in all metastatic specimens than in degenerative bone tissue. The gene expression of integrin β3 was variable. Conclusion Spinal metastatic tumors have mesenchymal characteristics such as increased expression of vimentin. The increased expression of integrin αv and β1 in spine metastatic tumors suggests that adhesive molecules such as integrin may have implications for the prevention of spine metastasis.
Collapse
Affiliation(s)
- Sung Bae Park
- Department of Neurosurgery, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Young-Joon Ryu
- Department of Pathology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Young Seob Chung
- Department of Neurosurgery, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea. ; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea. ; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea. ; Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
49
|
Abstract
Wnt signaling plays an important role in development and disease. In this review we focus on the role of the canonical Wnt signaling pathway in somatic stem cell biology and its critical role in tissue homeostasis. We present current knowledge how Wnt/β-catenin signaling affects tissue stem cell behavior in various organ systems, including the gut, mammary gland, the hematopoietic and nervous system. We discuss evidence that canonical Wnt signaling can both maintain potency and an undifferentiated state as well as cause differentiation in somatic stem cells, depending on the cellular and environmental context. Based on studies by our lab and others, we will attempt to explain the dichotomous behavior of this signaling pathway in determining cell fate decisions and put special emphasis on the interaction of β-catenin with two highly homologous co-activator proteins, CBP and p300, to shed light on the their differential role in the outcome of Wnt/β-catenin signaling. Furthermore, we review current knowledge regarding the aberrant regulation of Wnt/β-catenin signaling in cancer biology, particularly its pivotal role in the context of cancer stem cells. Finally, we discuss data demonstrating that small molecule modulators of the β-catenin/co-activator interaction can be used to shift the balance between undifferentiated proliferation and differentiation, which potentially presents a promising therapeutic approach to stem cell based disease mechanisms.
Collapse
|
50
|
Abstract
Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique feed forward mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the feed forward mechanism involving RANKL, c-Met, transcription factors, and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases.
Collapse
Affiliation(s)
- Gina Chia-Yi Chu
- Departments of Medicine and Surgery, Samuel Orchin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA,
| | | |
Collapse
|