1
|
Du Q, Wang Q, Wang Y, Zhao C, Pan J. Beta-adrenergic receptor antagonist propranolol prevents bisphosphonate-related osteonecrosis of the jaw by promoting osteogenesis. J Dent Sci 2025; 20:539-552. [PMID: 39873080 PMCID: PMC11762246 DOI: 10.1016/j.jds.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Bisphosphonate-related osteonecrosis of the jaw (BRONJ), a complication arising from the use of bisphosphonates (BPs), inflicts long-term suffering on patients. Currently, there is still a lack of effective treatments. This study aimed to explore the preventive effects of propranolol (PRO) on BRONJ in vitro and in vivo, given PRO's potential in bone health enhancement. Materials and methods In vitro, effect of PRO on zoledronic acid (ZA)-pretreated bone marrow mesenchymal stem cells (BMSCs) was detected by cell counting kit-8, alkaline phosphatase (ALP) staining, alizarin red staining, real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. In vivo, forty mice were divided into four groups: control, ZA, PRO, and ZA-PRO. The maxillary extraction sockets sides were analyzed with micro-CT and histomorphometry. Hematoxylin-eosin (H&E), Masson staining, immunofluorescence staining of ALP, bone morphogenetic protein 2 (BMP2), runt-related transcription factor 2 (RUNX2) and TUNEL staining were performed. Results PRO increased proliferation and osteogenic differentiation of BMSCs. PRO stimulated bone formation and facilitated the healing process in zoledronic acid-induced osteonecrosis of jaw in mouse model. Compared with ZA group, control and PRO group showed more BMP2+, RUNX2+, and ALP+ cells (P < 0.05). However, PRO rescued the decreased expression of ALP, RUNX2, BMP2 due to ZA and decreased the expression of TUNEL (P < 0.05). Conclusion The findings suggest that propranolol may offer a promising preventive strategy against BRONJ by enhancing bone regeneration. This research contributes to the understanding of the pathogenesis of BRONJ and opens avenues for potential treatments of BRONJ focusing on β-adrenergic signaling.
Collapse
Affiliation(s)
- Qianxin Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qizhang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuhao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Rajnish RK, Elhence A, Jha SS, Dhanasekararaja P. Pain Management in Osteoporosis. Indian J Orthop 2023; 57:230-236. [PMID: 38107816 PMCID: PMC10721585 DOI: 10.1007/s43465-023-01047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023]
Abstract
The most prevalent metabolic bone disease, osteoporosis, is characterized by a decrease in bone mineral density and alterations to the bone's microstructure, both of which can result in fragility fractures. It affects a significant section of the population. Acute or chronic pain from these fractures is typical in elderly adults with other coexisting conditions. Since the antiresorptive medication only partially reduces pain, other analgesics are required for effective pain management. NSAIDs or selective COX-2 inhibitors can reduce acute pain, but persistent neuropathic pain is difficult to manage with these drugs. Opioids have their adverse effects and safety concerns, although they can be used to address acute or chronic pain. Hence, a multifaceted approach is to be implemented, including pharmacological and nonpharmacological therapy and surgical treatment in a selected number of cases. This chapter briefly describes the etiology of pain, its mechanism, and pain management in osteoporotic patients.
Collapse
Affiliation(s)
- Rajesh Kumar Rajnish
- Department of Orthopaedics, All India Institute of Medical Sciences, India Jodhpur
| | - Abhay Elhence
- Department of Orthopaedics, All India Institute of Medical Sciences, India Jodhpur
| | - S. S. Jha
- Harishchandra Institute of Orthopedics & Research, Patna, India
| | | |
Collapse
|
3
|
Wu Y, Lan Y, Mao J, Shen J, Kang T, Xie Z. The interaction between the nervous system and the stomatognathic system: from development to diseases. Int J Oral Sci 2023; 15:34. [PMID: 37580325 PMCID: PMC10425412 DOI: 10.1038/s41368-023-00241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The crosstalk between the nerve and stomatognathic systems plays a more important role in organismal health than previously appreciated with the presence of emerging concept of the "brain-oral axis". A deeper understanding of the intricate interaction between the nervous system and the stomatognathic system is warranted, considering their significant developmental homology and anatomical proximity, and the more complex innervation of the jawbone compared to other skeletons. In this review, we provide an in-depth look at studies concerning neurodevelopment, craniofacial development, and congenital anomalies that occur when the two systems develop abnormally. It summarizes the cross-regulation between nerves and jawbones and the effects of various states of the jawbone on intrabony nerve distribution. Diseases closely related to both the nervous system and the stomatognathic system are divided into craniofacial diseases caused by neurological illnesses, and neurological diseases caused by an aberrant stomatognathic system. The two-way relationships between common diseases, such as periodontitis and neurodegenerative disorders, and depression and oral diseases were also discussed. This review provides valuable insights into novel strategies for neuro-skeletal tissue engineering and early prevention and treatment of orofacial and neurological diseases.
Collapse
Affiliation(s)
- Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Guan Z, Yuan W, Jia J, Zhang C, Zhu J, Huang J, Zhang W, Fan D, Leng H, Li Z, Xu Y, Song C. Bone mass loss in chronic heart failure is associated with sympathetic nerve activation. Bone 2023; 166:116596. [PMID: 36307018 DOI: 10.1016/j.bone.2022.116596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Chronic heart failure causes osteoporosis, but the mechanism remains unclear. The sympathetic nerve plays an important role in both bone metabolism and cardiovascular function. METHODS Thirty-six adult male SD rats were randomly divided into the following four groups: sham surgery (Sham) group, guanethidine (GD) group, abdominal transverse aorta coarctation-induced heart failure + normal saline (TAC) group, and TAC + guanethidine (TAC + GD) group. Normal saline (0.9 % NaCl) or guanethidine (40 mg/kg/ml) was intraperitoneally injected daily for 5 weeks. Then, DXA, micro-CT, ELISA and RT-PCR analyses were performed 12 weeks after treatment. RESULTS The bone loss in rats subjected to TAC-induced chronic heart failure and chemical sympathectomy with guanethidine was increased. Serum norepinephrine levels were increased in rats with TAC-induced heart failure but were decreased in TAC-induced heart failure rats treated with guanethidine. The expression of α2A adrenergic receptor, α2C adrenergic receptor, osteoprotegerin (OPG), and osteocalcin in the tibia decreased in the TAC-induced heart failure group, and the expression of β1 adrenergic receptor, β2 adrenergic receptor, receptor activator of nuclear factor-κ B ligand (RANKL), and RANKL/OPG in the tibia increased in the heart failure group. In addition, these changes in gene expression levels were rescued by chemical sympathectomy with guanethidine. CONCLUSIONS TAC-induced chronic heart failure is associated with bone mass loss, and the sympathetic nerve plays a significant role in heart failure-related bone mass loss. MINI ABSTRACT The present study supports the hypothesis that heart failure is related to bone loss, and the excessive activation of sympathetic nerves participates in this pathophysiological process. The present study suggests a potential pathological mechanism of osteoporosis associated with heart failure and new perspectives for developing strategies for heart failure-related bone loss.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wang Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Zijian Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Diseases, Beijing, China.
| |
Collapse
|
5
|
Sun Q, Li G, Liu D, Xie W, Xiao W, Li Y, Cai M. Peripheral nerves in the tibial subchondral bone : the role of pain and homeostasis in osteoarthritis. Bone Joint Res 2022; 11:439-452. [PMID: 35775136 PMCID: PMC9350689 DOI: 10.1302/2046-3758.117.bjr-2021-0355.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain. Cite this article: Bone Joint Res 2022;11(7):439–452.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Gen Li
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Role of Autonomous Neuropathy in Diabetic Bone Regeneration. Cells 2022; 11:cells11040612. [PMID: 35203263 PMCID: PMC8870009 DOI: 10.3390/cells11040612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Diabetes mellitus has multiple negative effects on regenerative processes, especially on wound and fracture healing. Despite the well-known negative effects of diabetes on the autonomous nervous system, only little is known about the role in bone regeneration within this context. Subsequently, we investigated diabetic bone regeneration in db−/db− mice with a special emphasis on the sympathetic nervous system of the bone in a monocortical tibia defect model. Moreover, the effect of pharmacological sympathectomy via administration of 6-OHDA was evaluated in C57Bl6 wildtype mice. Diabetic animals as well as wildtype mice received a treatment of BRL37344, a β3-adrenergic agonist. Bones of animals were examined via µCT, aniline-blue and Masson–Goldner staining for new bone formation, TRAP staining for bone turnover and immunoflourescence staining against tyrosinhydroxylase and stromal cell-derived factor 1 (SDF-1). Sympathectomized wildtype mice showed a significantly decreased bone regeneration, just comparable to db−/db− mice. New bone formation of BRL37344 treated db−/db− and sympathectomized wildtype mice was markedly improved in histology and µCT. Immunoflourescence stainings revealed significantly increased SDF-1 due to BRL37344 treatment in diabetic animals and sympathectomized wildtypes. This study depicts the important role of the sympathetic nervous system for bone regenerative processes using the clinical example of diabetes mellitus type 2. In order to improve and gain further insights into diabetic fracture healing, β3-agonist BRL37344 proved to be a potent treatment option, restoring impaired diabetic bone regeneration.
Collapse
|
7
|
CRLF1 and CLCF1 in Development, Health and Disease. Int J Mol Sci 2022; 23:ijms23020992. [PMID: 35055176 PMCID: PMC8780587 DOI: 10.3390/ijms23020992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cytokines and their receptors have a vital function in regulating various processes such as immune function, inflammation, haematopoiesis, cell growth and differentiation. The interaction between a cytokine and its specific receptor triggers intracellular signalling cascades that lead to altered gene expression in the target cell and consequent changes in its proliferation, differentiation, or activation. In this review, we highlight the role of the soluble type I cytokine receptor CRLF1 (cytokine receptor-like factor-1) and the Interleukin (IL)-6 cytokine CLCF1 (cardiotrophin-like cytokine factor 1) during development in physiological and pathological conditions with particular emphasis on Crisponi/cold-induced sweating syndrome (CS/CISS) and discuss new insights, challenges and possibilities arising from recent studies.
Collapse
|
8
|
Ernsberger U, Deller T, Rohrer H. The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system. Cell Tissue Res 2021; 386:455-475. [PMID: 34757495 PMCID: PMC8595186 DOI: 10.1007/s00441-021-03548-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
During the last 30 years, our understanding of the development and diversification of postganglionic sympathetic neurons has dramatically increased. In parallel, the list of target structures has been critically extended from the cardiovascular system and selected glandular structures to metabolically relevant tissues such as white and brown adipose tissue, lymphoid tissues, bone, and bone marrow. A critical question now emerges for the integration of the diverse sympathetic neuron classes into neural circuits specific for these different target tissues to achieve the homeostatic regulation of the physiological ends affected.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
9
|
Brooker RC, Antczak P, Liloglou T, Risk JM, Sacco JJ, Schache AG, Shaw RJ. Genetic variants associated with mandibular osteoradionecrosis following radiotherapy for head and neck malignancy. Radiother Oncol 2021; 165:87-93. [PMID: 34757119 DOI: 10.1016/j.radonc.2021.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND/AIM Utilising radiotherapy in the management of head and neck cancer (HNC) often results in long term toxicities. Mandibular osteoradionecrosis (ORN) represents a late toxicity associated with significant morbidity. We aim to identify a panel of common genetic variants which can predict ORN to aid development of personalised radiotherapy protocols. METHOD Single nucleotide polymorphism (SNP) arrays were applied to DNA samples from patients who had prior HNC radiotherapy and minimum two years follow-up. A case cohort of mandibular ORN was compared to a control group of participants recruited to CRUK HOPON clinical trial. Relevant clinical parameters influencing ORN risk (e.g. smoking/alcohol) were collected. Significant associations from array data were internally validated using polymerase chain reaction (PCR) and pyrosequencing. RESULTS Following inclusion of 141 patients in the analysis (52 cases, 89 controls), a model predictive for ORN was developed; after controlling for alcohol consumption, smoking, and age, 4053 SNPs were identified as significant. This was reduced to a representative model of 18 SNPs achieving 92% accuracy. Following internal technical validation, a six SNP model (rs34798038, rs6011731, rs2348569, rs530752, rs7477958, rs1415848) was retained within multivariate regression analysis (ROC AUC 0.859). Of these, four SNPs (rs34798038 (A/G) (p 0.006), rs6011731 (C/T) (p 0.018), rs530752 (A/G) (p 0.046) and rs2348569 (G/G) (p 0.005)) were significantly associated with the absence of ORN. CONCLUSION This is the first genome wide association study in HNC using ORN as the endpoint and offers new insight into ORN pathogenesis. Subject to validation, these variants may guide patient selection for personalised radiotherapy strategies.
Collapse
Affiliation(s)
- Rachel C Brooker
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom.
| | - Philipp Antczak
- Technology Directorate, Computational Biology Facility, University of Liverpool, United Kingdom; Institute of Systems, Molecular and Integrative Biology, Biochemistry and Systems Biology, University of Liverpool, United Kingdom; Center for Molecular Medicine Cologne, Faculty of Medicine and Cologne University Hospital, University of Cologne, Germany
| | - Triantafillos Liloglou
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; Institute of Systems, Molecular and Integrative Biology, Dept of Molecular & Clinical Cancer Medicine, University of Liverpool, United Kingdom
| | - Janet M Risk
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom
| | - Joseph J Sacco
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Andrew G Schache
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; Head and Neck Unit, Liverpool University Hospital NHS Foundation Trust, Aintree University Hospital, United Kingdom
| | - Richard J Shaw
- Liverpool Head & Neck Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool Cancer Research Centre, University of Liverpool, United Kingdom; Head and Neck Unit, Liverpool University Hospital NHS Foundation Trust, Aintree University Hospital, United Kingdom
| |
Collapse
|
10
|
Li C, Fennessy P. The periosteum: a simple tissue with many faces, with special reference to the antler-lineage periostea. Biol Direct 2021; 16:17. [PMID: 34663443 PMCID: PMC8522104 DOI: 10.1186/s13062-021-00310-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Periosteum is a thin membrane covering bone surfaces and consists of two layers: outer fibrous layer and inner cambium layer. Simple appearance of periosteum has belied its own complexity as a composite structure for physical bone protection, mechano-sensor for sensing mechanical loading, reservoir of biochemical molecules for initiating cascade signaling, niche of osteogenic cells for bone formation and repair, and "umbilical cord" for nourishing bone tissue. Periosteum-derived cells (PDCs) have stem cell attributes: self-renewal (no signs of senescence until 80 population doublings) and multipotency (differentiate into fibroblasts, osteoblasts, chondrocytes, adipocytes and skeletal myocytes). In this review, we summarized the currently available knowledge about periosteum and with special references to antler-lineage periostea, and demonstrated that although periosteum is a type of simple tissue in appearance, with multiple faces in functions; antler-lineage periostea add another dimension to the properties of somatic periostea: capable of initiation of ectopic organ formation upon transplantation and full mammalian organ regeneration when interacted with the covering skin. Very recently, we have translated this finding into other mammals, i.e. successfully induced partial regeneration of the amputated rat legs. We believe further refinement along this line would greatly benefit human health.
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 1345 Pudong Rd., Changchun, 130000, Jilin, China.
| | - Peter Fennessy
- AbacusBio Limited, 442 Moray Place, Dunedin, New Zealand
| |
Collapse
|
11
|
Three-dimensional radiographic and histological tracking of rat mandibular defect repair after inferior alveolar nerve axotomy. Arch Oral Biol 2021; 131:105252. [PMID: 34500260 DOI: 10.1016/j.archoralbio.2021.105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To sequentially track mandibular defect repair by using radiographic and histological techniques, so as to compare repair patterns of sensory denervated versus innervated mandibles. DESIGN Forty Sprague-Dawley rats were subjected to unilateral inferior alveolar nerve (IAN) axotomy and bilateral 3 mm full-thickness circular osteotomy of their mandibles. Micro-CT and histological staining were applied to track the repair process of the mandibular defects at 1, 2, 4, and 8 weeks after surgery. RESULTS The bone volume of both sides increased by 2 weeks post-operation, and then gradually decreased. The new bone volumes of the axotomy side were significantly less than that of the sham side at 1, 2, and 4 weeks post-surgery, whereas no significant differences were detected at 8 weeks post-surgery. Meanwhile, there were no significant differences in bone mineral density between the two sides during repair. Noteworthy, the repaired bone remained more vertically than horizontally aligned throughout the repair process. CONCLUSION IAN axotomy decreases the quantity of bone calluses during the early stage of mandibular defect repair, but with no effect on the degree of mineralization. The shape of the defect area appeared to be aligned with the direction of local mechanical force produced by masticatory muscles.
Collapse
|
12
|
Abstract
Bone marrow adipose tissue (BMAT) is an important cellular component of the skeleton. Understanding how it is regulated by the nervous system is crucial to the study of bone and bone marrow related diseases. BMAT is innervated by sympathetic and sensory axons in bone and fluctuations in local nerve density and function may contribute to its distinct physiologic adaptations at various skeletal sites. BMAT is directly responsive to adrenergic signals. In addition, neural regulation of surrounding cells may modify BMAT-specific responses, providing many potential avenues for both direct and indirect neural regulation of BMAT metabolism. Lastly, BMAT and peripheral adipose tissues share the same autonomic pathways across the central neuraxis and regulation of BMAT may occur in diverse clinical settings of neurologic and metabolic disease. This review will highlight what is known and unknown about the neural regulation of BMAT and discuss opportunities for future research in the field.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Mohamed G Hassan
- Department of Orthodontics, Faculty of Oral and Dental Medicine, South Valley University, Qena, Egypt; Department of Orthodontics, Faculty of Dentistry, October 6 University, Giza, Egypt
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
13
|
Moraes RM, Elefteriou F, Anbinder AL. Response of the periodontal tissues to β-adrenergic stimulation. Life Sci 2021; 281:119776. [PMID: 34186048 DOI: 10.1016/j.lfs.2021.119776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
AIMS Stimulation of β-adrenergic receptors (βAR) in osteoblasts by isoproterenol (ISO) was shown to induce Vascular Endothelial Growth Factor (VEGF) and angiogenesis in long bones. We thus aimed to determine the vascular response of mandibular tissues to βAR stimulation regarding blood vessel formation. MAIN METHODS Six-week-old wild-type C57BL6 female mice received daily intraperitoneal injections of ISO or phosphate buffered saline (PBS) for 1 month. Hemimandibles and tibias were collected for immunolocalization of endomucin, tyrosine hydroxylase (TH), neuropeptide Y (NPY) and norepinephrine transporter (NET). Moreover, Vegfa, Il-1 β, Il-6, Adrb2 and Rankl mRNA expression was assessed in mandibles and tibias 2 h after PBS or ISO treatment. KEY FINDINGS Despite similar sympathetic innervation and Adrb2 expression between mandibular tissues and tibias, with TH and NPY+ nerve fibers distributed around blood vessels, ISO treatment did not increase endomucin+ vessel area or the total number of endomucin+ vessels in any of the regions investigated (alveolar bone, periodontal ligament, and dental pulp). Consistent with these results, the expression of Vegfα, Il-6, Il-1β, and Rankl in the mandibular molar region did not change following ISO administration. We detected high expression of NET by immunofluorescence in mandible alveolar osteoblasts, osteocytes, and periodontal ligament fibroblasts, in addition to significantly higher Net expression by qPCR compared to the tibia from the same animals. SIGNIFICANCE These findings indicate a differential response to βAR agonists between mandibular and tibial tissues, since the angiogenic potential of sympathetic outflow observed in long bones is absent in periodontal tissues.
Collapse
Affiliation(s)
- Renata Mendonça Moraes
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, São Paulo, Brazil
| | - Florent Elefteriou
- Department of Molecular and Human Genetics and Orthopedic Surgery, Center for Skeletal Medicine and Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Ana Lia Anbinder
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
14
|
Steverink JG, Oostinga D, van Tol FR, van Rijen MHP, Mackaaij C, Verlinde-Schellekens SAMW, Oosterman BJ, Van Wijck AJM, Roeling TAP, Verlaan JJ. Sensory Innervation of Human Bone: An Immunohistochemical Study to Further Understand Bone Pain. THE JOURNAL OF PAIN 2021; 22:1385-1395. [PMID: 33964414 DOI: 10.1016/j.jpain.2021.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Skeletal diseases and their surgical treatment induce severe pain. The innervation density of bone potentially explains the severe pain reported. Animal studies concluded that sensory myelinated A∂-fibers and unmyelinated C-fibers are mainly responsible for conducting bone pain, and that the innervation density of these nerve fibers was highest in periosteum. However, literature regarding sensory innervation of human bone is scarce. This observational study aimed to quantify sensory nerve fiber density in periosteum, cortical bone, and bone marrow of axial and appendicular human bones using immunohistochemistry and confocal microscopy. Multivariate Poisson regression analysis demonstrated that the total number of sensory and sympathetic nerve fibers was highest in periosteum, followed by bone marrow, and cortical bone for all bones studied. Bone from thoracic vertebral bodies contained most sensory nerve fibers, followed by the upper extremity, lower extremity, and parietal neurocranium. The number of nerve fibers declined with age and did not differ between male and female specimens. Sensory nerve fibers were organized as a branched network throughout the periosteum. The current results provide an explanation for the severe pain accompanying skeletal disease, fracture, or surgery. Further, the results could provide more insight into mechanisms that generate and maintain skeletal pain and might aid in developing new treatment strategies. PERSPECTIVE: This article presents the innervation of human bone and assesses the effect of age, gender, bone compartment and type of bone on innervation density. The presented data provide an explanation for the severity of bone pain arising from skeletal diseases and their surgical treatment.
Collapse
Affiliation(s)
- Jasper G Steverink
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands; SentryX B.V., Woudenbergseweg 41, Austerlitz, The Netherlands.
| | - Douwe Oostinga
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands
| | - Floris R van Tol
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands; SentryX B.V., Woudenbergseweg 41, Austerlitz, The Netherlands
| | - Mattie H P van Rijen
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands
| | - Claire Mackaaij
- Department of Anatomy, University Medical Center Utrecht, The Netherlands
| | | | - Bas J Oosterman
- SentryX B.V., Woudenbergseweg 41, Austerlitz, The Netherlands
| | - Albert J M Van Wijck
- Department of Anesthesiology, University Medical Center Utrecht, The Netherlands
| | - Tom A P Roeling
- Department of Anatomy, University Medical Center Utrecht, The Netherlands
| | - Jorrit-Jan Verlaan
- Department of Orthopedic Surgery, University Medical Center Utrecht, The Netherlands; SentryX B.V., Woudenbergseweg 41, Austerlitz, The Netherlands
| |
Collapse
|
15
|
Abeynayake N, Arthur A, Gronthos S. Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone 2021; 142:115645. [PMID: 32949783 DOI: 10.1016/j.bone.2020.115645] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
Emerging evidence in the literature describes a physical and functional association between the neural and skeletal systems that forms a neuro-osteogenic network. This communication between bone cells and neural tissues within the skeleton is important in facilitating bone skeletal growth, homeostasis and repair. The growth and repair of the skeleton is dependent on correct neural innervation for correct skeletal developmental growth and fracture repair, while pathological conditions such as osteoporosis are accelerated by disruptions to sympathetic innervation. To date, different molecular mechanisms have been reported to mediate communication between bone and neural populations. This review highlights the important role of various cell surface receptors, cytokines and associated ligands as potential regulators of skeletal development, homeostasis, and repair, by mediating interactions between the skeletal and nervous systems. Specifically, this review describes how Bone Morphogenetic Proteins (BMPs), Eph/ephrin, Chemokine CXCL12, Calcitonin Gene-related Peptide (CGRP), Netrins, Neurotrophins (NTs), Slit/Robo and the Semaphorins (Semas) contribute to the cross talk between bone cells and peripheral nerves, and the importance of these interactions in maintaining skeletal health.
Collapse
Affiliation(s)
- Nethmi Abeynayake
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Abstract
The skeleton is highly vascularized due to the various roles blood vessels play in the homeostasis of bone and marrow. For example, blood vessels provide nutrients, remove metabolic by-products, deliver systemic hormones, and circulate precursor cells to bone and marrow. In addition to these roles, bone blood vessels participate in a variety of other functions. This article provides an overview of the afferent, exchange and efferent vessels in bone and marrow and presents the morphological layout of these blood vessels regarding blood flow dynamics. In addition, this article discusses how bone blood vessels participate in bone development, maintenance, and repair. Further, mechanical loading-induced bone adaptation is presented regarding interstitial fluid flow and pressure, as regulated by the vascular system. The role of the sympathetic nervous system is discussed in relation to blood vessels and bone. Finally, vascular participation in bone accrual with intermittent parathyroid hormone administration, a medication prescribed to combat age-related bone loss, is described and age- and disease-related impairments in blood vessels are discussed in relation to bone and marrow dysfunction. © 2020 American Physiological Society. Compr Physiol 10:1009-1046, 2020.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
17
|
Oostinga D, Steverink JG, van Wijck AJM, Verlaan JJ. An understanding of bone pain: A narrative review. Bone 2020; 134:115272. [PMID: 32062002 DOI: 10.1016/j.bone.2020.115272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
Skeletal pathologies are often accompanied by bone pain, which has negative effects on the quality of life and functional status of patients. Bone pain can be caused by a wide variety of injuries and diseases including (poorly healed) fractures, bone cancer, osteoarthritis and also iatrogenic by skeletal interventions. Orthopedic interventions are considered to be the most painful surgical procedures overall. Two major groups of medication currently used to attenuate bone pain are NSAIDs and opioids. However, these systemic drugs frequently introduce adverse events, emphasizing the need for alternative therapies that are directed at the pathophysiological mechanisms underlying bone pain. The periosteum, cortical bone and bone marrow are mainly innervated by sensory A-delta fibers and C-fibers. These fibers are mostly present in the periosteum rendering this structure most sensitive to nociceptive stimuli. A-delta fibers and C-fibers can be activated upon mechanical distortion, acidic environment and increased intramedullary pressure. After activation, these fibers can be sensitized by inflammatory mediators, phosphorylation of acid-sensing ion channels and cytokine receptors, or by upregulation of transcription factors. This can result in a change of pain perception such that normally non-noxious stimuli are now perceived as noxious. Pathological conditions in the bone can produce neurotrophic factors that bind to receptors on A-delta fibers and C-fibers. These fibers then start to sprout and increase the innervation density of the bone, making it more sensitive to nociceptive stimuli. In addition, repetitive painful stimuli cause neurochemical and electrophysiological alterations in afferent sensory neurons in the spinal cord, which leads to central sensitization, and can contribute to chronic bone pain. Understanding the pathophysiological mechanisms underlying bone pain in different skeletal injuries and diseases is important for the development of alternative, targeted pain treatments. These pain mechanism-based alternatives have the potential to improve the quality of life of patients suffering from bone pain without introducing undesirable systemic effects.
Collapse
Affiliation(s)
- Douwe Oostinga
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Jasper G Steverink
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Albert J M van Wijck
- Department of Anesthesiology, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Jorrit-Jan Verlaan
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| |
Collapse
|
18
|
Wan JT, Sheeley DM, Somerman MJ, Lee JS. Mitigating osteonecrosis of the jaw (ONJ) through preventive dental care and understanding of risk factors. Bone Res 2020; 8:14. [PMID: 32195012 PMCID: PMC7064532 DOI: 10.1038/s41413-020-0088-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
It is well established that alterations in phosphate metabolism have a profound effect on hard and soft tissues of the oral cavity. The present-day clinical form of osteonecrosis of the jaw (ONJ) was preceded by phosphorus necrosis of the jaw, ca. 1860. The subsequent removal of yellow phosphorus from matches in the early 20th century saw a parallel decline in "phossy jaw" until the early 2000s, when similar reports of unusual jaw bone necrosis began to appear in the literature describing jaw necrosis in patients undergoing chemotherapy and concomitant steroid and bisphosphonate treatment. Today, the potential side effect of ONJ associated with medications that block osteoclast activity (antiresorptive) is well known, though the mechanism remains unclear and the management and outcomes are often unsatisfactory. Much of the existing literature has focused on the continuing concerns of appropriate use of bisphosphonates and other antiresorptive medications, the incomplete or underdeveloped research on ONJ, and the use of drugs with anabolic potential for treatment of osteoporosis. While recognizing that ONJ is a rare occurrence and ONJ-associated medications play an important role in fracture risk reduction in osteoporotic patients, evidence to date suggests that health care providers can lower the risk further by dental evaluations and care prior to initiating antiresorptive therapies and by monitoring dental health during and after treatment. This review describes the current clinical management guidelines for ONJ, the critical role of dental-medical management in mitigating risks, and the current understanding of the effects of predominantly osteoclast-modulating drugs on bone homeostasis.
Collapse
Affiliation(s)
- Jason T. Wan
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Douglas M. Sheeley
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Martha J. Somerman
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
- Laboratory for Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD USA
| | - Janice S. Lee
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
19
|
Frame G, Bretland KA, Dengler-Crish CM. Mechanistic complexities of bone loss in Alzheimer's disease: a review. Connect Tissue Res 2020; 61:4-18. [PMID: 31184223 DOI: 10.1080/03008207.2019.1624734] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Alzheimer's disease (AD), the primary cause of dementia in the elderly, is one of the leading age-related neurodegenerative diseases worldwide. While AD is notorious for destroying memory and cognition, dementia patients also experience greater incidence of bone loss and skeletal fracture than age-matched neurotypical individuals, greatly impacting their quality of life. Despite the significance of this comorbidity, there is no solid understanding of the mechanisms driving early bone loss in AD. Here, we review studies that have evaluated many of the obvious risk factors shared by dementia and osteoporosis, and illuminate emerging work investigating covert pathophysiological mechanisms shared between the disorders that may have potential as new risk biomarkers or therapeutic targets in AD.Conclusions: Skeletal deficits emerge very early in clinical Alzheimer's progression, and cannot be explained by coincident factors such as aging, female sex, mobility status, falls, or genetics. While research in this area is still in its infancy, studies implicate several potential mechanisms in disrupting skeletal homeostasis that include direct effects of amyloid-beta pathology on bone cells, neurofibrillary tau-induced damage to neural centers regulating skeletal remodeling, and/or systemic Wnt/Beta-catenin signaling deficits. Data from an increasing number of studies substantiate a role for the newly discovered "exercise hormone" irisin and its protein precursor FNDC5 in bone loss and AD-associated neurodegeneration. We conclude that the current status of research on bone loss in AD is insufficient and merits critical attention because this work could uncover novel diagnostic and therapeutic opportunities desperately needed to address AD.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Biomedical Sciences Program, Kent State University, Kent, OH, USA
| | - Katie A Bretland
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Integrated Pharmaceutical Medicine Program, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
20
|
Martin SA, Philbrick KA, Wong CP, Olson DA, Branscum AJ, Jump DB, Marik CK, DenHerder JM, Sargent JL, Turner RT, Iwaniec UT. Thermoneutral housing attenuates premature cancellous bone loss in male C57BL/6J mice. Endocr Connect 2019; 8:1455-1467. [PMID: 31590144 PMCID: PMC6865368 DOI: 10.1530/ec-19-0359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Mice are a commonly used model to investigate aging-related bone loss but, in contrast to humans, mice exhibit cancellous bone loss prior to skeletal maturity. The mechanisms mediating premature bone loss are not well established. However, our previous work in female mice suggests housing temperature is a critical factor. Premature cancellous bone loss was prevented in female C57BL/6J mice by housing the animals at thermoneutral temperature (where basal rate of energy production is at equilibrium with heat loss). In the present study, we determined if the protective effects of thermoneutral housing extend to males. Male C57BL/6J mice were housed at standard room temperature (22°C) or thermoneutral (32°C) conditions from 5 (rapidly growing) to 16 (slowly growing) weeks of age. Mice housed at room temperature exhibited reductions in cancellous bone volume fraction in distal femur metaphysis and fifth lumbar vertebra; these effects were abolished at thermoneutral conditions. Mice housed at thermoneutral temperature had higher levels of bone formation in distal femur (based on histomorphometry) and globally (serum osteocalcin), and lower global levels of bone resorption (serum C-terminal telopeptide of type I collagen) compared to mice housed at room temperature. Thermoneutral housing had no impact on bone marrow adiposity but resulted in higher abdominal white adipose tissue and serum leptin. The overall magnitude of room temperature housing-induced cancellous bone loss did not differ between male (current study) and female (published data) mice. These findings highlight housing temperature as a critical experimental variable in studies using mice of either sex to investigate aging-related changes in bone metabolism.
Collapse
Affiliation(s)
- Stephen A Martin
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kenneth A Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Dawn A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Charles K Marik
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Jonathan M DenHerder
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Jennifer L Sargent
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, USA
- Correspondence should be addressed to U T Iwaniec:
| |
Collapse
|
21
|
Brazill JM, Beeve AT, Craft CS, Ivanusic JJ, Scheller EL. Nerves in Bone: Evolving Concepts in Pain and Anabolism. J Bone Miner Res 2019; 34:1393-1406. [PMID: 31247122 PMCID: PMC6697229 DOI: 10.1002/jbmr.3822] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022]
Abstract
The innervation of bone has been described for centuries, and our understanding of its function has rapidly evolved over the past several decades to encompass roles of subtype-specific neurons in skeletal homeostasis. Current research has been largely focused on the distribution and function of specific neuronal populations within bone, as well as their cellular and molecular relationships with target cells in the bone microenvironment. This review provides a historical perspective of the field of skeletal neurobiology that highlights the diverse yet interconnected nature of nerves and skeletal health, particularly in the context of bone anabolism and pain. We explore what is known regarding the neuronal subtypes found in the skeleton, their distribution within bone compartments, and their central projection pathways. This neuroskeletal map then serves as a foundation for a comprehensive discussion of the neural control of skeletal development, homeostasis, repair, and bone pain. Active synthesis of this research recently led to the first biotherapeutic success story in the field. Specifically, the ongoing clinical trials of anti-nerve growth factor therapeutics have been optimized to titrated doses that effectively alleviate pain while maintaining bone and joint health. Continued collaborations between neuroscientists and bone biologists are needed to build on this progress, leading to a more complete understanding of neural regulation of the skeleton and development of novel therapeutics. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer M Brazill
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA
| | - Alec T Beeve
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Clarissa S Craft
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jason J Ivanusic
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Erica L Scheller
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
22
|
Zhu Y, Ma Y, Elefteriou F. Cortical bone is an extraneuronal site of norepinephrine uptake in adult mice. Bone Rep 2018; 9:188-198. [PMID: 30581894 PMCID: PMC6296164 DOI: 10.1016/j.bonr.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/23/2018] [Accepted: 11/21/2018] [Indexed: 12/30/2022] Open
Abstract
The sympathetic nervous system is a major efferent pathway through which the central nervous system controls the function of peripheral organs. Genetic and pharmacologic evidence in mice indicated that stimulation of the β2 adrenergic receptor (β2AR) in osteoblasts promotes bone loss, leading to the paradigm that high sympathetic nervous activity is deleterious to bone mass. However, considerably less data exist to understand the putative impact of endogenous norepinephrine (NE), released by sympathetic nerves, on bone homeostasis. In this study, we investigated the in vivo expression and activity of the norepinephrine transporter (NET), a membrane pump known to actively uptake NE from the extracellular space in presynaptic neurons. Consistent with previously published in vitro data showing NET uptake activity in differentiated osteoblasts, we were able to detect active NET-specific NE uptake in the mouse cortical bone compartment in vivo. This uptake was the highest in young mice and accordingly with an age-related reduction in NET uptake, NE bone content increased whereas Net RNA and protein expression decreased with age. Histologically, NET expression in adult mouse bones was detected in osteocytes via immunofluorescence. Lastly, taking advantage of tissue-specific fluorescent reporter mice, we used CLARITY imaging and light sheet microscopy to visualize the 3D distribution of sympathetic fibers in whole mount preparations of bone tissues. These analyses allowed us to detect tyrosine hydroxylase (TH)-positive sympathetic nerve fibers penetrating the cortical bone, where NET+ osteocytes reside. Together, these in vitro results support the existence of an age-dependent extraneuronal and osteocytic function of NET with potential to buffer the bone catabolic action of endogenous NE released by sympathetic nerves in vivo.
Collapse
Affiliation(s)
- Yuantee Zhu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Orthopedics, Baylor College of Medicine, Houston, TX, United States
| | - Yun Ma
- Department of Orthopedics, Baylor College of Medicine, Houston, TX, United States
| | - Florent Elefteriou
- Department of Orthopedics, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
23
|
Vellucci R, Terenzi R, Kanis JA, Kress HG, Mediati RD, Reginster JY, Rizzoli R, Brandi ML. Understanding osteoporotic pain and its pharmacological treatment. Osteoporos Int 2018; 29:1477-1491. [PMID: 29619540 DOI: 10.1007/s00198-018-4476-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Osteoporosis, a disorder that affects millions of people worldwide, is characterized by decreased bone mass and microstructural alterations giving rise to an increased risk of fractures. Osteoporotic fractures can cause acute and chronic pain that mainly affects elderly patients with multiple comorbidities and commonly on different drug regimens. The aim of this paper is to summarize the pathogenesis and systemic treatment of osteoporotic pain. This narrative review summarizes the main pathogenetic aspects of osteoporotic pain and the cornerstones of its treatment. Osteoporotic fractures induce both acute and chronic nociceptive and neuropathic pain. Central sensitization seems to play a pivotal role in developing and maintaining chronicity of post-fracture pain in osteoporosis. Antiosteoporosis drugs are able to partially control pain, but additional analgesics are always necessary for pain due to bone fractures. Nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors reduce acute pain but with a poor effect on the chronic neuropathic component of pain and with relevant side effects. Opioid drugs can control the whole spectrum of acute and chronic bone pain, but they differ with respect to their efficacy on neuropathic components, their tolerability and safety. Chronic pain after osteoporotic fractures requires a multifaceted approach, which includes a large spectrum of drugs (antiosteoporosis treatment, acetaminophen, NSAIDs, selective COX-2 inhibitors, weak and strong opioids) and non-pharmacological treatment. Based on a better understanding of the pathogenesis of osteoporotic and post-fracture pain, a guided stepwise approach to post-fracture osteoporotic pain will also better meet the needs of these patients.
Collapse
Affiliation(s)
- R Vellucci
- Palliative Care and Pain Therapy Unit, University Hospital of Careggi, Florence, Italy
| | - R Terenzi
- Department of Surgery and Translational Medicine, University of Florence, AOU Careggi Largo Brambilla n.3, 50134, Florence, Italy
| | - J A Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield, UK
- Institute for Health and Ageing, Catholic University of Australia, Melbourne, Australia
| | - H G Kress
- Department of Special Anaesthesia and Pain Medicine, Medical University/AKH of Vienna, Vienna, Austria
| | - R D Mediati
- Palliative Care and Pain Therapy Unit, University Hospital of Careggi, Florence, Italy
| | | | - R Rizzoli
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva 14, Switzerland
| | - M L Brandi
- Department of Surgery and Translational Medicine, University of Florence, AOU Careggi Largo Brambilla n.3, 50134, Florence, Italy.
| |
Collapse
|
24
|
Chidiac JJ, Kassab A, Rifai K, Saadé NE, Al Chaer ED. Modulation of incisor eruption in rats by sympathetic efferents. Arch Oral Biol 2018; 89:31-36. [PMID: 29432940 DOI: 10.1016/j.archoralbio.2018.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Intact neural supply is necessary for tooth eruption. Sympathetic denervation accelerates or decelerates the eruption rate depending on the tooth condition (intact or injured). The aim of this study is to reexamine the role of the sympathetic innervation, through the observation of the effects of pre or post ganglionic chemical sympathectomy on the eruption of intact rat incisors. MATERIALS AND METHODS Different groups of rats were subjected to either ganglionic or peripheral chemical sympathectomy and the observed effects on incisor eruption were compared to those made on intact/sham groups or on rats subjected to inferior alveolar nerve (IAN) lesion. RESULTS The total amount of eruption in control/naïve rats, measured over a total period of 144 h, was 3 ± 0.15 mm and decreased to 2.57 ± 0.06 mm (n = 8; p < 0.01) or 2.8 ± 0.10 mm (n = 8; p < 0.05) following treatment with guanethidine and hexamethonium, respectively. This amount decreased to 1.8 ± 0.14 mm (p < 0.001 vs. control, n = 7; or p < 0.01 vs. sham, n = 5) in rats subjected to IAN lesion. CONCLUSION Sympathectomy delayed tooth eruption. Blocking the sympathetic effectors with guanethidine exerted more potent effects than ganglionic block with hexamethonium. Intact sympathetic supply is required for tooth growth under normal conditions.
Collapse
Affiliation(s)
- José Johann Chidiac
- Department of Prosthodontics, School of Dentistry, Lebanese University, Lebanon.
| | - Ammar Kassab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Khaldoun Rifai
- Department of Prosthodontics, School of Dentistry, Lebanese University, Lebanon
| | - Nayef E Saadé
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Elie D Al Chaer
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Lebanon
| |
Collapse
|
25
|
Collignon AM, Lesieur J, Vacher C, Chaussain C, Rochefort GY. Strategies Developed to Induce, Direct, and Potentiate Bone Healing. Front Physiol 2017; 8:927. [PMID: 29184512 PMCID: PMC5694432 DOI: 10.3389/fphys.2017.00927] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone regeneration and healing is on the rise due to population aging, increasing incidence of bone trauma and the clinical need for the development of alternative options to autologous bone grafts. Current strategies, including several biomolecules, cellular therapies, biomaterials, and different permutations of these, are now developed to facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a bone tissue with the same properties and characteristics of the native bone. In this review, we browse the existing strategies that are currently developed, using biomolecules, cells and biomaterials, to induce, direct and potentiate bone healing after injury and further discuss the biological processes associated with this repair.
Collapse
Affiliation(s)
- Anne-Margaux Collignon
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Julie Lesieur
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| | - Christian Vacher
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Maxillofacial Surgery, Beaujon Hospital, Assistance Publique Hopitaux De Paris, Paris, France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.,Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France
| | - Gael Y Rochefort
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France
| |
Collapse
|
26
|
Mattia C, Coluzzi F, Celidonio L, Vellucci R. Bone pain mechanism in osteoporosis: a narrative review. ACTA ACUST UNITED AC 2016; 13:97-100. [PMID: 27920803 DOI: 10.11138/ccmbm/2016.13.2.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bone pain in elderly people dramatically affects their quality of life, with osteoporosis being the leading cause of skeletal related events. Peripheral and central mechanisms are involved in the pathogenesis of the nervous system sensitization. Osteoporosis in the elderly has been associated with increased density of bone sensory nerve fibers and their pathological modifications, together with an over-expression of nociceptors sensitized by the lowering pH due to the osteoclastic activity. The activation of N-methyl-D-aspartate (NMDA) receptors and the microglia, as a response to a range of pathological conditions, represent the leading cause of central sensitization. Unfortunately, osteoporosis is named the "silent thief" because it manifests with painful manifestation only when a fracture occurs. In the management of patients suffering from bone pain, both the nociceptive and the neuropathic component of chronic pain should be considered in the selection of the analgesic treatment.
Collapse
Affiliation(s)
- Consalvo Mattia
- Department of Medical and Surgical Sciences and Biotechnologies, Unit of Anaesthesiology, Intensive care Medicine and Pain Therapy, Faculty of Pharmacy and Medicine, "Polo Pontino", "Sapienza" University of Rome, Italy
| | - Flaminia Coluzzi
- Department of Medical and Surgical Sciences and Biotechnologies, Unit of Anaesthesiology, Intensive care Medicine and Pain Therapy, Faculty of Pharmacy and Medicine, "Polo Pontino", "Sapienza" University of Rome, Italy
| | - Ludovica Celidonio
- Department of Medical and Surgical Sciences and Biotechnologies, Unit of Anaesthesiology, Intensive care Medicine and Pain Therapy, Faculty of Pharmacy and Medicine, "Polo Pontino", "Sapienza" University of Rome, Italy
| | - Renato Vellucci
- Palliative Care and Pain Therapy Unit, University Hospital of Careggi, Florence, Italy
| |
Collapse
|
27
|
Roshanzamir S, Dabbaghmanesh MH, Dabbaghmanesh A, Nejati S. Autonomic dysfunction and osteoporosis after electrical burn. Burns 2016; 42:583-8. [PMID: 26916589 DOI: 10.1016/j.burns.2015.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Several studies have shown the importance of the sympathetic nervous system in bone metabolism. There is an evidence of sympathetic skin response (SSR) impairment in electrical burn patients up to 2 years after their injuries. The acute phase of burn is accompanied by increased bone resorption. Whether the prolonged dysfunction of sympathetic nervous system may result in bone metabolism derangement even after the acute phase of electrical burn is the inspiring question for this study. And we tried to find correlation between SSR abnormality and areal bone mineral density (BMD) in electrical burn patients 6 months or more after the incidents. METHODS AND MATERIALS 42 electrical burn patients (≥6 months prior to study) who did not have a known joint or bone disease, history of neuropathy (central or peripheral), diabetes mellitus or consumption of any drug affecting the autonomic nervous system or evidence of neuropathy in nerve conduction study were recruited. We also gathered a control group of 50 healthy subjects (without electrical burn or the exclusion criteria). They went under dual energy X-ray absorptiometry and SSR study. Data were analyzed statistically with SPSS 16.0 making use of independent t-test and Pearson correlation coefficient. P<0.05 was considered significant statistically. RESULTS Areal BMD was significantly lower in electrical burn patients than control group (P<0.001). SSR latency was significantly prolonged and its amplitude was significantly reduced in burn patients compared to control group (P<0.001). In burn patients there was an inverse correlation of areal BMD of lumbar vertebrae, left femur neck and total femur with SSR latency and a direct correlation of areal BMD with SSR amplitude. In control group there was just direct correlation of areal BMD of lumbar vertebrae and left femur neck with SSR amplitude. CONCLUSION Electrical burn patients are at risk of reduced areal BMD long after their injuries. Sympathetic derangement and impaired SSR are correlated with reduction in areal BMD in these patients.
Collapse
Affiliation(s)
- Sharareh Roshanzamir
- Shiraz Burn Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Dabbaghmanesh
- Shiraz Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Solmaz Nejati
- Department of Physical Medicine and Rehabilitation, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Mauprivez C, Bataille C, Baroukh B, Llorens A, Lesieur J, Marie PJ, Saffar JL, Biosse Duplan M, Cherruau M. Periosteum Metabolism and Nerve Fiber Positioning Depend on Interactions between Osteoblasts and Peripheral Innervation in Rat Mandible. PLoS One 2015; 10:e0140848. [PMID: 26509533 PMCID: PMC4624798 DOI: 10.1371/journal.pone.0140848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
The sympathetic nervous system controls bone remodeling by regulating bone formation and resorption. How nerves and bone cells influence each other remains elusive. Here we modulated the content or activity of the neuropeptide Vasoactive Intestinal Peptide to investigate nerve-bone cell interplays in the mandible periosteum by assessing factors involved in nerve and bone behaviors. Young adult rats were chemically sympathectomized or treated with Vasoactive Intestinal Peptide or Vasoactive Intestinal Peptide10-28, a receptor antagonist. Sympathectomy depleted the osteogenic layer of the periosteum in neurotrophic proNerve Growth Factor and neurorepulsive semaphorin3a; sensory Calcitonin-Gene Related Peptide-positive fibers invaded this layer physiologically devoid of sensory fibers. In the periosteum non-osteogenic layer, sympathectomy activated mast cells to release mature Nerve Growth Factor while Calcitonin-Gene Related Peptide-positive fibers increased. Vasoactive Intestinal Peptide treatment reversed sympathectomy effects. Treating intact animals with Vasoactive Intestinal Peptide increased proNerve Growth Factor expression and stabilized mast cells. Vasoactive Intestinal Peptide10-28 treatment mimicked sympathectomy effects. Our data suggest that sympathetic Vasoactive Intestinal Peptide modulate the interactions between nervous fibers and bone cells by tuning expressions by osteogenic cells of factors responsible for mandible periosteum maintenance while osteogenic cells keep nervous fibers at a distance from the bone surface.
Collapse
Affiliation(s)
- Cédric Mauprivez
- EA2496 Laboratoire Pathologies, Imagerie et Biothérapies oro-faciales, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, Montrouge, France
- Assistance Publique – Hôpitaux de Paris, Avenue Victoria, Paris, France
| | - Caroline Bataille
- EA2496 Laboratoire Pathologies, Imagerie et Biothérapies oro-faciales, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, Montrouge, France
- Assistance Publique – Hôpitaux de Paris, Avenue Victoria, Paris, France
| | - Brigitte Baroukh
- EA2496 Laboratoire Pathologies, Imagerie et Biothérapies oro-faciales, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, Montrouge, France
| | - Annie Llorens
- EA2496 Laboratoire Pathologies, Imagerie et Biothérapies oro-faciales, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, Montrouge, France
| | - Julie Lesieur
- EA2496 Laboratoire Pathologies, Imagerie et Biothérapies oro-faciales, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, Montrouge, France
| | - Pierre J. Marie
- UMR-1132 INSERM and Université Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| | - Jean-Louis Saffar
- EA2496 Laboratoire Pathologies, Imagerie et Biothérapies oro-faciales, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, Montrouge, France
- Assistance Publique – Hôpitaux de Paris, Avenue Victoria, Paris, France
- * E-mail:
| | - Martin Biosse Duplan
- Assistance Publique – Hôpitaux de Paris, Avenue Victoria, Paris, France
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Marc Cherruau
- EA2496 Laboratoire Pathologies, Imagerie et Biothérapies oro-faciales, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, Montrouge, France
- Assistance Publique – Hôpitaux de Paris, Avenue Victoria, Paris, France
| |
Collapse
|
29
|
Hunter DJ, Bardet C, Mouraret S, Liu B, Singh G, Sadoine J, Dhamdhere G, Smith A, Tran XV, Joy A, Rooker S, Suzuki S, Vuorinen A, Miettinen S, Chaussain C, Helms JA. Wnt Acts as a Prosurvival Signal to Enhance Dentin Regeneration. J Bone Miner Res 2015; 30:1150-9. [PMID: 25556760 DOI: 10.1002/jbmr.2444] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023]
Abstract
Wnt proteins are lipid-modified, short-range signals that control stem cell self-renewal and tissue regeneration. We identified a population of Wnt responsive cells in the pulp cavity, characterized their function, and then created a pulp injury. The repair response was evaluated over time using molecular, cellular, and quantitative assays. We tested how healing was impacted by wound environments in which Wnt signaling was amplified. We found that a Wnt-amplified environment was associated with superior pulp healing. Although cell death was still rampant, the number of cells undergoing apoptosis was significantly reduced. This resulted in significantly better survival of injured pulp cells, and resulted in the formation of more tertiary dentin. We engineered a liposome-reconstituted form of WNT3A then tested whether this biomimetic compound could activate cells in the injured tooth pulp and stimulate dentin regeneration. Pulp cells responded to the elevated Wnt stimulus by differentiating into secretory odontoblasts. Thus, transiently amplifying the body's natural Wnt response resulted in improved pulp vitality. These data have direct clinical implications for treating dental caries, the most prevalent disease affecting mankind.
Collapse
Affiliation(s)
- Daniel J Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Claire Bardet
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA.,EA 2496, Dental School, University Paris Descartes, Sorbonne Paris Cité, Montrouge, France
| | - Sylvain Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA.,Department of Periodontology, Service of Odontology, Rothschild Hospital, Assistance Publique-Hôpitaux de Paris, Paris 7, Université Paris Diderot, Unité de Formation et de Recherche (UFR) of Odontology, Paris, France
| | - Bo Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Gurpreet Singh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Jérémy Sadoine
- EA 2496, Dental School, University Paris Descartes, Sorbonne Paris Cité, Montrouge, France
| | - Girija Dhamdhere
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Andrew Smith
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA.,Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Xuan Vinh Tran
- EA 2496, Dental School, University Paris Descartes, Sorbonne Paris Cité, Montrouge, France
| | - Adrienne Joy
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Scott Rooker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| | - Shigeki Suzuki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA.,Department of Dental Science for Health Promotion, Division of Cervico-Gnathostomatology Hiroshima, University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Annukka Vuorinen
- BioMediTech, Adult Stem Cell Research, University of Tampere, Tampere, Finland.,Finnish Student Health Service, Tampere, Finland
| | - Susanna Miettinen
- BioMediTech, Adult Stem Cell Research, University of Tampere, Tampere, Finland.,Science Centre, University of Tampere, Tampere, Finland
| | - Catherine Chaussain
- EA 2496, Dental School, University Paris Descartes, Sorbonne Paris Cité, Montrouge, France
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Rodella LF, Cocchi MA, Rezzani R, Procacci P, Hirtler L, Nocini P, Albanese M. Fresh frozen bone in oral and maxillofacial surgery. J Dent Sci 2015. [DOI: 10.1016/j.jds.2014.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
31
|
Juhász T, Helgadottir SL, Tamás A, Reglődi D, Zákány R. PACAP and VIP signaling in chondrogenesis and osteogenesis. Peptides 2015; 66:51-7. [PMID: 25701761 DOI: 10.1016/j.peptides.2015.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
Skeletal development is a complex process regulated by multifactorial signaling cascades that govern proper tissue specific cell differentiation and matrix production. The influence of certain regulatory peptides on cartilage or bone development can be predicted but are not widely studied. In this review, we aimed to assemble and overview those signaling pathways which are modulated by PACAP and VIP neuropeptides and are involved in cartilage and bone formation. We discuss recent experimental data suggesting broad spectrum functions of these neuropeptides in osteogenic and chondrogenic differentiation, including the canonical downstream targets of PACAP and VIP receptors, PKA or MAPK pathways, which are key regulators of chondro- and osteogenesis. Recent experimental data support the hypothesis that PACAP is a positive regulator of chondrogenesis, while VIP has been reported playing an important role in the inflammatory reactions of surrounding joint tissues. Regulatory function of PACAP and VIP in bone development has also been proved, although the source of the peptides is not obvious. Crosstalk and collateral connections of the discussed signaling mechanisms make the system complicated and may obscure the pure effects of VIP and PACAP. Chondro-protective properties of PACAP during oxidative stress observed in our experiments indicate a possible therapeutic application of this neuropeptide.
Collapse
Affiliation(s)
- Tamás Juhász
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | - Solveig Lind Helgadottir
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Dóra Reglődi
- Department of Anatomy MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Medical School, Szigeti út 12, H-7624 Pécs, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, University of Debrecen, Faculty of Medicine, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
32
|
Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci 2014; 39:508-19. [PMID: 24494689 PMCID: PMC4453827 DOI: 10.1111/ejn.12462] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022]
Abstract
Disorders of the skeleton are one of the most common causes of chronic pain and long-term physical disability in the world. Chronic skeletal pain is caused by a remarkably diverse group of conditions including trauma-induced fracture, osteoarthritis, osteoporosis, low back pain, orthopedic procedures, celiac disease, sickle cell disease and bone cancer. While these disorders are diverse, what they share in common is that when chronic skeletal pain occurs in these disorders, there are currently few therapies that can fully control the pain without significant unwanted side effects. In this review we focus on recent advances in our knowledge concerning the unique population of primary afferent sensory nerve fibers that innervate the skeleton, the nociceptive and neuropathic mechanisms that are involved in driving skeletal pain, and the neurochemical and structural changes that can occur in sensory and sympathetic nerve fibers and the CNS in chronic skeletal pain. We also discuss therapies targeting nerve growth factor or sclerostin for treating skeletal pain. These therapies have provided unique insight into the factors that drive skeletal pain and the structural decline that occurs in the aging skeleton. We conclude by discussing how these advances have changed our understanding and potentially the therapeutic options for treating and/or preventing chronic pain in the injured, diseased and aged skeleton.
Collapse
Affiliation(s)
- Patrick W Mantyh
- Department of Pharmacology and Arizona Cancer Center, University of Arizona, Tucson, AZ, 85716, USA
| |
Collapse
|
33
|
Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology 2013; 154:2687-701. [PMID: 23696565 PMCID: PMC3713216 DOI: 10.1210/en.2012-2162] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is known that insulin resistance and type 2 diabetes mellitus are associated with increased fractures and that brown adipose tissue (BAT) counteracts many if not all of the symptoms associated with type 2 diabetes. By the use of FoxC2(AD)(+/Tg) mice, a well-established model for induction of BAT, or beige fat, we present data extending the beneficial action of beige fat to also include a positive effect on bone. FoxC2(AD)(+/Tg) mice are lean and insulin-sensitive and have high bone mass due to increased bone formation associated with high bone turnover. Inducible BAT is linked to activation of endosteal osteoblasts whereas osteocytes have decreased expression of the Sost transcript encoding sclerostin and elevated expression of Rankl. Conditioned media (CM) collected from forkhead box c2 (FOXC2)-induced beige adipocytes activated the osteoblast phenotype and increased levels of phospho-AKT and β-catenin in recipient cells. In osteocytes, the same media decreased Sost expression. Immunodepletion of CM with antibodies against wingless related MMTV integration site 10b (WNT10b) and insulin-like growth factor binding protein 2 (IGFBP2) resulted in the loss of pro-osteoblastic activity, and the loss of increase in the levels of phospho-AKT and β-catenin. Conversely, CM derived from cells overexpressing IGFBP2 or WNT10b restored osteoblastic activity in recipient cells. In conclusion, beige fat secretes endocrine/paracrine activity that is beneficial for the skeleton.
Collapse
Affiliation(s)
- Sima Rahman
- Departments of Orthopaedic Surgery, University ofToledo Health Sciences Campus, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kondo M, Kondo H, Miyazawa K, Goto S, Togari A. Experimental tooth movement-induced osteoclast activation is regulated by sympathetic signaling. Bone 2013; 52:39-47. [PMID: 23000507 DOI: 10.1016/j.bone.2012.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/17/2012] [Accepted: 09/07/2012] [Indexed: 01/03/2023]
Abstract
Experimental tooth movement (ETM) changes the distribution of sensory nerve fibers in periodontal ligament and the bone architecture through the stimulation of bone remodeling. As the sympathetic nervous system is involved in bone remodeling, we examined whether ETM is controlled by sympathetic signaling or not. In male mice, elastic rubber was inserted between upper left first molar (M1) and second molar (M2) for 3 or 5 days. Nerve fibers immunoreactive for not only sensory neuromarkers, such as calcitonin gene-related peptide (CGRP), but also sympathetic neuromarkers, such as tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were increased in the periodontal ligament during ETM. To elucidate the effect of the sympathetic signal mediated by ETM, mice were intraperitoneally injected with a β-antagonist, propranolol (PRO: 20 μg/g/day), or a β-agonist, isoproterenol (ISO: 5 μg/g/day) from 7 days before ETM. PRO treatment suppressed the amount of tooth movement by 12.9% in 3-day ETM and by 32.2% in 5-day ETM compared with vehicle treatment. On the other hand, ISO treatment increased it. Furthermore, ETM remarkably increased the osteoclast number on the bone surface (alveolar socket) (Oc.N/BS) in all drug treatments. PRO treatment suppressed Oc.N/BS by 39.4% in 3-day ETM, while ISO treatment increased it by 32.1% in 3-day ETM compared with vehicle treatment. Chemical sympathectomy using 6-hydroxydopamine (6-OHDA: 250 μg/g) showed results similar to those for PRO treatment in terms of both the amount of tooth movement and osteoclast parameters. Our data showed that blockade of sympathetic signaling inhibited the tooth movement and osteoclast increase induced by ETM, and stimulation of sympathetic signaling accelerated these responses. These data suggest that the mechano-adaptive response induced by ETM is controlled by sympathetic signaling through osteoclast activation.
Collapse
Affiliation(s)
- Mayo Kondo
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | | | | | | | | |
Collapse
|
35
|
Tran X, Gorin C, Willig C, Baroukh B, Pellat B, Decup F, Opsahl Vital S, Chaussain C, Boukpessi T. Effect of a Calcium-silicate-based Restorative Cement on Pulp Repair. J Dent Res 2012; 91:1166-71. [DOI: 10.1177/0022034512460833] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In cases of pulp injury, capping materials are used to enhance tertiary dentin formation; Ca(OH)2 and MTA are the current gold standards. The aim of this study was to evaluate the capacity of a new calcium-silicate-based restorative cement to induce pulp healing in a rat pulp injury model. For that purpose, cavities with mechanical pulp exposure were prepared on maxillary first molars of 27 six-week-old male rats, and damaged pulps were capped with either the new calcium-silicate-based restorative cement (Biodentine), MTA, or Ca(OH)2. Cavities were sealed with glass-ionomer cement, and the repair process was assessed at several time-points. At day 7, our results showed that both the evaluated cement and MTA induced cell proliferation and formation of mineralization foci, which were strongly positive for osteopontin. At longer time-points, we observed the formation of a homogeneous dentin bridge at the injury site, secreted by cells displaying an odontoblastic phenotype. In contrast, the reparative tissue induced by Ca(OH)2 showed porous organization, suggesting a reparative process different from those induced by calcium silicate cements. Analysis of these data suggests that the evaluated cement can be used for direct pulp-capping.
Collapse
Affiliation(s)
- X.V. Tran
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
- Faculty of Odonto-stomatology, University of Medicine and Pharmacy, Ho chi Minh City, Vietnam
| | - C. Gorin
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
- AP-HP, Odontology Departments Bretonneau, Charles Foix, Louis Mourier, Paris, France
| | - C. Willig
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
| | - B. Baroukh
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
| | - B. Pellat
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
- AP-HP, Odontology Departments Bretonneau, Charles Foix, Louis Mourier, Paris, France
| | - F. Decup
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
- Restorative Dentistry and Endodontic Department, UFR Odontology, Université Paris Descartes, PRES Sorbonne Paris Cité, France
- AP-HP, Odontology Departments Bretonneau, Charles Foix, Louis Mourier, Paris, France
| | - S. Opsahl Vital
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
- AP-HP, Odontology Departments Bretonneau, Charles Foix, Louis Mourier, Paris, France
| | - C. Chaussain
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
- AP-HP, Odontology Departments Bretonneau, Charles Foix, Louis Mourier, Paris, France
| | - T. Boukpessi
- EA 2496, Pathologies, Imaging and Biotherapies of the Tooth, Dental School, Université Paris Descartes, PRES Sorbonne Paris Cité, 1 rue Maurice Arnoux 92120, France
- Restorative Dentistry and Endodontic Department, UFR Odontology, Université Paris Descartes, PRES Sorbonne Paris Cité, France
- AP-HP, Odontology Departments Bretonneau, Charles Foix, Louis Mourier, Paris, France
| |
Collapse
|