1
|
Cunningham HC, Orr S, Murugesh DK, Hsia AW, Osipov B, Go L, Wu PH, Wong A, Loots GG, Kazakia GJ, Christiansen BA. Differential bone adaptation to mechanical unloading and reloading in young, old, and osteocyte deficient mice. Bone 2023; 167:116646. [PMID: 36529445 PMCID: PMC10077944 DOI: 10.1016/j.bone.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mechanical unloading causes rapid loss of bone structure and strength, which gradually recovers after resuming normal loading. However, it is not well established how this adaptation to unloading and reloading changes with age. Clinically, elderly patients are more prone to musculoskeletal injury and longer periods of bedrest, therefore it is important to understand how periods of disuse will affect overall skeletal health of aged subjects. Bone also undergoes an age-related decrease in osteocyte density, which may impair mechanoresponsiveness. In this study, we examined bone adaptation during unloading and subsequent reloading in mice. Specifically, we examined the differences in bone adaptation between young mice (3-month-old), old mice (18-month-old), and transgenic mice that exhibit diminished osteocyte density at a young age (3-month-old BCL-2 transgenic mice). Mice underwent 14 days of hindlimb unloading followed by up to 14 days of reloading. We analyzed trabecular and cortical bone structure in the femur, mechanical properties of the femoral cortical diaphysis, osteocyte density and cell death in cortical bone, and serum levels of inflammatory cytokines. We found that young mice lost ~10% cortical bone volume and 27-42% trabecular bone volume during unloading and early reloading, with modest recovery of metaphyseal trabecular bone and near total recovery of epiphyseal trabecular bone, but no recovery of cortical bone after 14 days of reloading. Old mice lost 12-14% cortical bone volume and 35-50% trabecular bone volume during unloading and early reloading but had diminished recovery of trabecular bone during reloading and no recovery of cortical bone. In BCL-2 transgenic mice, no cortical bone loss was observed during unloading or reloading, but 28-31% trabecular bone loss occurred during unloading and early reloading, with little to no recovery during reloading. No significant differences in circulating inflammatory cytokine levels were observed due to unloading and reloading in any of the experimental groups. These results illustrate important differences in bone adaptation in older and osteocyte deficient mice, suggesting a possible period of vulnerability in skeletal health in older subjects during and following a period of disuse that may affect skeletal health in elderly patients.
Collapse
Affiliation(s)
- Hailey C Cunningham
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America
| | - Sophie Orr
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America
| | - Deepa K Murugesh
- Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, United States of America
| | - Allison W Hsia
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America
| | - Benjamin Osipov
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America
| | - Lauren Go
- University of California San Francisco, Department of Radiology & Biomedical Imaging, 185 Berry Street, Bldg B, San Francisco, CA 94158, United States of America
| | - Po Hung Wu
- University of California San Francisco, Department of Radiology & Biomedical Imaging, 185 Berry Street, Bldg B, San Francisco, CA 94158, United States of America
| | - Alice Wong
- University of California Davis, School of Veterinary Medicine, 1285 Veterinary Medicine Dr, Bldg VM3A, Rm 4206, Davis, CA 95616, United States of America
| | - Gabriela G Loots
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America; Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, United States of America
| | - Galateia J Kazakia
- University of California San Francisco, Department of Radiology & Biomedical Imaging, 185 Berry Street, Bldg B, San Francisco, CA 94158, United States of America
| | - Blaine A Christiansen
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America.
| |
Collapse
|
2
|
Wadiura LI, Butylina M, Reinprecht A, Aretin MB, Mischkulnig M, Gleiss A, Pietschmann P, Kerschan-Schindl K. Denosumab for Prevention of Acute Onset Immobilization-Induced Alterations of Bone Turnover: A Randomized Controlled Trial. J Bone Miner Res 2022; 37:2156-2164. [PMID: 36056473 PMCID: PMC10086960 DOI: 10.1002/jbmr.4694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022]
Abstract
Metabolic bone disease is a devastating condition in critically ill patients admitted to an intensive care unit (ICU). We investigated the effects of early administration of the antiresorptive drug denosumab on bone metabolism in previously healthy patients. Fourteen patients with severe intracerebral or subarachnoid hemorrhage were included in a phase 2 trial. Within 72 hours after ICU admission, they were randomized in a 1:1 ratio to receive denosumab 60 mg or placebo subcutaneously. The primary endpoint was group differences in the percentage change of C-terminal telopeptide of type 1 collagen (CTX-1) levels in serum from denosumab/placebo application to 4 weeks thereafter. Changes in serum levels of bone formation markers and urinary calcium excretion were secondary outcome parameters. Regarding serum levels of CTX-1, changes over time averaged -0.45 ng/mL (95% confidence interval [CI] -0.72, -0.18) for the denosumab group and 0.29 ng/mL (95% CI -0.01, 0.58) for the placebo group. The primary endpoint, the group difference in changes between baseline and secondary measurement, adjusted for baseline serum levels and baseline neurological status, averaged -0.74 ng/mL (95% CI -1.14, -0.34; p = 0.002). The group difference in changes between baseline and secondary osteocalcin measurement averaged -5.60 ng/mL (95% CI -11.2, -0.04; p = 0.049). The group difference in averaged change between baseline and secondary measurement of 24-hour urine calcium excretion was significant (-1.77 mmol/L [95% CI -3.48, -0.06; p = 0.044]). No adverse events could be attributed to the study medication. The investigation proved that a single application of denosumab early after admission to an ICU prevents acute immobilization-associated increase in bone resorption among previously healthy individuals. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Irina Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Maria Butylina
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | | | - Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Knurr KA, Kliethermes SA, Haack CR, Olson JS, Binkley NC, Scerpella TA, Heiderscheit BC. Changes in Bone Mineral Density of the Femur and Tibia Before Injury to 2 Years After Anterior Cruciate Ligament Reconstruction in Division I Collegiate Athletes. Am J Sports Med 2022; 50:2410-2416. [PMID: 35647798 PMCID: PMC9703853 DOI: 10.1177/03635465221099456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a significant long term concern after anterior cruciate ligament (ACL) reconstruction (ACLR). A low bone mineral density (BMD), particularly in the subchondral region, has been associated with the development of OA and is evident at the knee in patients long after ACLR. It is unknown if persistent BMD deficits are present in high level collegiate athletes. PURPOSE/HYPOTHESIS The purpose of this study was to evaluate bilateral changes in the BMD of the femur and tibia from before the injury to 24 months after ACLR in collegiate athletes. We hypothesized that the BMD of both the distal femur and the proximal tibia would be significantly reduced within the surgical limb initially postoperatively but return to preinjury levels by 24 months after ACLR. STUDY DESIGN Cohort study; Level of evidence, 2. METHODS A total of 33 Division I collegiate athletes were identified between 2010 and 2021 (13 female) who underwent total body dual-energy X-ray absorptiometry (DXA) before sustaining an ACL injury. DXA was repeated at 6, 12, and 24 months after ACLR. Linear mixed effects models assessed differences in the BMD at 5%, 15%, and 50% of the femur's length (F5, F15, F50) and at 5%, 15%, and 50% of the tibia's length (T5, T15, T50) within each limb from before the injury to 24 months after ACLR, reported as Tukey-adjusted P values. RESULTS Compared with before the injury, the BMD at F5 of the surgical limb was reduced by 0.15 g/cm2 (SE, 0.02 g/cm2) at 6 months (P < .001). The BMD at F15 of the surgical limb was reduced by 0.06 g/cm2 (SE, 0.01 g/cm2), 0.09 g/cm2 (SE, 0.01 g/cm2), and 0.09 g/cm2 (SE, 0.01 g/cm2) at 6, 12, and 24 months, respectively (all P < .001). The BMD at T5 of the nonsurgical limb was reduced by 0.07 g/cm2 (SE, 0.02 g/cm2) at 12 months (P = .02) and 0.10 g/cm2 (SE, 0.02 g/cm2) at 24 months (P = .001). The BMD at T15 of the surgical limb was reduced by 0.07 g/cm2 (SE, 0.01 g/cm2) at 6 months and 0.08 g/cm2 (SE, 0.02 g/cm2) at 12 months (P < .001). CONCLUSION BMD deficits at F15 of the surgical limb persisted out to 24 months (-7.1%) after ACLR compared with before the injury in collegiate athletes. The BMD at F5 and T15 of the surgical limb was reduced at 6 and 12 months but not at 24 months compared with preinjury levels. For the nonsurgical limb, no significant differences were detected, except for the T5 region at 12 months (-5.1%) and 24 months (-7.2%). The BMD at F50 and T50 of both limbs was not significantly different than preinjury levels at any time after ACLR.
Collapse
Affiliation(s)
- Keith A Knurr
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA,Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie A Kliethermes
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA,Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Colten R Haack
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin S Olson
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil C Binkley
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA,University of Wisconsin Osteoporosis Clinical Research Program, Madison, WI, USA
| | - Tamara A Scerpella
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA,Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Bryan C Heiderscheit
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA,Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Mantri AV, Allaway HCM, Brezicha JE, Hogan HA, Bloomfield SA. Oral Estradiol Impact on Mitigating Unloading-Induced Bone Loss in Ovary-Intact Rats. Aerosp Med Hum Perform 2021; 92:65-74. [PMID: 33468286 DOI: 10.3357/amhp.5668.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: The impact of the spaceflight environment on endogenous estrogen production in female crewmembers and the resulting impact on other adaptations, like bone loss, is an under-investigated topic. Hence, we investigated the interaction of exogenous 17- estradiol (E2) treatment and disuse to test the hypothesis that E2 treatment would mitigate disuse-induced bone loss.METHODS: There were 40 virgin female Sprague-Dawley rats (5 mo old) randomized to placebo (PL; 0 ppm E2) or estrogen (E2; 10 ppm E2) treatments, delivered via custom-made rodent diets; half of each group was randomized to either weightbearing (WB) or hindlimb unloading (HU) for 39 d.RESULTS: We observed expected lower values after HU (615%) in volumetric BMD and cross-sectional areas at the proximal tibia metaphysis (PTM, by pQCT), 20% lower %BV/TV (nonsignificant) at the PTM, and 11% lower femoral neck maximal load; none of these HU-induced impacts were modified by E2. Impaired PTM periosteal expansion was observed in all E2-treated rats, with smaller (13 to 18%) cross-sectional areas. Midshaft tibial geometry was unaffected by E2 treatment, but large reductions (73 to 81%) in periosteal bone formation indices were observed in E2-treated rats.DISCUSSION: In summary, modest supplementation of exogenous E2 did not mitigate decrements in volumetric BMD, PTM cross-sectional geometry, or femoral neck strength observed with HU. However, numerous independent impacts of E2 treatment were observed, with significant suppression of periosteal bone formation indices. If maintained over time, this might impact negatively on cortical bone integrity during prolonged nonweightbearing.Mantri AV, Allaway HCM, Brezicha JE, Hogan HA, Bloomfield SA. Oral estradiol impact on mitigating unloading-induced bone loss in ovary-intact rats. Aerosp Med Hum Perform. 2021; 92(2):6574.
Collapse
|
5
|
Takemura A, Pajevic PD, Egawa T, Teshigawara R, Hayashi T, Ishihara A. Effects of mild hyperbaric oxygen on osteoporosis induced by hindlimb unloading in rats. J Bone Miner Metab 2020; 38:631-638. [PMID: 32350615 DOI: 10.1007/s00774-020-01100-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Disuse-induced bone loss is caused by a suppression of osteoblastic bone formation and an increase in osteoclastic bone resorption. There are few data available for the effects of environmental conditions, i.e., atmospheric pressure and/or oxygen concentration, on osteoporosis. This study examined the effects of mild hyperbaric oxygen at 1317 hPa with 40% oxygen on unloading-induced osteoporosis. MATERIALS AND METHODS Eighteen 8-week old male Wistar rats were randomly divided into three groups: the control for 21 days without unloading and mild hyperbaric oxygen (NOR, n = 6), the unloading for 21 days and recovery for 10 days without mild hyperbaric oxygen (HU + NOR, n = 6), and the unloading for 21 days and recovery for 10 days with mild hyperbaric oxygen (HU + MHO, n = 6). RESULTS The cortical thickness and trabecular bone surface area were decreased in the HU + NOR group compared to the NOR group. There were no differences between the NOR and HU + MHO groups. Osteoclast surface area and Sclerostin (Sost) mRNA expression levels were decreased in the HU + MHO group compared to the HU + NOR group. These results suggested that the loss of the cortical and trabecular bone is inhibited by mild hyperbaric oxygen, because of an inhibition of osteoclasts and enhancement of bone formation with decreased Sost expression. CONCLUSIONS We conclude that exposure to mild hyperbaric oxygen partially protects from the osteoporosis induced by hindlimb unloading.
Collapse
Affiliation(s)
- Ai Takemura
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
- Department of Sports Research, Japan Institute of Sport Sciences, Tokyo, 115-0056, Japan.
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University Goldman School of Dental Medicine, Boston, MA, 02118, USA
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Rika Teshigawara
- Laboratory of Developmental Epigenome, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Dose-dependent skeletal deficits due to varied reductions in mechanical loading in rats. NPJ Microgravity 2020; 6:15. [PMID: 32435691 PMCID: PMC7235020 DOI: 10.1038/s41526-020-0105-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
Reduced skeletal loading leads to marked bone loss. Animal models of hindlimb suspension are widely used to assess alterations in skeleton during the course of complete unloading. More recently, the effects of partial unloading on the musculoskeletal system have been interrogated in mice and rats, revealing dose-dependent effects of partial weight bearing (PWB) on the skeleton and skeletal muscle. Here, we extended these studies to determine the structural and functional skeletal alterations in 14-week-old male Wister rats exposed to 20%, 40%, 70%, or 100% of body weight for 1, 2, or 4 weeks (n = 11-12/group). Using in vivo pQCT, we found that trabecular bone density at the proximal tibia declined in proportion to the degree of unloading and continued progressively with time, without evidence of a plateau by 4 weeks. Ex vivo measurements of trabecular microarchitecture in the distal femur by microcomputed tomography revealed deficits in bone volume fraction, 2 and 4 weeks after unloading. Histologic analyses of trabecular bone in the distal femur revealed the decreased osteoblast number and mineralizing surface in unloaded rats. Three-point bending of the femoral diaphysis indicated modest or no reductions in femoral stiffness and estimated modulus due to PWB. Our results suggest that this rat model of PWB leads to trabecular bone deterioration that is progressive and generally proportional to the degree of PWB, with minimal effects on cortical bone.
Collapse
|
7
|
Oxytocin and bone quality in the femoral neck of rats in periestropause. Sci Rep 2020; 10:7937. [PMID: 32404873 PMCID: PMC7220952 DOI: 10.1038/s41598-020-64683-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
The objective of this study is to identify whether oxytocin (OT) contributes to the reduction of osteopenia in the femoral neck of rats in periestropause. Animals in irregular estrous cycles received two NaCl injections (0.15 mol/L) or OT (134 μg/kg) over a 12-h interval, and after thirty-five days without treatments, the biological sample collection was performed. The oxytocin group (Ot) demonstrated the highest enzymatic activity of alkaline phosphatase (p = 0.0138), lowest enzymatic activity of tartrate-resistant acid phosphatase (p = 0.0045), higher percentage of compact bone (p = 0.0359), cortical expression of runt-related transcription factor 2 (p = 0.0101), osterix (p = 0.0101), bone morphogenetic protein-2/4 (p = 0.0101) and periostin (p = 0.0455). Furthermore, the mineral-to-matrix ratio (ν1PO4/Proline) was higher and type-B carbonate substitution (CO3/ν1PO4) was lower (p = 0.0008 and 0.0303) in Ot group. The Ot showed higher areal bone mineral density (p = 0.0050), cortical bone area (p = 0.0416), polar moment of inertia, maximum, minimum (p = 0.0480, 0.0480, 0.0035), bone volume fraction (p = 0.0166), connectivity density (p < 0.0001), maximal load (p = 0.0003) and bone stiffness (p = 0.0145). In Ot percentage of cortical pores (p = 0.0102) and trabecular number (p = 0.0088) was lower. The results evidence action of OT in the reduction of osteopenia, suggesting that it is a promising anabolic strategy for the prevention of primary osteoporosis during the periestropause period.
Collapse
|
8
|
Shimkus KL, Shirazi-Fard Y, Wiggs MP, Ullah ST, Pohlenz C, Gatlin DM, Carroll CC, Hogan HA, Fluckey JD. Responses of skeletal muscle size and anabolism are reproducible with multiple periods of unloading/reloading. J Appl Physiol (1985) 2018; 125:1456-1467. [PMID: 30091665 DOI: 10.1152/japplphysiol.00736.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical unloading has long been understood to contribute to rapid and substantial adaptations within skeletal muscle, most notably, muscle atrophy. Studies have often demonstrated that many of the alterations resulting from disuse are reversed with a reintroduction of load and have supported the concept of muscle plasticity. We hypothesized that adaptations during disuse and recovery were a repeatable/reproducible phenomenon, which we tested with repeated changes in mechanical load. Rats were assigned to one of the following five groups: animals undergoing one or two bouts of hindlimb unloading (28 days), with or without recovery (56 day), or control. Following the completion of their final time point, posterior crural muscles were studied. Muscle sizes were lower following 28 days of disuse but fully recovered with a 56-day reloading period, regardless of the number of disuse/recovery cycles. Mixed protein fractional synthesis rates consistently reflected mass and loading conditions (supported by anabolic signaling), whereas the myofibrillar protein synthesis response varied among muscles. Amino acid concentrations were assessed in the gastrocnemius free pool and did not correlate with muscle atrophy associated with mechanical unloading. Muscle collagen concentrations were higher following the second unloading period and remained elevated following 56 days of recovery. Anabolic responses to alterations in load are preserved throughout multiple perturbations, but repeated periods of unloading may cause additive strain to muscle structure (collagen). This study suggests that whereas mass and anabolism are reproducibly reflective of the loading environment, repeated exposure to unloading and/or reloading may impact the overall structural integrity of muscle. NEW & NOTEWORTHY Repeatability should be considered a component of skeletal muscle plasticity during atrophy and recovery. Muscle anabolism is equally affected during a first or second disuse bout and returns equally with adequate recovery. Elevated muscle collagen concentrations observed after the second unloading period suggest altered structural integrity with repeated disuse.
Collapse
Affiliation(s)
- Kevin L Shimkus
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | - Yasaman Shirazi-Fard
- Department of Mechanical Engineering, Texas A&M University , College Station, Texas
| | - Michael P Wiggs
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | - Shaik T Ullah
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | - Camilo Pohlenz
- Department of Wildlife and Fisheries, Texas A&M University , College Station, Texas
| | - Delbert M Gatlin
- Department of Wildlife and Fisheries, Texas A&M University , College Station, Texas
| | - Chad C Carroll
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Harry A Hogan
- Department of Mechanical Engineering, Texas A&M University , College Station, Texas
| | - James D Fluckey
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| |
Collapse
|
9
|
Baltina T, Sachenkov O, Gerasimov O, Baltin M, Fedyanin A, Lavrov I. The Influence of Hindlimb Unloading on the Bone Tissue’s Structure. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0551-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Cunningham HC, West DWD, Baehr LM, Tarke FD, Baar K, Bodine SC, Christiansen BA. Age-dependent bone loss and recovery during hindlimb unloading and subsequent reloading in rats. BMC Musculoskelet Disord 2018; 19:223. [PMID: 30021585 PMCID: PMC6052521 DOI: 10.1186/s12891-018-2156-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 06/25/2018] [Indexed: 12/02/2022] Open
Abstract
Background Bone structure and strength are rapidly lost during conditions of decreased mechanical loading, and aged bones have a diminished ability to adapt to increased mechanical loading. This is a concern for older patients that experience periods of limited mobility or bed rest, but the acute effects of disuse on the bones of aged patients have not been thoroughly described. Previous animal studies have primarily examined the effect of mechanical unloading on young animals. Those that have studied aged animals have exclusively focused on bone loss during unloading and not bone recovery during subsequent reloading. In this study, we investigated the effect of decreased mechanical loading and subsequent reloading on bone using a hindlimb unloading model in Adult (9 month old) and Aged (28 month old) male rats. Methods Animals from both age groups were subjected to 14 days of hindlimb unloading followed by up to 7 days of reloading. Additional Aged rats were subjected to 7 days of forced treadmill exercise during reloading or a total of 28 days of reloading. Trabecular and cortical bone structure of the femur were quantified using ex vivo micro-computed tomography (μCT), and mechanical properties were quantified with mechanical testing. Results We found that Adult rats had substantially decreased trabecular bone volume fraction (BV/TV) following unloading (− 27%) while Aged animals did not exhibit significant bone loss following unloading. However, Aged animals had lower trabecular BV/TV after 3 days of reloading (− 20% compared to baseline), while trabecular BV/TV of Adult rats was not different from baseline values after 3 days of reloading. Trabecular BV/TV of Aged animals remained lower than control animals even with exercise during 7 days of reloading and after 28 days of reloading. Conclusions These data suggest that aged bone is less responsive to both increased and decreased mechanical loading, and that acute periods of disuse may leave older subjects with a long-term deficit in trabecular bone mass. These finding indicate the need for therapeutic strategies to improve the skeletal health of elderly patients during periods of disuse.
Collapse
Affiliation(s)
- Hailey C Cunningham
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA
| | - Daniel W D West
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Leslie M Baehr
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| | - Franklin D Tarke
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Avenue, Suite 2000, Sacramento, CA, 95817, USA
| | - Keith Baar
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA.,Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA.,Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA, USA
| | - Sue C Bodine
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA.,Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA, USA
| | - Blaine A Christiansen
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA. .,Department of Orthopaedic Surgery, University of California Davis Medical Center, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Avenue, Suite 2000, Sacramento, CA, 95817, USA.
| |
Collapse
|
11
|
Peres-Ueno MJ, Stringhetta-Garcia CT, Castoldi RC, Ozaki GAT, Chaves-Neto AH, Dornelles RCM, Louzada MJQ. Model of hindlimb unloading in adult female rats: Characterizing bone physicochemical, microstructural, and biomechanical properties. PLoS One 2017; 12:e0189121. [PMID: 29228060 PMCID: PMC5724829 DOI: 10.1371/journal.pone.0189121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Prolonged bedrest and microgravity induce alterations to bone, leading to bone fragility and compromising the quality of life. In this study, we characterized the physicochemical changes, microstructure, and biomechanics of the femurs of female adult rats in response to hindlimb unloading for 21 days. Twenty 6-month-old Wistar female rats were distributed into control (CON) and hindlimb unloading (HLU) groups. Analysis the in vivo bone mineral density (BMD) by dual energy x-ray absorptiometry (DXA) from the femurs was performed at the beginning and end of the experiment; plasma levels of calcium, phosphorus, and alkaline phosphatase, tartrate-resistant acid phosphatase activity, assessed by spectrophotometry, and estradiol, measured by enzyme-linked immunosorbent assay, was performed after the experiment. We evaluated changes in the trabecular and cortical structure of the femur, after disuse, by micro-computed tomography with high resolution, for analysis of cortical porosity, Raman spectroscopy to measure the amount of physicochemical properties, and the biomechanical test to estimate the changes in biomechanical properties. Our results demonstrated that, after 21 days, HLU animals had decreased femoral BMD, deteriorated bone microarchitecture, particularly in the cortical compartment, with changes in the physicochemical properties and porosity, and reduced deformation capacity of the bone and resistance to the bone stresses. Nevertheless, this study showed the critical role of mechanical stimulation in maintaining the structure of the skeleton in female adults and that disuse, even for a few days, leads to microscopic changes in the structure of the bone matrix, which increases the risk of fracture.
Collapse
Affiliation(s)
- Melise Jacon Peres-Ueno
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- * E-mail:
| | - Camila Tami Stringhetta-Garcia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Robson Chacon Castoldi
- Department of Orthopedics and Traumatology, Faculty of Medical Sciences, UNICAMP-Univ. Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Guilherme Akio Tamura Ozaki
- Department of Orthopedics and Traumatology, Faculty of Medical Sciences, UNICAMP-Univ. Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Rita Cássia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Mário Jefferson Quirino Louzada
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
12
|
|
13
|
Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, Schaffler MB. Osteocyte Apoptosis Caused by Hindlimb Unloading is Required to Trigger Osteocyte RANKL Production and Subsequent Resorption of Cortical and Trabecular Bone in Mice Femurs. J Bone Miner Res 2016; 31:1356-65. [PMID: 26852281 PMCID: PMC5488280 DOI: 10.1002/jbmr.2807] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
Osteocyte apoptosis is essential to activate bone remodeling in response to fatigue microdamage and estrogen withdrawal, such that apoptosis inhibition in vivo prevents the onset of osteoclastic resorption. Osteocyte apoptosis has also been spatially linked to bone resorption owing to disuse, but whether apoptosis plays a similar controlling role is unclear. We, therefore, 1) evaluated the spatial and temporal effects of disuse from hindlimb unloading (HLU) on osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression, bone resorption, and loss in mouse femora, and 2) tested whether osteocyte apoptosis was required to activate osteoclastic activity in cortical and trabecular bone by treating animals subjected to HLU with the pan-caspase apoptosis inhibitor, QVD (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methylketone). Immunohistochemistry was used to identify apoptotic and RANKL-producing osteocytes in femoral diaphysis and distal trabecular bone, and µCT was used to determine the extent of trabecular bone loss owing to HLU. In both cortical and trabecular bone, 5 days of HLU increased osteocyte apoptosis significantly (3- and 4-fold, respectively, p < 0.05 versus Ctrl). At day 14, the apoptotic osteocyte number in femoral cortices declined to near control levels but remained elevated in trabeculae (3-fold versus Ctrl, p < 0.05). The number of osteocytes producing RANKL in both bone compartments was also significantly increased at day 5 of HLU (>1.5-fold versus Ctrl, p < 0.05) and further increased by day 14. Increases in osteocyte apoptosis and RANKL production preceded increases in bone resorption at both endocortical and trabecular surfaces. QVD completely inhibited not only the HLU-triggered increases in osteocyte apoptosis but also RANKL production and activation of bone resorption at both sites. Finally, µCT studies revealed that apoptosis inhibition completely prevented the trabecular bone loss caused by HLU. Together these data indicate that osteocyte apoptosis plays a central and controlling role in triggering osteocyte RANKL production and the activation of new resorption leading to bone loss in disuse. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Dorra Frikha-Benayed
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Robert J Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Alyssa Tuthill
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| |
Collapse
|
14
|
Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity Stress: Bone and Connective Tissue. Compr Physiol 2016; 6:645-86. [PMID: 27065165 DOI: 10.1002/cphy.c130027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions.
Collapse
Affiliation(s)
- Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Daniel A Martinez
- Department of Mechanical Engineering, University of Houston, Houston, Texas, USA
| | - Ramon D Boudreaux
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Anita V Mantri
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA.,Health Science Center School of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Berg-Johansen B, Liebenberg EC, Li A, Macias BR, Hargens AR, Lotz JC. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments. J Orthop Res 2016; 34:48-57. [PMID: 26285046 PMCID: PMC5477841 DOI: 10.1002/jor.23029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/05/2015] [Indexed: 02/04/2023]
Abstract
Intervertebral disc herniation rates are quadrupled in astronauts following spaceflight. While bending motions are main contributors to herniation, the effects of microgravity on the bending properties of spinal discs are unknown. Consequently, the goal of this study was to quantify the bending properties of tail discs from mice with or without microgravity exposure. Caudal motion segments from six mice returned from a 30-day Bion M1 mission and eight vivarium controls were loaded to failure in four-point bending. After testing, specimens were processed using histology to determine the location of failure, and adjacent motion segments were scanned with micro-computed tomography (μCT) to quantify bone properties. We observed that spaceflight significantly shortened the nonlinear toe region of the force-displacement curve by 32% and reduced the bending strength by 17%. Flight mouse spinal segments tended to fail within the growth plate and epiphyseal bone, while controls tended to fail at the disc-vertebra junction. Spaceflight significantly reduced vertebral bone volume fraction, bone mineral density, and trabecular thickness, which may explain the tendency of flight specimens to fail within the epiphyseal bone. Together, these results indicate that vertebral bone loss during spaceflight may degrade spine bending properties and contribute to increased disc herniation risk in astronauts.
Collapse
Affiliation(s)
| | | | - Alfred Li
- University of California, San Francisco, California
| | | | | | | |
Collapse
|
16
|
MANSKE SARAHL, VIJAYARAGHAVAN SURABHI, TUTHILL ALYSSA, BRUTUS OLIVIER, YANG JIE, GUPTA SHIKHA, JUDEX STEFAN. Extending Rest between Unloading Cycles Does Not Enhance Bone’s Long-Term Recovery. Med Sci Sports Exerc 2015; 47:2191-200. [DOI: 10.1249/mss.0000000000000636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Abstract
There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.
Collapse
Affiliation(s)
- Keith G. Avin
- Center for Translational Musculoskeletal Research and Department of Physical Therapy, School of the Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, USA,
| | - Susan A. Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA,
| | - Ted S. Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA,
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research and Department of Physical Therapy, School of the Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, USA
| |
Collapse
|
18
|
Ozcivici E, Judex S. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology. Bone 2014; 67:122-9. [PMID: 24857858 DOI: 10.1016/j.bone.2014.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Upon returning to normal ambulatory activities, the recovery of trabecular bone lost during unloading is limited. Here, using a mouse population that displayed a large range of skeletal susceptibility to unloading and reambulation, we tested the impact of changes in trabecular bone morphology during unloading and reambulation on its simulated mechanical properties. Female adult mice from a double cross of BALB/cByJ and C3H/HeJ strains (n=352) underwent 3wk of hindlimb unloading followed by 3wk of reambulation. Normally ambulating mice served as controls (n=30). As quantified longitudinally by in vivo μCT, unloading led to an average loss of 43% of trabecular bone volume fraction (BV/TV) in the distal femur. Finite element models of the μCT tomographies showed that deterioration of the trabecular structure raised trabecular peak Von-Mises (PVM) stresses on average by 27%, indicating a significant increase in the risk of mechanical failure compared to baseline. Further, skewness of the Von-Mises stress distributions (SVM) increased by 104% with unloading, indicating that the trabecular structure became inefficient in resisting the applied load. During reambulation, bone of experimental mice recovered on average only 10% of its lost BV/TV. Even though the addition of trabecular tissue was small during reambulation, PVM and SVM as indicators of risk of mechanical failure decreased by 56% and 57%, respectively. Large individual differences in the response of trabecular bone, together with a large sample size, facilitated stratification of experimental mice based on the level of recovery. As a fraction of all mice, 66% of the population showed some degree of recovery in BV/TV while in 89% and 87% of all mice, PVM and SVM decreased during reambulation, respectively. At the end of the reambulation phase, only 8% of the population recovered half of the unloading induced losses in BV/TV while 50% and 49% of the population recovered half of the unloading induced deterioration in PVM and SVM, respectively. The association between morphological and mechanical variables was strong at baseline but progressively decreased during the unloading and reambulation cycles. The preferential recovery of trabecular micromechanical properties over bone volume fraction emphasizes that mechanical demand during reambulation does not, at least initially, seek to restore bone's morphology but its mechanical integrity.
Collapse
Affiliation(s)
- Engin Ozcivici
- Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
19
|
Shirazi-Fard Y, Metzger CE, Kwaczala AT, Judex S, Bloomfield SA, Hogan HA. Moderate intensity resistive exercise improves metaphyseal cancellous bone recovery following an initial disuse period, but does not mitigate decrements during a subsequent disuse period in adult rats. Bone 2014; 66:296-305. [PMID: 24929241 DOI: 10.1016/j.bone.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/21/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Spaceflight provides a unique environment for skeletal tissue causing decrements in structural and densitometric properties of bone. Previously, we used the adult hindlimb unloaded (HU) rat model to show that previous exposure to HU had minimal effects on bone structure after a second HU exposure followed by recovery. Furthermore, we found that the decrements during second HU exposure were milder than the initial HU cycle. In this study, we used a moderate intensity resistance exercise protocol as an anabolic stimulus during recovery to test the hypothesis that resistance exercise following an exposure to HU will significantly enhance recovery of densitometric, structural, and, more importantly, mechanical properties of trabecular and cortical bone. We also hypothesized that resistance exercise during recovery, and prior to the second unloading period, will mitigate the losses during the second exposure. The hypothesis that exercise during recovery following hindlimb unloading will improve bone quality was supported by our data, as total BMC, total vBMD, and cancellous bone formation at the proximal tibia metaphysis increased significantly during exercise period, and total BMC/vBMD exceeded age-matched control and non-exercised values significantly by the end of recovery. However, our results did not support the hypothesis that resistance exercise prior to a subsequent unloading period will mitigate the detrimental effects of the second exposure, as the losses during the second exposure in total BMC, total vBMD, and cortical area at the proximal tibia metaphysis for the exercised animals were similar to those of the non-exercised group. Therefore, exercise did not mitigate effects of the second HU exposure in terms of pre-to-post HU changes in these variables, but it did produce beneficial effects in a broader sense.
Collapse
Affiliation(s)
- Yasaman Shirazi-Fard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Corinne E Metzger
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.
| | - Andrea T Kwaczala
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.
| | - Harry A Hogan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
20
|
A refined technique for sciatic denervation in a golden-mantled ground squirrel (Callospermophilus lateralis) model of disuse atrophy. Lab Anim (NY) 2014; 43:203-6. [DOI: 10.1038/laban.493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
|
21
|
Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine 2014; 45:165-77. [PMID: 23990248 DOI: 10.1007/s12020-013-0026-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/25/2013] [Indexed: 12/19/2022]
Abstract
Muscle and bone are anatomically and functionally closely connected. The traditional concept that skeletal muscles serve to load bone and transform skeletal segments into a system of levers has been further refined into the mechanostat theory, according to which striated muscle is essential for bone development and maintenance, modelling and remodelling. Besides biomechanical function, skeletal muscle and bone are endocrine organs able to secrete factors capable of modulating biological function within their microenvironment, in nearby tissues or in distant organs. The endocrine properties of muscle and bone may serve to sense and transduce biomechanical signals such as loading, unloading or exercise, or systemic hormonal stimuli into biochemical signals. Nonetheless, given the close anatomical relationship between skeletal muscle and bone, paracrine interactions particularly at the periosteal interface can be hypothesized. These mechanisms can assume particular importance during bone and muscle healing after musculoskeletal injury. Basic studies in vitro and in rodents have helped to dissect the multiple influences of skeletal muscle on bone and/or expression of inside-organ metabolism and have served to explain clinical observations linking muscle-to-bone quality. Recent evidences pinpoint that also bone tissue is able to modulate directly or indirectly skeletal muscle metabolism, thus empowering the crosstalk hypothesis to be further tested in humans in vivo.
Collapse
Affiliation(s)
- Luisella Cianferotti
- Unit of Bone and Mineral Metabolism, Department of Surgery and Translational Medicine, Section of Endocrinology and Metabolism, School of Human Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | | |
Collapse
|
22
|
Shirazi-Fard Y, Anthony RA, Kwaczala AT, Judex S, Bloomfield SA, Hogan HA. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats. Bone 2013; 56:461-73. [PMID: 23871849 DOI: 10.1016/j.bone.2013.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/16/2013] [Accepted: 07/04/2013] [Indexed: 11/29/2022]
Abstract
Extended periods of inactivity cause severe bone loss and concomitant deterioration of the musculoskeletal system. Considerable research has been aimed at better understanding the mechanisms and consequences of bone loss due to unloading and the associated effects on strength and fracture risk. One factor that has not been studied extensively but is of great interest, particularly for human spaceflight, is how multiple or repeated exposures to unloading and reloading affect the skeleton. Space agencies worldwide anticipate increased usage of repeat-flier crewmembers, and major thrust of research has focused on better understanding of microgravity effects on loss of bone density at weightbearing skeletal sites; however there is limited data available on repeat microgravity exposure. The adult hindlimb unloaded (HU) rat model was used to determine how an initial unloading cycle will affect a subsequent exposure to disuse and recovery thereafter. Animals underwent 28 days of HU starting at 6 months of age followed by 56 days of recovery, and then another 28 days of HU with 56 days of recovery. In vivo longitudinal pQCT was used to quantify bone morphological changes, and ex vivo μCT was used to quantify trabecular microarchitecture and cortical shell geometry at the proximal tibia metaphysis (PTM). The mechanical properties of trabecular bone were examined by the reduced platen compression mechanical test. The hypothesis that the initial HU exposure will mitigate decrements in bone mass and density for the second HU exposure was supported as pre- to post-HU declines in total BMC, total vBMD, and cortical area by in vivo pQCT at the proximal tibia metaphysis were milder for the second HU (and not significant) compared to an age-matched single HU (3% vs. 6%, 2% vs. 6%, and 2% vs. 6%, respectively). In contrast, the hypothesis was not supported at the microarchitectural level as losses in BV/TV and Tb.Th. were similar during 2nd HU exposure and age-matched single HU. Recovery with respect to post-HU values and compared to aging controls for total BMC, vBMD and cortical area were slower in older animals exposed to single or double HU cycles compared to recovery of younger animals exposed to a single HU bout. Despite milder recovery at the older age, there was no difference between unloaded animals and controls at the end of second recovery period. Therefore, the data did not support the hypothesis that two cycles of HU exposure with recovery would have a net negative effect. Mechanical properties of trabecular bone were affected more severely than densitometric measures (35% loss in trabecular bone ultimate stress vs. 9% loss in trabecular vBMD), which can be attributed most prominently to reductions in trabecular bone density and tissue mineral density. Together, our data demonstrate that initial exposure to mechanical unloading does not exacerbate bone loss during a subsequent unloading period and two cycles of unloading followed by recovery do not have a cumulative net negative effect on total bone mineral content and density as measured by pQCT at the proximal tibia metaphysis.
Collapse
Affiliation(s)
- Yasaman Shirazi-Fard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Bonewald LF, Kiel DP, Clemens TL, Esser K, Orwoll ES, O'Keefe RJ, Fielding RA. Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop. J Bone Miner Res 2013; 28:1857-65. [PMID: 23671010 PMCID: PMC3749267 DOI: 10.1002/jbmr.1980] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 12/15/2022]
Abstract
Annual costs are enormous for musculoskeletal diseases such as osteoporosis and sarcopenia and for bone and muscle injuries, costing billions annually in health care. Although it is clear that muscle and bone development, growth, and function are connected, and that muscle loads bone, little is known regarding cellular and molecular interactions between these two tissues. A conference supported by the National Institutes of Health (NIH) and the American Society for Bone and Mineral Research (ASBMR) was held in July 2012 to address the enormous burden of musculoskeletal disease. National and international experts in either bone or muscle presented their findings and their novel hypotheses regarding muscle-bone interactions to stimulate the exchange of ideas between these two fields. The immediate goal of the conference was to identify critical research themes that would lead to collaborative research interactions and grant applications focusing on interactions between muscle and bone. The ultimate goal of the meeting was to generate a better understanding of how these two tissues integrate and crosstalk in both health and disease to stimulate new therapeutic strategies to enhance and maintain musculoskeletal health.
Collapse
Affiliation(s)
- Lynda F Bonewald
- Department of Oral and Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | |
Collapse
|