1
|
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, Zhang KY, Mao D, Ye JX, Li X, Yuan FL. Osteoclast Secretes Stage-Specific Key Molecules for Modulating Osteoclast-Osteoblast Communication. J Cell Physiol 2025; 240:e31484. [PMID: 39606839 DOI: 10.1002/jcp.31484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
In most cases of bone metabolic disorders, such as osteoporosis and osteomalacia, these conditions are often attributed to dysfunctional osteoclasts, leading to their common characterization as "destructors." In addition to the widely documented regulatory process where osteoblasts direct osteoclastic bone resorption, there is increasing evidence suggesting that osteoclasts also in turn influence osteoblastic bone formation through direct and indirect mechanisms. It is well-known that differentiation of osteoclasts involves several stages, each characterized by specific cellular features and functions. Stage-specific key molecules secreted during these stages play a critical role in mediating osteoclast-osteoblast communication. In this review, we described the different stages of osteoclast differentiation and reviewed stage-specific key molecules involved in osteoclasts-osteoblasts communication. We highlighted that a detailed understanding of these processes and molecular mechanism could facilitate the development of novel treatments for bone metabolic disorders.
Collapse
Affiliation(s)
- Yi-Fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Shu-Wen Shi
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Lei-Sheng Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hao Nie
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xian Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yue-Chun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hui-Bo Ti
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ke-Yue Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Jun-Xing Ye
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xia Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Johansson L, Ringmark S, Bergquist J, Skiöldebrand E, Widgren A, Jansson A. A proteomics perspective on 2 years of high-intensity training in horses: a pilot study. Sci Rep 2024; 14:23684. [PMID: 39390056 PMCID: PMC11467344 DOI: 10.1038/s41598-024-75266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
The human plasma proteome is rather well studied, but not that of other species, including horses. The aims of this study were to (1), explore differences in plasma proteomic profile of young elite harness trotters kept under standardised conditions and subjected to two different training programmes for 2 years and (2) explore changes in proteomic profile over time during the training period. From September at age 1.5 year to March at age 2 years, 16 Standardbred horses were exposed to the same training programme. In March, high-intensity training was introduced and the horses were divided into two training groups (High and Low). Blood samples were collected at rest in December as 1.5-year-olds, July as 2-year-olds, December as 2.5-year-olds and December as 3.5-year-olds. Untargeted proteomics was performed and a hypothesis-generating approach was used in statistical analysis (t-tests). At the age of 2.5 years, the level of serotransferrin was higher in the High group (P = 0.01) and at least at one sampling occasion, proteins associated with fat metabolism, oxidant/antioxidant processes, cardiovascular responses, bone formation and inflammation were lower in High group compared to Low (P < 0.05). Analyses of changes over time revealed that levels of proteins involved in energy metabolism, red cell metabolism, circulation, oxidant/antioxidant activity, bone formation, inflammation, immune modulation and cellular and vascular damage changed (P < 0.05). The results indicate that proteomics analysis of blood plasma could be a viable tool for evaluation of exercise adaptations, performance and for health monitoring, with several potential biomarkers identified in this study.
Collapse
Affiliation(s)
- L Johansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - S Ringmark
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - J Bergquist
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, P. O. Box 599, Uppsala, 751 24, Sweden
| | - E Skiöldebrand
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden
| | - A Widgren
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, P. O. Box 599, Uppsala, 751 24, Sweden
| | - A Jansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P. O. Box 7023, Uppsala, 750 07, Sweden.
| |
Collapse
|
3
|
Cheng X, Tian W, Yang J, Wang J, Zhang Y. Engineering approaches to manipulate osteoclast behavior for bone regeneration. Mater Today Bio 2024; 26:101043. [PMID: 38600918 PMCID: PMC11004223 DOI: 10.1016/j.mtbio.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Extensive research has delved into the multifaceted roles of osteoclasts beyond their traditional function in bone resorption in recent years, uncovering their significant influence on bone formation. This shift in understanding has spurred investigations into engineering strategies aimed at leveraging osteoclasts to not only inhibit bone resorption but also facilitate bone regeneration. This review seeks to comprehensively examine the mechanisms by which osteoclasts impact bone metabolism. Additionally, it explores various engineering methodologies, including the modification of bioactive material properties, localized drug delivery, and the introduction of exogenous cells, assessing their potential and mechanisms in aiding bone repair by targeting osteoclasts. Finally, the review proposes current limitations and future routes for manipulating osteoclasts through biological and material cues to facilitate bone repair.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, 1098 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
| | - Wenzhi Tian
- Jilin University, Jilin Province Key Lab Tooth Dev & Bone Remodeling, School and Hospital of Stomatology, Department of Oral Pathology, Changchun 130041, Jilin Province, China
| | - Jianhua Yang
- Longgang District People's Hospital of Shenzhen & the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong province, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen 518000, Guangdong Province, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
- School of Biomedical Engineering, Shenzhen University Medical School, 1088 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
4
|
Gassner T, Chittilappilly C, Pirich T, Neuditschko B, Hackner K, Lind J, Aksoy O, Graichen U, Klee S, Herzog F, Wiesner C, Errhalt P, Pecherstorfer M, Podar K, Vallet S. Favorable impact of PD1/PD-L1 antagonists on bone remodeling: an exploratory prospective clinical study and ex vivo validation. J Immunother Cancer 2024; 12:e008669. [PMID: 38702145 PMCID: PMC11086513 DOI: 10.1136/jitc-2023-008669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.
Collapse
Affiliation(s)
- Tamara Gassner
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Christina Chittilappilly
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Theo Pirich
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Klaus Hackner
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Pneumology, University Hospital Krems, Krems an der Donau, Austria
| | - Judith Lind
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Osman Aksoy
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Uwe Graichen
- Department of General Health Studies, Division Biostatistics and Data Sciences, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Sascha Klee
- Department of General Health Studies, Division Biostatistics and Data Sciences, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Krems an der Donau, Austria
| | - Peter Errhalt
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Pneumology, University Hospital Krems, Krems an der Donau, Austria
| | - Martin Pecherstorfer
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
- Karl Landsteiner Institute of Supportive Cancer Therapy, Karl Landsteiner Gesellschaft, St. Poelten, Austria
| | - Klaus Podar
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
| | - Sonia Vallet
- Department of Basic and Translational Oncology and Hematology, Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems an der Donau, Austria
- Karl Landsteiner Institute of Supportive Cancer Therapy, Karl Landsteiner Gesellschaft, St. Poelten, Austria
| |
Collapse
|
5
|
Mokhtari Ardekani A, Kharazinejad E, Ghasemi E, Ghasemi H, Soltani R. Circulating afamin positively correlated with the miR-122 expression and type 2 diabetes mellitus-related phenotype according to the duration of diabetes. Heliyon 2024; 10:e28053. [PMID: 38560140 PMCID: PMC10979149 DOI: 10.1016/j.heliyon.2024.e28053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background Afamin is a hepatokine that involves in glucose and lipids metabolism. miR-122 is mainly expressed in liver and involves in lipid and carbohydrate metabolism. This study aimed at investigating the circulating afamin, its correlation with type 2 diabetes mellitus (T2DM) and miR-122 gene expression in T2DM patients and healthy control subjects according to the duration of diabetes. Methods This case-control study included 220 participants, with 100 individuals serving as controls and 120 individuals diagnosed with type 2 diabetes mellitus (T2DM). The miR-122 gene expression was assessed using real-time PCR. The serum concentration of biochemical parameters such as glucose levels, lipid profile, and small-dense low-density lipoprotein (sdLDL) were measured using colorimetric kits. Circulating afamin and insulin levels were assayed using an ELISA kit. Glycated hemoglobin (HbA1c) was measured using capillary electrophoresis. Results Circulating afamin level was significantly higher in T2DM patients compared to the control group, (73.8 ± 10.8 vs. 65.9 ± 8.7, respectively; P < 0.001). Similarly, miR122 expression was significantly increased in T2DM patients compared to healthy control subjects (4.24 ± 2.01 vs. 1.00 ± 0.85, respectively; P < 0.001). Among patients diagnosed with T2DM, those with longstanding diabetes (>5 years) exhibited significantly higher levels of circulating afamin and miR-122 expression compared to individuals with a shorter duration of diabetes (≤5 years) (P < 0.05). Circulating afamin levels were significantly correlated with waist circumference, small-dense low-density lipoprotein (sdLDL), fasting blood sugar (FBS), insulin, resistance to insulin, and miR-122 expression, depending on the duration of the disease (P < 0.05). Furthermore, the performance of afamin as a diagnostic marker for T2DM was confirmed through receiver operating characteristic (ROC) analysis, yielding an area under the curve (AUC) of 0.7 (P < 0.001). Conclusions Circulating afamin involved in the T2DM-related complications and its concentration is positively correlated to the miR-122 expression, especially in patient with longstanding diabetes.
Collapse
Affiliation(s)
- Abnoos Mokhtari Ardekani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | - Rahmatollah Soltani
- Clinical Education Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Daponte V, Henke K, Drissi H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications. eLife 2024; 13:e95083. [PMID: 38591777 PMCID: PMC11003748 DOI: 10.7554/elife.95083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| | - Katrin Henke
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| |
Collapse
|
7
|
Ratku B, Lőrincz H, Csiha S, Sebestyén V, Berta E, Bodor M, Nagy EV, Szabó Z, Harangi M, Somodi S. Serum afamin and its implications in adult growth hormone deficiency: a prospective GH-withdrawal study. Front Endocrinol (Lausanne) 2024; 15:1348046. [PMID: 38379862 PMCID: PMC10876836 DOI: 10.3389/fendo.2024.1348046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Adult growth hormone deficiency (AGHD) is associated with a high prevalence of metabolic syndrome (MS), which contributes to the unfavorable cardiovascular risk profile in these patients. Insulin like growth factor-1 (IGF-1) is a widely used biomarker, however it does not always reflect the cardiometabolic risk and has a poor relationship with clinical efficacy endpoints. Consequently, there is an unmet need for biomarkers to monitor responses to GH-replacement. Afamin is a hormone-like glycoprotein, expressed in the liver. Higher afamin levels are strongly associated with MS and insulin resistance (IR). Although both MS and IR are very common in AGHD, afamin has not been investigated in these patients. Purpose To investigate afamin as a potential biomarker in patients with AGHD. Materials and methods Participants included 20 AGHD patients (11 GH-substituted and 9 GH-unsubstituted) and 37 healthy controls. Subjects underwent routine laboratory examinations, anthropometric measurements, body composition analysis using multi-frequency bioelectrical impedance analysis (InBody720) and measurement of serum afamin concentrations. In GH-substituted subjects, GH-substitution was withdrawn for 2 months. Measurements were carried out right before GH-withdrawal, at the end of the 2-month withdrawal period, and 1 month after reinstituting GH-replacement therapy (GHRT). Results GH-unsubstituted patients demonstrated higher afamin levels compared to controls (p=0.03). Afamin positively correlated with skeletal muscle mass, bone mineral content, total body water, extracellular- and intracellular water content, insulin (all, p<0.01), HOMA-IR (p=0.01) and C-peptide (p=0.03) levels in AGHD but not in healthy controls. In GH-substituted patients 2-month of GH-withdrawal caused significant changes in body composition, including decreased fat-free mass, skeletal muscle mass, total body water, and intracellular water content (all, p<0.01); but these changes almost fully recovered 1 month after reinstituting GHRT. Unexpectedly, afamin levels decreased after GH-withdrawal (p=0.03) and increased with reinstitution (p<0.01). Changes of afamin levels during GH-withdrawal positively correlated with changes of HOMA-IR (r=0.80; p<0.01) and changes of insulin (r=0.71; p=0.02). Conclusion Higher afamin levels in unsubstituted AGHD patients might indicate severe metabolic dysregulation. Significant changes accompanying GH-withdrawal and reinstitution, along with strong correlations with measures of IR, suggest that afamin could be a promising biomarker to monitor GHRT-associated changes of insulin sensitivity.
Collapse
Affiliation(s)
- Balázs Ratku
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sára Csiha
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Veronika Sebestyén
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Eszter Berta
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Miklós Bodor
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mariann Harangi
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Somodi
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Guo C, Fan Y, Cheng J, Deng Y, Zhang X, Chen Y, Jing H, Li W, Liu P, Xie J, Ning W, Chen H, Zhou J. AFM negatively regulates the infiltration of monocytes to mediate sepsis-associated acute kidney injury. Front Immunol 2023; 14:1049536. [PMID: 36793712 PMCID: PMC9922996 DOI: 10.3389/fimmu.2023.1049536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Background Sepsis is organ dysfunction due to the host's deleterious response to infection, and the kidneys are one of the organs damaged in common sepsis. Sepsis-associated acute kidney injury (SA-AKI) increases the mortality in patients with sepsis. Although a substantial volume of research has improved the prevention and treatment of the disease, SA-SKI is still a significant clinical concern. Purpose Aimed to use weighted gene co-expression network analysis (WGCNA) and immunoinfiltration analysis to study SA-AKI-related diagnostic markers and potential therapeutic targets. Methods Immunoinfiltration analysis was performed on SA-AKI expression datasets from the Gene Expression Synthesis (GEO) database. A weighted gene co-expression network analysis (WGCNA) analysis was performed on immune invasion scores as trait data, and modules associated with immune cells of interest were identified as hub modules. Screening hub geneset in the hub module using protein-protein interaction (PPI) network analysis. The hub gene was identified as a target by intersecting with significantly different genes screened by differential expression analysis and validated using two external datasets. Finally, the correlation between the target gene, SA-AKI, and immune cells was verified experimentally. Results Green modules associated with monocytes were identified using WGCNA and immune infiltration analysis. Differential expression analysis and PPI network analysis identified two hub genes (AFM and GSTA1). Further validation using additional AKI datasets GSE30718 and GSE44925 showed that AFM was significantly downregulated in AKI samples and correlated with the development of AKI. The correlation analysis of hub genes and immune cells showed that AFM was significantly associated with monocyte infiltration and hence, selected as a critical gene. In addition, Gene single-enrichment analysis (GSEA) and PPI analyses results showed that AFM was significantly related to the occurrence and development of SA-AKI. Conclusions AFM is inversely correlated with the recruitment of monocytes and the release of various inflammatory factors in the kidneys of AKI. AFM can be a potential biomarker and therapeutic target for monocyte infiltration in sepsis-related AKI.
Collapse
Affiliation(s)
- Caiyun Guo
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youling Fan
- Department of Anesthesiology, The First People's Hospital of Kashgar, Xinjiang, China,Department of Anesthesiology, The Second People’s Hospital of Panyu, Guangzhou, China
| | - Jiurong Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yingdong Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiangsheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Xie
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Ning
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Jun Zhou,
| |
Collapse
|
9
|
Kurdiova T, Balaz M, Kovanicova Z, Zemkova E, Kuzma M, Belan V, Payer J, Gasperikova D, Dieplinger H, Ukropcova B, Ukropec J. Serum Afamin a Novel Marker of Increased Hepatic Lipid Content. Front Endocrinol (Lausanne) 2021; 12:670425. [PMID: 34603196 PMCID: PMC8481912 DOI: 10.3389/fendo.2021.670425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
AIM Afamin is a liver-produced glycoprotein, a potential early marker of metabolic syndrome. Here we investigated regulation of afamin in a course of the metabolic disease development and in response to 3-month exercise intervention. METHODS We measured whole-body insulin sensitivity (euglycemic hyperinsulinemic clamp), glucose tolerance, abdominal adiposity, hepatic lipid content (magnetic resonance imaging/spectroscopy), habitual physical activity (accelerometers) and serum afamin (enzyme-linked immunosorbent assay) in 71 middle-aged men with obesity, prediabetes and newly diagnosed type 2 diabetes. Effects of 3-month exercise were investigated in 22 overweight-to-obese middle-aged individuals (16M/6F). RESULTS Prediabetes and type 2 diabetes, but not obesity, were associated with increased serum afamin (p<0.001). Afamin correlated positively with hepatic lipids, fatty liver index and liver damage markers; with parameters of adiposity (waist circumference, %body fat, adipocyte diameter) and insulin resistance (fasting insulin, C-peptide, HOMA-IR; p<0.001 all). Moreover, afamin negatively correlated with whole-body insulin sensitivity (M-value/Insulin, p<0.001). Hepatic lipids and fasting insulinemia were the most important predictors of serum afamin, explaining >63% of its variability. Exercise-related changes in afamin were paralleled by reciprocal changes in insulinemia, insulin resistance and visceral adiposity. No significant change in hepatic lipid content was observed. CONCLUSIONS Subjects with prediabetes and type 2 diabetes had the highest serum afamin levels. Afamin was more tightly related to hepatic lipid accumulation, liver damage and insulin resistance than to obesity.
Collapse
Affiliation(s)
- Timea Kurdiova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Balaz
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Kovanicova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Erika Zemkova
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Martin Kuzma
- 5 Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | | - Juraj Payer
- 5 Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Daniela Gasperikova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hans Dieplinger
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Jozef Ukropec, ; Hans Dieplinger,
| | - Barbara Ukropcova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Clinical Pathophysiology, Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Jozef Ukropec, ; Hans Dieplinger,
| |
Collapse
|
10
|
Friend or Foe? Essential Roles of Osteoclast in Maintaining Skeletal Health. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4791786. [PMID: 32190665 PMCID: PMC7073503 DOI: 10.1155/2020/4791786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Heightened activity of osteoclast is considered to be the culprit in breaking the balance during bone remodeling in pathological conditions, such as osteoporosis. As a “foe” of skeletal health, many antiosteoporosis therapies aim to inhibit osteoclastogenesis. However, bone remodeling is a dynamic process that requires the subtle coordination of osteoclasts and osteoblasts. Severe suppression of osteoclast differentiation will impair bone formation because of the coupling effect. Thus, understanding the complex roles of osteoclast in maintaining proper bone remodeling is highly warranted to develop better management of osteoporosis. This review aimed to determine the varied roles of osteoclasts in maintaining skeletal health and to highlight the positive roles of osteoclasts in maintaining normal bone remodeling. Generally, osteoclasts interact with osteocytes to initiate targeted bone remodeling and have crosstalk with mesenchymal stem cells and osteoblasts via secreted factors or cell-cell contact to promote bone formation. We believe that a better outcome of bone remodeling disorders will be achieved when proper strategies are made to coordinate osteoclasts and osteoblasts in managing such disorders.
Collapse
|
11
|
Kim BJ, Koh JM. Coupling factors involved in preserving bone balance. Cell Mol Life Sci 2019; 76:1243-1253. [PMID: 30515522 PMCID: PMC11105749 DOI: 10.1007/s00018-018-2981-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Coupling during bone remodeling refers to the spatial and temporal coordination of bone resorption with bone formation. Studies have assessed the subtle interactions between osteoclasts and osteoblasts to preserve bone balance. Traditionally, coupling research related to osteoclast function has focused on bone resorption activity causing the release of growth factors embedded in the bone matrix. However, considerable evidence from in vitro, animal, and human studies indicates the importance of the osteoclasts themselves in coupling phenomena, and many osteoclast-derived coupling factors have been identified. These include sphingosine-1-phosphate, vesicular-receptor activator of nuclear factor-κB, collagen triple helix repeat containing 1, and cardiotrophin-1. Interestingly, neuronal guidance molecules, such as slit guidance ligand 3, semaphorin (SEMA) 3A, SEMA4D, and netrin-1, originally identified as instructive cues allowing the navigation of growing axons to their targets, have been shown to be involved in the intercellular cross-talk among bone cells. This review discusses osteoclast-osteoblast coupling signals, including recent advances and the potential roles of these signals as therapeutic targets for osteoporosis and as biomarkers predicting human bone health.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
12
|
Zhang J, Li S, Wei L, Peng Y, Zheng Z, Xue J, Cao Y, Wang B, Du J. Protective effects of 2,3,5,4-tetrahydroxystilbene-2-o-β-D-glucoside against osteoporosis: Current knowledge and proposed mechanisms. Int J Rheum Dis 2018; 21:1504-1513. [PMID: 30146742 DOI: 10.1111/1756-185x.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/10/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to explore the mechanism underlying the protective effects of 2,3,5,4-tetrahydroxystilbene-2-o-β-D-glucoside (TSG) against osteoporosis. METHOD MC3T3-E1 mouse osteoblast precursor cells were used to analyze the protective effects of TSG on osteoblast apoptosis and differential inhibition induced by oxidative stress to determine the gene expression of forkhead transcription factor FKHRL1 (FoxO3a), T cell factors (TCFs), and downstream genes. A mouse model was used to assess the protective effects of TSG on ovariectomy-induced osteoporosis as well as on Cell Counting Kit-8 (CCK) gene expression, including that of FoxO3a. The mechanism underlying the protective effects of TSG against osteoporosis was further explored using high-throughput sequencing data. RESULTS A CCK-8 assay in MC3T3-E1 cells and hematoxylin and eosin staining in mouse tissue indicated that cell viability and bone tissue development were inhibited by oxidative stress and ovariectomy and that TSG neutralized or attenuated this effect. The expression levels of FoxO3a, TCF, and downstream genes and the indices of oxidative stress were the same in MC3T3-E1 cells and the bone tissues of the mouse model. Bioinformatics analysis indicated that the cardiac muscle contraction and chemokine signaling pathway were disturbed in MC3T3-E1 cells treated with hydrogen peroxide. Gene ontology-biological process analysis revealed the influence of TSG treatment. CONCLUSION Osteoporosis and cardiac diseases appear to share a common mechanism. In addition to Wnt/FoxO3a signaling, the immune system and the chemokine signaling pathway may contribute to the protective mechanism of TSG.
Collapse
Affiliation(s)
- Jinkang Zhang
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Songlin Li
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Linlan Wei
- The Chinese People's Liberation Army 61206 Troops, Beijing, China
| | - Ye Peng
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Ziyang Zheng
- Institute of General Department, Air Force General Hospital, Beijing, China
| | - Jing Xue
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Yukun Cao
- Institute of Cardiac Surgery, Air Force General Hospital, Beijing, China
| | - Bin Wang
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Junjie Du
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| |
Collapse
|
13
|
Kim BJ, Lee YS, Lee SY, Baek WY, Choi YJ, Moon SA, Lee SH, Kim JE, Chang EJ, Kim EY, Yoon J, Kim SW, Ryu SH, Lee SK, Lorenzo JA, Ahn SH, Kim H, Lee KU, Kim GS, Koh JM. Osteoclast-secreted SLIT3 coordinates bone resorption and formation. J Clin Invest 2018; 128:1429-1441. [PMID: 29504949 PMCID: PMC5873876 DOI: 10.1172/jci91086] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/28/2017] [Indexed: 01/15/2023] Open
Abstract
Coupling is the process that links bone resorption to bone formation in a temporally and spatially coordinated manner within the remodeling cycle. Several lines of evidence point to the critical roles of osteoclast-derived coupling factors in the regulation of osteoblast performance. Here, we used a fractionated secretomic approach and identified the axon-guidance molecule SLIT3 as a clastokine that stimulated osteoblast migration and proliferation by activating β-catenin. SLIT3 also inhibited bone resorption by suppressing osteoclast differentiation in an autocrine manner. Mice deficient in Slit3 or its receptor, Robo1, exhibited osteopenic phenotypes due to a decrease in bone formation and increase in bone resorption. Mice lacking Slit3 specifically in osteoclasts had low bone mass, whereas mice with either neuron-specific Slit3 deletion or osteoblast-specific Slit3 deletion had normal bone mass, thereby indicating the importance of SLIT3 as a local determinant of bone metabolism. In postmenopausal women, higher circulating SLIT3 levels were associated with increased bone mass. Notably, injection of a truncated recombinant SLIT3 markedly rescued bone loss after an ovariectomy. Thus, these results indicate that SLIT3 plays an osteoprotective role by synchronously stimulating bone formation and inhibiting bone resorption, making it a potential therapeutic target for metabolic bone diseases.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Seoul, South Korea
| | - Sun-Young Lee
- Asan Institute for Life Sciences, Seoul, South Korea
| | | | | | - Sung Ah Moon
- Asan Institute for Life Sciences, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | | - Jin Yoon
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Whan Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Ho Ryu
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbook, South Korea
| | | | - Joseph A. Lorenzo
- Departments of Medicine and Orthopaedics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Seong Hee Ahn
- Department of Internal Medicine, Inha University School of Medicine, Incheon, South Korea
| | - Hyeonmok Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki-Up Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ghi Su Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Veronesi F, Borsari V, Sartori M, Orciani M, Mattioli-Belmonte M, Fini M. The use of cell conditioned medium for musculoskeletal tissue regeneration. J Cell Physiol 2017; 233:4423-4442. [PMID: 29159853 DOI: 10.1002/jcp.26291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Tissue regenerative medicine combines the use of cells, scaffolds, and molecules to repair damaged tissues. Different cell types are employed for musculoskeletal diseases, both differentiated and mesenchymal stromal cells (MSCs). In recent years, the hypothesis that cell-based therapy is guided principally by cell-secreted factors has become increasingly popular. The aim of the present literature review was to evaluate preclinical and clinical studies that used conditioned medium (CM), rich in cell-factors, for musculoskeletal regeneration. Thirty-one were in vitro, 12 in vivo studies, 1 was a clinical study, and 2 regarded extracellular vesicles. Both differentiated cells and MSCs produce CM that induces reduction in inflammation and increases synthetic activity. MSC recruitment and differentiation, endothelial cell recruitment and angiogenesis have also been observed. In vivo studies were performed with CM in bone and periodontal defects, arthritis and muscle dystrophy pathologies. The only clinical study was performed with CM from MSCs in patients needing alveolar bone regeneration, showing bone formation and no systemic or local complications. Platelet derived growth factor receptor β, C3a, vascular endothelial growth factor, monocyte chemoattractant protein-1 and -3, interleukin 3 and 6, insulin-like growth factor-I were identified as responsible of cell migration, proliferation, osteogenic differentiation, and angiogenesis. The use of CM could represent a new regenerative treatment in several musculoskeletal pathologies because it overcomes problems associated with the use of cells and avoids the use of exogenous GFs or gene delivery systems. However, some issues remain to be clarified.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
15
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
16
|
Zhu S, Yao F, Qiu H, Zhang G, Xu H, Xu J. Coupling factors and exosomal packaging microRNAs involved in the regulation of bone remodelling. Biol Rev Camb Philos Soc 2017; 93:469-480. [PMID: 28795526 DOI: 10.1111/brv.12353] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
Bone remodelling is a continuous process by which bone resorption by osteoclasts is followed by bone formation by osteoblasts to maintain skeletal homeostasis. These two forces must be tightly coordinated not only quantitatively, but also in time and space, and its malfunction leads to diseases such as osteoporosis. Recent research focusing on the cross-talk and coupling mechanisms associated with the sequential recruitment of osteoblasts to areas where osteoclasts have removed bone matrix have identified a number of osteogenic factors produced by the osteoclasts themselves. Osteoclast-derived factors and exosomal-containing microRNA (miRNA) can either enhance or inhibit osteoblast differentiation through paracrine and juxtacrine mechanisms, and therefore may have a central coupling role in bone formation. Entwined with angiocrine factors released by vessel-specific endothelial cells and perivascular cells or pericytes, these factors play a critical role in angiogenesis-osteogenesis coupling essential in bone remodelling.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth 6009, M504, Australia
| | - Felix Yao
- Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth 6009, M504, Australia
| | - Heng Qiu
- Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth 6009, M504, Australia
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Molecular Laboratory, School of Pathology and Laboratory Medicine, The University of Western Australia, Perth 6009, M504, Australia
| |
Collapse
|
17
|
Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr Rev 2017; 38:325-350. [PMID: 28651365 PMCID: PMC5546879 DOI: 10.1210/er.2015-1114] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Cathepsin K is a cysteine protease member of the cathepsin lysosomal protease family. Although cathepsin K is highly expressed in osteoclasts, lower levels of cathepsin K are also found in a variety of other tissues. Secretion of cathepsin K from the osteoclast into the sealed osteoclast-bone cell interface results in efficient degradation of type I collagen. The absence of cathepsin K activity in humans results in pycnodysostosis, characterized by increased bone mineral density and fractures. Pharmacologic cathepsin K inhibition leads to continuous increases in bone mineral density for ≤5 years of treatment and improves bone strength at the spine and hip. Compared with other antiresorptive agents, cathepsin K inhibition is nearly equally efficacious for reducing biochemical markers of bone resorption but comparatively less active for reducing bone formation markers. Despite multiple efforts to develop cathepsin K inhibitors, potential concerns related to off-target effects of the inhibitors against other cathepsins and cathepsin K inhibition at nonbone sites, including skin and perhaps cardiovascular and cerebrovascular sites, prolonged the regulatory approval process. A large multinational randomized, double-blind phase III study of odanacatib in postmenopausal women with osteoporosis was recently completed. Although that study demonstrated clinically relevant reductions in fractures at multiple sites, odanacatib was ultimately withdrawn from the regulatory approval process after it was found to be associated with an increased risk of cerebrovascular accidents. Nonetheless, the underlying biology and clinical effects of cathepsin K inhibition remain of considerable interest and could guide future therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Matthew T. Drake
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Bart L. Clarke
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Merry Jo Oursler
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
18
|
Lu J, Chen X, Qu S, Yao B, Xu Y, Wu J, Jin Y, Ma C. Oridonin induces G 2/M cell cycle arrest and apoptosis via the PI3K/Akt signaling pathway in hormone-independent prostate cancer cells. Oncol Lett 2017; 13:2838-2846. [PMID: 28454475 DOI: 10.3892/ol.2017.5751] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
Oridonin is an active constituent isolated from the traditional Chinese herb Rabdosia rubescens, which exerts antitumor effects in experimental and clinical settings. However, its antitumor effects and underlying mechanisms on prostate cancer cells have not yet been clearly identified. In the present study, the androgen-independent prostate cancer PC3 and DU145 cell lines were used as models to investigate the effects and possible mechanisms of oridonin on cellular proliferation and apoptosis. Results demonstrated that oridonin inhibited cellular proliferation, and was able to significantly induce G2/M cell cycle arrest and apoptosis. Detailed signaling pathway analysis by western blotting demonstrated that the expression levels of p53 and p21 were upregulated, whereas the expression of cyclin-dependent kinase 1 was downregulated following oridonin treatment, which led to cell cycle arrest in the G2/M phase. Oridonin also upregulated the proteolytic cleaved forms of caspase-3, caspase-9 and poly (ADP-ribose) polymerase. Furthermore, the protein expression levels of B-cell lymphoma 2 were decreased and those of Bcl-2-associated X protein were increased following oridonin treatment. In addition, oridonin treatment significantly inhibited the expression of phosphoiniositide-3 kinase (PI3K) p85 subunit and the phosphorylation of Akt. The downstream gene murine double minute 2 was also downregulated, which may contribute to the elevated expression of p53 following oridonin treatment. In conclusion, the results of the present study suggested that oridonin is able to inactivate the PI3K/Akt pathway and activate p53 pathways in prostate cancer cells, resulting in the suppression of proliferation and the induction of caspase-mediated apoptosis.
Collapse
Affiliation(s)
- Jianlei Lu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiang Chen
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Shuang Qu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Bing Yao
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yuexin Xu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jiahui Wu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yucui Jin
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Changyan Ma
- Department of Developmental Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
19
|
Segeletz S, Hoflack B. Proteomic approaches to study osteoclast biology. Proteomics 2016; 16:2545-2556. [PMID: 27350065 DOI: 10.1002/pmic.201500519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/13/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022]
Abstract
Bone is a dynamic tissue whose remodeling throughout life is orchestrated by repeated cycles of destruction mediated by osteoclasts and rebuilding by osteoblasts. Current understanding of osteoclast biology has largely relied on the generation of knockout mice exhibiting an abnormal bone phenotype. This has provided a better understanding of osteoclast biology and the key proteins that support osteoclast function. However, mouse models alone do not provide an integrated view on protein networks and post-translational modifications that might be important for osteoclast function. During the past years, a number of MS-based quantitative methods have been developed to investigate the complexity of biological systems. This review will summarize how such approaches have contributed to the understanding of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Sandra Segeletz
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Bernard Hoflack
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Yu D, Mu S, Zhao D, Wang G, Chen Z, Ren H, Fu Q. Puerarin attenuates glucocorticoid-induced apoptosis of hFOB1.19 cells through the JNK- and Akt-mediated mitochondrial apoptotic pathways. Int J Mol Med 2015; 36:345-54. [PMID: 26101183 PMCID: PMC4501663 DOI: 10.3892/ijmm.2015.2258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/21/2015] [Indexed: 12/13/2022] Open
Abstract
Puerarin is an active component of Pueraria lobata, which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aimed to evaluate the osteoprotective effect of puerarin on glucocorticoid (GC)-induced apoptosis of osteoblasts in vitro. The effects of puerarin on dexamethasone (DEX)-induced cell apoptosis were assessed using enzyme-linked immunosorbent assay and a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and found that the viability of hFOB1.19 cells was significantly increased following exposure to between 10−6 and 10−10 M puerarin, with a maximal anti-apoptotic effect at a concentration of 10−8 M. In addition, compared with the control group, puerarin upregulated the transcription and protein levels of B-cell lymphoma-2 and downregulated B-cell-associated X protein in the hFOB1.19 cells. Puerarin attenuated the DEX-induced release of cytochrome c and cleavage of caspase-3, and treatment with puerarin inhibited the c-Jun N-terminal kinase (JNK) pathway and activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in the hFOB1.19 cells. Furthermore, the Akt inhibitor, LY294002, partly eliminated the protective effect of puerarin on DEX-induced apoptosis, and puerarin combined with the JNK inhibitor, SP600125, suppressed DEX-induced apoptosis to a lesser extent than in the cells treated with SP600125 alone. These results suggested that the JNK and PI3K/Akt signaling pathways mediate the inhibitory effects of puerarin on apoptosis in the hFOB1.19 cells. In conclusion, puerarin prevented DEX-induced apoptosis of hFOB1.19 cells via inhibition of the JNK pathway and activation of the PI3K/Akt signaling pathway in the cells, dependent on the mitochondrial apoptotic pathway. These results support puerarin as a promising target in the treatment of GC-induced osteoporosis.
Collapse
Affiliation(s)
- Dongdong Yu
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Shuai Mu
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Danyang Zhao
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Guangbin Wang
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Zhiguang Chen
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Hongfei Ren
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| | - Qin Fu
- Department of Orthopedic Surgery, The Shengjing Hospital of China Medical University, Liaoning 110004, P.R. China
| |
Collapse
|
21
|
Afamin--A pleiotropic glycoprotein involved in various disease states. Clin Chim Acta 2015; 446:105-10. [PMID: 25892677 DOI: 10.1016/j.cca.2015.04.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
The human glycoprotein afamin was discovered as the fourth member of the albumin gene family. Despite intense research over the last 20 years, our knowledge of afamin's physiological or pathophysiological functions is still very limited. Circulating afamin is primarily of hepatic origin and abundant concentrations are found in plasma, cerebrospinal, ovarian follicular and seminal fluids. In vitro binding studies revealed specific binding properties for vitamin E. A previously performed analytical characterization and clinical evaluation study of an enzyme-linked immunosorbent assay for quantitative measurement of afamin in human plasma demonstrated that the afamin assay meets the quality specifications for laboratory medicine. Comparative proteomics has identified afamin as a potential biomarker for ovarian cancer and these findings were confirmed by quantitative immunoassay of afamin and validated in independent cohorts of patients with ovarian cancer. Afamin has also been investigated in other types of carcinoma. Most of these studies await further evaluation with validated quantitative afamin assays and require validation in larger patient cohorts. Transgenic mice overexpressing the human afamin gene revealed increased body weight and increased blood concentrations of lipids and glucose. These transgenic mouse data were in line with three large human population-based studies showing that afamin is strongly associated with the prevalence and development of the metabolic syndrome. This review summarizes and discusses the molecular, biochemical and analytical characterization of afamin as well as possible clinical applications of afamin measurement.
Collapse
|
22
|
Vives V, Cres G, Richard C, Busson M, Ferrandez Y, Planson AG, Zeghouf M, Cherfils J, Malaval L, Blangy A. Pharmacological inhibition of Dock5 prevents osteolysis by affecting osteoclast podosome organization while preserving bone formation. Nat Commun 2015; 6:6218. [PMID: 25645278 DOI: 10.1038/ncomms7218] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is caused by excessive activity of bone-degrading osteoclasts over bone-forming osteoblast. Standard antiosteolytic treatments inhibit bone resorption by inducing osteoclast loss, with the adverse effect of hindering also bone formation. Formation of the osteoclast sealing zone requires Dock5, a guanine nucleotide exchange factor for the small GTPase Rac, and C21, a chemical inhibitor of Dock5, decreases bone resorption by cultured osteoclasts. Here we show that C21 directly inhibits the exchange activity of Dock5 and disrupts osteoclast podosome organization. Remarkably, C21 administration protects mice against bone degradation in models recapitulating major osteolytic diseases: menopause, rheumatoid arthritis and bone metastasis. Furthermore, C21 administration does not affect bone formation and is not toxic. Our results validate the pharmacological inhibition of Dock5 as a novel therapeutic route for fighting osteolytic diseases while preserving bone formation.
Collapse
Affiliation(s)
- Virginie Vives
- 1] Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293, Montpellier cedex 5, France [2] Montpellier University, 34095 Montpellier cedex 5, France
| | - Gaëlle Cres
- 1] Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293, Montpellier cedex 5, France [2] Montpellier University, 34095 Montpellier cedex 5, France
| | - Christian Richard
- 1] Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293, Montpellier cedex 5, France [2] Montpellier University, 34095 Montpellier cedex 5, France
| | - Muriel Busson
- Institut de Recherche en Cancérologie de Montpellier, U896 INSERM, 34298 Montpellier cedex 5, France
| | - Yann Ferrandez
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Centre de Recherche de Gif, 91198 Gif-sur-Yvette, France
| | - Anne-Gaelle Planson
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Centre de Recherche de Gif, 91198 Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Centre de Recherche de Gif, 91198 Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Centre de Recherche de Gif, 91198 Gif-sur-Yvette, France
| | - Luc Malaval
- INSERM U1059, Université Jean Monnet, 42023 Saint-Etienne cedex 02, France
| | - Anne Blangy
- 1] Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, 34293, Montpellier cedex 5, France [2] Montpellier University, 34095 Montpellier cedex 5, France
| |
Collapse
|
23
|
Huh JE, Lee WI, Kang JW, Nam D, Choi DY, Park DS, Lee SH, Lee JD. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway. JOURNAL OF NATURAL PRODUCTS 2014; 77:2423-31. [PMID: 25397676 DOI: 10.1021/np500417d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Oriental Medicine Research Center for Bone and Joint Disease, East-West Bone & Joint Research Institute, Kyung Hee University , 149, Sangil-dong, Gangdong-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Charles JF, Aliprantis AO. Osteoclasts: more than 'bone eaters'. Trends Mol Med 2014; 20:449-59. [PMID: 25008556 PMCID: PMC4119859 DOI: 10.1016/j.molmed.2014.06.001] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 02/08/2023]
Abstract
As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.
Collapse
Affiliation(s)
- Julia F Charles
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Antonios O Aliprantis
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
25
|
Thudium CS, Moscatelli I, Flores C, Thomsen JS, Brüel A, Gudmann NS, Hauge EM, Karsdal MA, Richter J, Henriksen K. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation. Calcif Tissue Int 2014; 95:83-93. [PMID: 24838599 DOI: 10.1007/s00223-014-9865-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/28/2014] [Indexed: 01/15/2023]
Abstract
Osteopetrosis due to lack of acid secretion by osteoclasts is characterized by abolished bone resorption, increased osteoclast numbers, but normal or even increased bone formation. In contrast, osteoclast-poor osteopetrosis appears to have less osteoblasts and reduced bone formation, indicating that osteoclasts are important for regulating osteoblast activity. To illuminate the role of the osteoclast in controlling bone remodeling, we transplanted irradiated skeletally mature 3-month old wild-type mice with hematopoietic stem cells (HSCs) to generate either an osteoclast-rich or osteoclast-poor adult osteopetrosis model. We used fetal liver HSCs from (1) oc/oc mice, (2) RANK KO mice, and (3) compared these to wt control cells. TRAP5b activity, a marker of osteoclast number and size, was increased in the oc/oc recipients, while a significant reduction was seen in the RANK KO recipients. In contrast, the bone resorption marker CTX-I was similarly decreased in both groups. Both oc/oc and Rank KO recipients developed a mild osteopetrotic phenotype. However, the osteoclast-rich oc/oc recipients showed higher trabecular bone volume (40 %), increased bone strength (66 %), and increased bone formation rate (54 %) in trabecular bone, while RANK KO recipients showed only minor trends compared to control recipients. We here show that maintaining non-resorbing osteoclasts, as opposed to reducing the osteoclasts, leads to increased bone formation, bone volume, and ultimately higher bone strength in vivo, which indicates that osteoclasts are sources of anabolic molecules for the osteoblasts.
Collapse
|
26
|
Systems genetics of liver fibrosis: identification of fibrogenic and expression quantitative trait loci in the BXD murine reference population. PLoS One 2014; 9:e89279. [PMID: 24586654 PMCID: PMC3938463 DOI: 10.1371/journal.pone.0089279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/17/2014] [Indexed: 01/16/2023] Open
Abstract
The progression of liver fibrosis in response to chronic injury varies considerably among individual patients. The underlying genetics is highly complex due to large numbers of potential genes, environmental factors and cell types involved. Here, we provide the first toxicogenomic analysis of liver fibrosis induced by carbon tetrachloride in the murine ‘genetic reference panel’ of recombinant inbred BXD lines. Our aim was to define the core of risk genes and gene interaction networks that control fibrosis progression. Liver fibrosis phenotypes and gene expression profiles were determined in 35 BXD lines. Quantitative trait locus (QTL) analysis identified seven genomic loci influencing fibrosis phenotypes (pQTLs) with genome-wide significance on chromosomes 4, 5, 7, 12, and 17. Stepwise refinement was based on expression QTL mapping with stringent selection criteria, reducing the number of 1,351 candidate genes located in the pQTLs to a final list of 11 cis-regulated genes. Our findings demonstrate that the BXD reference population represents a powerful experimental resource for shortlisting the genes within a regulatory network that determine the liver's vulnerability to chronic injury.
Collapse
|
27
|
Balakrishnan L, Nirujogi RS, Ahmad S, Bhattacharjee M, Manda SS, Renuse S, Kelkar DS, Subbannayya Y, Raju R, Goel R, Thomas JK, Kaur N, Dhillon M, Tankala SG, Jois R, Vasdev V, Ramachandra Y, Sahasrabuddhe NA, Prasad TK, Mohan S, Gowda H, Shankar S, Pandey A. Proteomic analysis of human osteoarthritis synovial fluid. Clin Proteomics 2014; 11:6. [PMID: 24533825 PMCID: PMC3942106 DOI: 10.1186/1559-0275-11-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/06/2014] [Indexed: 12/30/2022] Open
Abstract
Background Osteoarthritis is a chronic musculoskeletal disorder characterized mainly by progressive degradation of the hyaline cartilage. Patients with osteoarthritis often postpone seeking medical help, which results in the diagnosis being made at an advanced stage of cartilage destruction. Sustained efforts are needed to identify specific markers that might help in early diagnosis, monitoring disease progression and in improving therapeutic outcomes. We employed a multipronged proteomic approach, which included multiple fractionation strategies followed by high resolution mass spectrometry analysis to explore the proteome of synovial fluid obtained from osteoarthritis patients. In addition to the total proteome, we also enriched glycoproteins from synovial fluid using lectin affinity chromatography. Results We identified 677 proteins from synovial fluid of patients with osteoarthritis of which 545 proteins have not been previously reported. These novel proteins included ADAM-like decysin 1 (ADAMDEC1), alanyl (membrane) aminopeptidase (ANPEP), CD84, fibulin 1 (FBLN1), matrix remodelling associated 5 (MXRA5), secreted phosphoprotein 2 (SPP2) and spondin 2 (SPON2). We identified 300 proteins using lectin affinity chromatography, including the glycoproteins afamin (AFM), attractin (ATRN), fibrillin 1 (FBN1), transferrin (TF), tissue inhibitor of metalloproteinase 1 (TIMP1) and vasorin (VSN). Gene ontology analysis confirmed that a majority of the identified proteins were extracellular and are mostly involved in cell communication and signaling. We also confirmed the expression of ANPEP, dickkopf WNT signaling pathway inhibitor 3 (DKK3) and osteoglycin (OGN) by multiple reaction monitoring (MRM) analysis of osteoarthritis synovial fluid samples. Conclusions We present an in-depth analysis of the synovial fluid proteome from patients with osteoarthritis. We believe that the catalog of proteins generated in this study will further enhance our knowledge regarding the pathophysiology of osteoarthritis and should assist in identifying better biomarkers for early diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Subramanian Shankar
- Department of Internal Medicine, Armed Forces Medical College, Pune, Maharashtra 411040, India.
| | | |
Collapse
|
28
|
Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BONEKEY REPORTS 2014; 3:481. [PMID: 24466412 DOI: 10.1038/bonekey.2013.215] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/27/2013] [Indexed: 02/07/2023]
Abstract
Coupling between bone formation and bone resorption refers to the process within basic multicellular units in which resorption by osteoclasts is met by the generation of osteoblasts from precursors, and their bone-forming activity, which needs to be sufficient to replace the bone lost. There are many sources of activities that contribute to coupling at remodeling sites, including growth factors released from the matrix, soluble and membrane products of osteoclasts and their precursors, signals from osteocytes and from immune cells and signaling taking place within the osteoblast lineage. Coupling is therefore a process that involves the interaction of a wide range of cell types and control mechanisms. As bone remodeling occurs at many sites asynchronously throughout the skeleton, locally generated activities comprise very important control mechanisms. In this review, we explore the potential roles of a number of these factors, including sphingosine-1-phosphate, semaphorins, ephrins, interleukin-6 (IL-6) family cytokines and marrow-derived factors. Their interactions achieve the essential tight control of coupling within individual remodeling units that is required for control of skeletal mass.
Collapse
|
29
|
Henriksen K, Karsdal MA, Martin TJ. Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int 2014; 94:88-97. [PMID: 23700149 DOI: 10.1007/s00223-013-9741-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/28/2013] [Indexed: 12/15/2022]
Abstract
In the bone remodeling process that takes place throughout the skeleton at bone multicellular units, intercellular communication processes are crucial. The osteoblast lineage has long been known to program osteoclast formation and hence resorption, but the preservation of bone mass and integrity requires tight control of remodeling. This needs local controls that ensure availability of mesenchymal precursors and the provision of local signals that promote differentiation through the osteoblast lineage. Some signals can come from growth factors released from resorbed bone matrix, and there is increasing evidence that the osteoclast lineage itself produces factors that can either enhance or inhibit osteoblast differentiation and hence bone formation. A number of such factors have been identified from predominantly in vitro experiments. The coupling of bone formation to resorption is increasingly recognized as a complex, dynamic process that results from the input of many local factors of cell and matrix origin that can either promote or inhibit bone formation.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience Biomarkers and Research, 2730, Herlev, Denmark
| | | | | |
Collapse
|
30
|
Kim BJ, Lee YS, Lee SY, Park SY, Dieplinger H, Yea K, Lee SH, Koh JM, Kim GS. Afamin stimulates osteoclastogenesis and bone resorption via Gi-coupled receptor and Ca2+/calmodulin-dependent protein kinase (CaMK) pathways. J Endocrinol Invest 2013; 36:876-82. [PMID: 23698732 DOI: 10.3275/8975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Afamin was recently identified as a novel osteoclast-derived coupling factor that can stimulate the in vitro and in vivo migration of preosteoblasts. AIM In order to understand in more detail the biological roles of afamin in bone metabolism, we investigated its effects on osteoclastic differentiation and bone resorption. METHODS Osteoclasts were differentiated from mouse bone marrow cells. Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were considered as osteoclasts, and the resorption area was determined by incubating the cells on dentine discs. The intracellular cAMP level was determined using a direct enzyme immunoassay. Signaling pathways were investigated using western blot and RT-PCR. Recombinant afamin was administered exogenously to bone cell cultures. RESULTS Afamin stimulated both osteoclastogenesis and in vitro bone resorption. Consistently, the expressions of osteoclast differentiation markers were significantly increased by afamin. Although afamin mainly affected the late-differentiation stages of osteoclastogenesis, the expression levels of receptor activator of nuclear factor-κB ligand (RANKL)-dependent signals were not changed. Afamin markedly decreased the levels of intracellular cAMP with reversal by pretreatment with pertussis toxin (PTX), a specific inhibitor of Gi-coupled receptor signaling. In addition, PTX almost completely blocked afamin-stimulated osteoclastogenesis. Furthermore, pretreatment with KN93 and STO609 - Ca2+/cal - mo dulin-dependent protein kinase (CaMK) and CaMK kinase inhibitors, respectively - significantly prevented decreases in the intracellular cAMP level by afamin while attenuating afamin-stimulated osteoclastogenesis. CONCLUSION Afamin enhances osteoclastogenesis by decreasing intracellular cAMP levels via Gi-coupled receptor and CaMK pathways.
Collapse
Affiliation(s)
- B J Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap2- Dong, Songpa-Gu, Seoul 138-736, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|