1
|
Wu H, Huang J, Wu H, Xu W, Zhong Q, Song J, Linghu X, Gao B, Wa Q. Enhancement of in vitro and in vivo bone repair performance of decalcified bone/gelma by desferrioxamine. Sci Rep 2025; 15:14092. [PMID: 40269226 PMCID: PMC12019368 DOI: 10.1038/s41598-025-99101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Autologous and allogeneic bone grafting is currently the clinical gold standard for the treatment of bone defects; however, it is limited by the scarcity of autologous sources and the risk of secondary trauma, as well as the complications of disease transmission and immune rejection associated with allogeneic grafts. The clinical management of bone defects remains a significant challenge. In this study, we prepared a demineralized bone matrix/gelatin methacrylate composite hydrogel loaded with deferoxamine (GelMA/DBM/DFO) using a freeze-drying method and investigated its properties. Assessments using CCK-8, live-dead fluorescence staining, alkaline phosphatase staining, and Alizarin Red staining indicated that the GelMA/DBM/DFO composite hydrogel demonstrated superior biocompatibility and in vitro osteogenic differentiation capacity compared with the GelMA/DBM composite hydrogel. We established a cranial defect model in Sprague-Dawley (SD) rats and examined peripheral blood indices, micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) staining, Masson's trichrome staining, and immunohistochemical staining for bone morphogenetic protein-2 (BMP-2) and collagen type I (COL-1). Both hydrogels exhibited good biosafety and the GelMA/DBM/DFO hydrogel showed more effective repair of cranial defects in SD rats. This study provides a novel material for bone-defect repair.
Collapse
Affiliation(s)
- Honghan Wu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China
| | - Hengpeng Wu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Weikang Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China
| | - Qian Zhong
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Jiaxiang Song
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Xitao Linghu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China.
| | - Qingde Wa
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China.
| |
Collapse
|
2
|
Bonomi F, Limido E, Weinzierl A, Harder Y, Menger MD, Laschke MW. Preconditioning Strategies for Improving the Outcome of Fat Grafting. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:94-108. [PMID: 38818802 DOI: 10.1089/ten.teb.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Autologous fat grafting is a common procedure in plastic, reconstructive, and aesthetic surgery. However, it is frequently associated with an unpredictable resorption rate of the graft depending on the engraftment kinetics. This, in turn, is determined by the interaction of the grafted adipose tissue with the tissue at the recipient site. Accordingly, preconditioning strategies have been developed following the principle of exposing these tissues in the pretransplantation phase to stimuli inducing endogenous protective and regenerative cellular adaptations, such as the upregulation of stress-response genes or the release of cytokines and growth factors. As summarized in the present review, these stimuli include hypoxia, dietary restriction, local mechanical stress, heat, and exposure to fractional carbon dioxide laser. Preclinical studies show that they promote cell viability, adipogenesis, and angiogenesis, while reducing inflammation, fibrosis, and cyst formation, resulting in a higher survival rate and quality of fat grafts in different experimental settings. Hence, preconditioning represents a promising approach to improve the outcome of fat grafting in future clinical practice. For this purpose, it is necessary to establish standardized preconditioning protocols for specific clinical applications that are efficient, safe, and easy to implement into routine procedures.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Müller D, Klotsche J, Kosik MB, Perka C, Buttgereit F, Hoff P, Gaber T. Fracture Fusion on Fast-Forward: Locally Administered Deferoxamine Significantly Enhances Fracture Healing in Animal Models: A Systematic Review and Meta-Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413290. [PMID: 39840407 PMCID: PMC11848589 DOI: 10.1002/advs.202413290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Fractures, with a yearly incidence of 1.2%, can lead to healing complications in up to 10% of cases. The angiogenic stimulant deferoxamine (DFO) is recognized for enhancing bone healing when administered into the fracture gap. This systematic review with meta-analysis investigates the effect of local DFO application on bone healing in rat and mouse models. EMBASE, MEDLINE (PubMed), and Web of Science are systematically searched in January 2024. The study is prospectively registered in PROSPERO (CRD42024492533), and the SYRCLE tool is used to assess study quality and risk of bias. Outcome values contain the primary endpoint bone volume fraction (BV/TV) as well as the secondary endpoints bone volume, tissue volume, bone mineral density, trabecular separation, trabecular thickness, vessel formation and the mechanical properties, assessed by µCT, angiography and mechanical strength tests. Out of 21 included studies, 18 qualify for meta-analysis, involving 539 animals. DFO-treated groups exhibit significantly higher BV/TV values (p < 0.0001) compared to controls, with similarly significant improvements in secondary outcomes. These findings highlight the substantial benefit of DFO in promoting bone healing, especially after radiotherapy. Rapid clinical implementation is recommended to help patients at high risk of fracture healing complications.
Collapse
Affiliation(s)
- Daniel Müller
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Jens Klotsche
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| | - Magdalena B. Kosik
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
| | - Carsten Perka
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinCharitéCenter for Orthopedics und Traumatology10117BerlinGermany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| | - Paula Hoff
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- MVZ Endokrinologikum Berlin am Gendarmenmarkt10117BerlinGermany
| | - Timo Gaber
- Department of Rheumatology and Clinical ImmunologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin10117BerlinGermany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ)a Leibniz Institute10117BerlinGermany
| |
Collapse
|
4
|
Lang A, Collins JM, Nijsure MP, Belali S, Khan MP, Moharrer Y, Schipani E, Yien YY, Fan Y, Gelinsky M, Vinogradov SA, Koch C, Boerckel JD. Local erythropoiesis directs oxygen availability in bone fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632440. [PMID: 39829797 PMCID: PMC11741344 DOI: 10.1101/2025.01.10.632440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Bone fracture ruptures blood vessels and disrupts the bone marrow, the site of new red blood cell production (erythropoiesis). Current dogma holds that bone fracture causes severe hypoxia at the fracture site, due to vascular rupture, and that this hypoxia must be overcome for regeneration. Here, we show that the early fracture site is not hypoxic, but instead exhibits high oxygen tension (> 55 mmHg, or 8%), similar to the red blood cell reservoir, the spleen. This elevated oxygen stems not from angiogenesis but from activated erythropoiesis in the adjacent bone marrow. Fracture-activated erythroid progenitor cells concentrate oxygen through haemoglobin formation. Blocking transferrin receptor 1 (CD71)-mediated iron uptake prevents oxygen binding by these cells, induces fracture site hypoxia, and enhances bone repair through increased angiogenesis and osteogenesis. These findings upend our current understanding of the early phase of bone fracture repair, provide a mechanism for high oxygen tension in the bone marrow after injury, and reveal an unexpected and targetable role of erythroid progenitors in fracture repair.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph M. Collins
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P. Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Simin Belali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette Y. Yien
- Division of Hematology/Oncology, Department of Medicine and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Cameron Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
DeMaria AH, Lee JS, Webb K. N-Oxalylglycine-Conjugated Hyaluronic Acid as a Macromolecular Prodrug for Therapeutic Angiogenesis. Gels 2025; 11:27. [PMID: 39851998 PMCID: PMC11765021 DOI: 10.3390/gels11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) initiates the cellular response to low oxygen levels, making it an attractive target for stimulating therapeutic angiogenesis. Several small molecules have been identified that stabilize HIF-1α and activate the angiogenic signaling pathway. However, achieving therapeutic doses of bioactive small molecules in target tissues remains challenging. In this paper, we report the synthesis and characterization of a new macromolecular prodrug composed of the pro-angiogenic small molecule N-oxalylglycine conjugated to hyaluronic acid (HA-NOG). NOG was conjugated to HA by esterification, and release was significantly increased in the presence of degradative enzymes, esterase and hyaluronidase, compared to physiological buffer, confirming that the release of NOG is primarily enzymatically driven. Normal human dermal fibroblasts (NHDFs) cultured with HA-NOG exhibited HIF-1α accumulation in the cell nucleus and dose-dependent increases in mRNA expression levels of three direct HIF transcriptional targets. Conditioned medium from these cells stimulated endothelial cell tubulogenesis. As an initial evaluation of safety and possible side effects, HA-NOG was found not to significantly affect NHDF metabolic activity, proliferation, or collagen deposition. These studies demonstrate that HA-NOG releases NOG in response to cellular enzymatic activity, activating the HIF signaling pathway and culminating in the secretion of soluble factors that activate endothelial cells without adversely affecting other cellular metabolic pathways.
Collapse
Affiliation(s)
- Andrew H. DeMaria
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| | - Ken Webb
- Microenvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
6
|
Leng S, Cong R, Xia Y, Kang F. Deferoxamine Accelerates Mandibular Condylar Neck Fracture Early Bone Healing by Promoting Type H Vessel Proliferation. J Oral Rehabil 2025; 52:17-26. [PMID: 39363428 DOI: 10.1111/joor.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Condylar fractures (CFs) are a common type of maxillofacial trauma, especially in adolescents. Conservative treatment of CF avoids the possible complications of surgical intervention, but prolongs the patient's suffering because of the requirement for extended intermaxillary fixation. Therefore, the development of a new strategy to accelerate the rate of fracture healing to shorten the period of conservative treatment is of great clinical importance. OBJECTIVE To investigate the potential of deferoxamine (DFO) in promoting the healing process of CF in adolescent mice. METHODS Thirty-two 4-week-old male C57BL/6J mice were randomly assigned to four groups: vehicle + sham group, vehicle + CF group, DFO + sham group and DFO + CF group. After constructing the mandibular CF model, mandibular tissue samples were collected respectively at 1, 2 and 4 weeks postoperatively. Radiographic and histomorphometric analyses were employed to assess bone tissue healing and vascular formation. RESULTS Deferoxamine was observed to promote the early bone healing of fracture, both radiologically and histomorphometrically. Furthermore, this enhancement of condylar neck fracture healing was attributed to the upregulation of the hypoxia-inducible factor-1α (HIF-1α) signalling pathway while facilitating the formation of type H vessels. In addition, DFO did not produce significant effects on the condylar neck between vehicle + sham and DFO + sham group. CONCLUSION The application of the HIF-1α inducer DFO can enhance type H vessels expansion thereby accelerating condylar neck fracture healing.
Collapse
Affiliation(s)
- Sijia Leng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rong Cong
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuxing Xia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
7
|
Sheppard NT, Daniel MC, Nelson NS, Donneys A, Buchman SR. Optimizing immunofluorescent staining of H vessels within an irradiated fracture callus in paraffin-embedded tissue samples. J Histotechnol 2024; 47:173-179. [PMID: 38957981 DOI: 10.1080/01478885.2024.2371060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
H vessels are an essential link in angiogenic-osteogenic coupling and orchestrate the process of bone healing. H vessels are critically deficient in the setting of radiation-induced fractures, which have been reported to occur in up to 25% of patients undergoing radiotherapy. By increasing H-vessel proliferation, Deferoxamine (DFO) revitalizes the physiologic response to skeletal injury and accelerates irradiated fracture repair. H-vessel quantification is therefore an important outcome measure in histologic analysis of bone healing. However, an optimized protocol for staining H vessels in formalin-fixed paraffin-embedded (FFPE) tissue sections has not been reported. With this protocol, we describe a method of staining FFPE bone samples with minimal background fluorescence and high signal-to-noise ratio. We examined mandibular specimens in a rat model of bone healing from a range of fracture conditions, including healthy bone (Fx), irradiated bone (XFx), and irradiated bone with DFO treatment (XFx-DFO). Quantitative analysis revealed a significant increase of H vessels in the XFxDFO group compared to both the Fx and XFx groups. By optimizing immunofluorescent staining of H vessels in FFPE samples across a range of fracture conditions, we offer investigators an efficacious means of producing reliable imaging for quantitative analysis of H vessels in an irradiated fracture callus.
Collapse
Affiliation(s)
- Nathan T Sheppard
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Melissa C Daniel
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Noah S Nelson
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Alexis Donneys
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Steven R Buchman
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Yu H, Luo X, Li Y, Shao L, Yang F, Pang Q, Zhu Y, Hou R. Advanced Hybrid Strategies of GelMA Composite Hydrogels in Bone Defect Repair. Polymers (Basel) 2024; 16:3039. [PMID: 39518248 PMCID: PMC11548276 DOI: 10.3390/polym16213039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
To date, severe bone defects remain a significant challenge to the quality of life. All clinically used bone grafts have their limitations. Bone tissue engineering offers the promise of novel bone graft substitutes. Various biomaterial scaffolds are fabricated by mimicking the natural bone structure, mechanical properties, and biological properties. Among them, gelatin methacryloyl (GelMA), as a modified natural biomaterial, possesses a controllable chemical network, high cellular stability and viability, good biocompatibility and degradability, and holds the prospect of a wide range of applications. However, because they are hindered by their mechanical properties, degradation rate, and lack of osteogenic activity, GelMA hydrogels need to be combined with other materials to improve the properties of the composites and endow them with the ability for osteogenesis, vascularization, and neurogenesis. In this paper, we systematically review and summarize the research progress of GelMA composite hydrogel scaffolds in the field of bone defect repair, and discuss ways to improve the properties, which will provide ideas for the design and application of bionic bone substitutes.
Collapse
Affiliation(s)
- Han Yu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Xi Luo
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yanling Li
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, China;
| | - Fang Yang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Qian Pang
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Yabin Zhu
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| | - Ruixia Hou
- Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo 315211, China; (H.Y.); (X.L.); (Y.L.); (F.Y.); (Y.Z.)
| |
Collapse
|
9
|
Shen H, Ma Y, Qiao Y, Zhang C, Chen J, Zhang R. Application of Deferoxamine in Tissue Regeneration Attributed to Promoted Angiogenesis. Molecules 2024; 29:2050. [PMID: 38731540 PMCID: PMC11085206 DOI: 10.3390/molecules29092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.
Collapse
Affiliation(s)
- Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yane Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yi Qiao
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Chun Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Jialing Chen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Ran Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting, Nanjing 210009, China
| |
Collapse
|
10
|
Daniel M, Sheppard N, Carlos G, Nelson N, Donneys A, Buchman SR. H Vessel Formation as a Marker for Enhanced Bone Healing in Irradiated Distraction Osteogenesis. Semin Plast Surg 2024; 38:31-38. [PMID: 38495069 PMCID: PMC10942839 DOI: 10.1055/s-0043-1778039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In the setting of bone defects, the injured vasculature and loss of hemodynamic inflow leads to hematoma formation and low oxygen tension which stimulates vascular expansion through the HIf-1α pathway. Most importantly, this pathway upregulates sprouting of type H vessels (CD31hiEmcnhi vessels). H vessels engage in direct interaction with perivascular osteoprogenitor cells (OPCs), osteoblasts, and preosteoclasts of bone formation and remodeling. This angiogenic-osteogenic coupling leads to synchronous propagation of vascular and bony tissue for regenerative healing. A growing body of literature demonstrates that H vessels constitute a large portion of bone's innate capacity for osteogenic healing. We believe that CD31hiEmcnhi vessels play a role in bone healing during distraction osteogenesis (DO). DO is a procedure that utilizes traction forces to facilitate induction of endogenous bone formation and regeneration of surrounding soft tissues such as skin, muscle, tendon, and neurovascular structures. While the H vessel response to mechanical injury is adequate to facilitate healing in normal healthy tissue, it remains inadequate to overcome the devastation of radiation. We posit that the destruction of CD31hiEmcnhi vessels plays a role in precluding DO's effectiveness in irradiated bone defect healing. We aim, therefore, to recapitulate the normal pathway of bony healing by utilizing the regenerative capacity of H vessels. We hypothesize that using localized application of deferoxamine (DFO) will enhance the H vessel-mediated vasculogenic response to radiation damage and ultimately enable osteogenic healing during DO. This discovery could potentially be exploited by developing translational therapeutics to hopefully accelerate bone formation and shorten the DO consolidation period, thereby potentially expanding DO's utilization in irradiated bone healing. Sprague-Dawley rats were divided into three groups: DO, radiation with DO (xDO), and radiation with DO and DFO implantation (xDODFO). Experimental groups received 35 Gy of radiation. All groups underwent DO. The treatment group received injections into the osteotomy site, every other day, beginning on postoperative day (POD) 4 of DFO. Animals were sacrificed on POD 40. For immunohistochemical analysis, mandibles were dissected and fixed in 4% paraformaldehyde for 48 hours, decalcified in Cal-Ex II for 2 days, dehydrated through graded ethanol of increasing concentration, and then embedded in paraffin. Samples were cut into 7-μm thick longitudinally oriented sections including the metaphysis and diaphysis. CD31 and Emcn double immunofluorescent staining were performed to evaluate the extent of CD31hiEmcnhi vessel formation. Bone sections were then stained with conjugated antibodies overnight at 4°C. Nuclei were stained with Hoechst. Slides were also double stained with Osterix and CD31 to study the quantity of H vessel-mediated recruitment of OPCs to accelerate bone healing. Images were acquired with a Nikon Ti2 widefield microscope and analyzed in NIS- Elements Advanced Research 5.41.02 software. The abundance of type H vessels is represented by the area fraction of CD31 + Emcn+ vessel area inside the regenerate sample. OPC concomitant proliferation into the distraction gap is represented by the area fraction of Osterix+ cell area inside of the regenerate sample. There were 6× more type H vessels in DO groups than in xDO groups. Localized DFO significantly increased the abundance of type H vessels of irradiated DO animals compared to xDO by 15× ( p = 0.00133531). Moreover, the DO and xDODFO groups with higher abundance of type H vessels also demonstrated better angiogenesis and osteogenesis outcomes. Interestingly, xDODFO groups doubled the quantity of H vessel formation compared to DO, indicating a supraphysiologic response ( p = 0.044655055). Furthermore, H vessel-mediated recruitment of OPCs mimicked the described H vessel formation trend in our study groups. Irradiated DO groups contained 3× less OPCs compared to DO controls. DFO treatment to xDO animals remediated irradiation damage by containing 12× Osterix+ cells. Finally, DFO treatment of irradiated animals quadrupled osteoprogenitor recruitment into the distraction gap compared to DO controls. In this study, we developed a novel approach to visualize CD31hiEmcnhi in paraffin sections to study DO regeneration. Normal DO demonstrated a significant upregulation of H vessel formation and associated angiogenic-osteogenic coupling. Radiation severely decreased H vessel formation along with an associated significant diminution of new bone formation and nonunion. DFO administration, however, resulted in vascular replenishment and the restoration of high quantities of CD31hiEmcnhi and OPCs, recapitulating the normal process of bony regeneration and repair. DFO treatment remediated new bone formation and bony union in irradiated fields associated with increased H vessel angiogenic-osteogenic coupling. While further studies are required to optimize this approach, the results of this study are incredibly promising for the long-awaited translation of localized DFO into the clinical arena.
Collapse
Affiliation(s)
- Melissa Daniel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nathan Sheppard
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Garrison Carlos
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Noah Nelson
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Alex Donneys
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Steven R. Buchman
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Yasan GT, Gunel-Ozcan A. Hypoxia and Hypoxia Mimetic Agents As Potential Priming Approaches to Empower Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:33-54. [PMID: 36642875 DOI: 10.2174/1574888x18666230113143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSC) exhibit self-renewal capacity and multilineage differentiation potential, making them attractive for research and clinical application. The properties of MSC can vary depending on specific micro-environmental factors. MSC resides in specific niches with low oxygen concentrations, where oxygen functions as a metabolic substrate and a signaling molecule. Conventional physical incubators or chemically hypoxia mimetic agents are applied in cultures to mimic the original low oxygen tension settings where MSC originated. This review aims to focus on the current knowledge of the effects of various physical hypoxic conditions and widely used hypoxia-mimetic agents-PHD inhibitors on mesenchymal stem cells at a cellular and molecular level, including proliferation, stemness, differentiation, viability, apoptosis, senescence, migration, immunomodulation behaviors, as well as epigenetic changes.
Collapse
Affiliation(s)
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
12
|
Xie X, Cai J, Li D, Chen Y, Wang C, Hou G, Steinberg T, Rolauffs B, EL-Newehy M, EL-Hamshary H, Jiang J, Mo X, Zhao J, Wu J. Multiphasic bone-ligament-bone integrated scaffold enhances ligamentization and graft-bone integration after anterior cruciate ligament reconstruction. Bioact Mater 2024; 31:178-191. [PMID: 37637081 PMCID: PMC10448241 DOI: 10.1016/j.bioactmat.2023.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The escalating prevalence of anterior cruciate ligament (ACL) injuries in sports necessitates innovative strategies for ACL reconstruction. In this study, we propose a multiphasic bone-ligament-bone (BLB) integrated scaffold as a potential solution. The BLB scaffold comprised two polylactic acid (PLA)/deferoxamine (DFO)@mesoporous hydroxyapatite (MHA) thermally induced phase separation (TIPS) scaffolds bridged by silk fibroin (SF)/connective tissue growth factor (CTGF)@Poly(l-lactide-co-ε-caprolactone) (PLCL) nanofiber yarn braided scaffold. This combination mimics the native architecture of the ACL tissue. The mechanical properties of the BLB scaffolds were determined to be compatible with the human ACL. In vitro experiments demonstrated that CTGF induced the expression of ligament-related genes, while TIPS scaffolds loaded with MHA and DFO enhanced the osteogenic-related gene expression of bone marrow stem cells (BMSCs) and promoted the migration and tubular formation of human umbilical vein endothelial cells (HUVECs). In rabbit models, the BLB scaffold efficiently facilitated ligamentization and graft-bone integration processes by providing bioactive substances. The double delivery of DFO and calcium ions by the BLB scaffold synergistically promoted bone regeneration, while CTGF improved collagen formation and ligament healing. Collectively, the findings indicate that the BLB scaffold exhibits substantial promise for ACL reconstruction. Additional investigation and advancement of this scaffold may yield enhanced results in the management of ACL injuries.
Collapse
Affiliation(s)
- Xianrui Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
| | - Dan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Chunhua Wang
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Guige Hou
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085, Freiburg im Breisgau, Germany
| | - Mohamed EL-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hany EL-Hamshary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
13
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
14
|
Gharanizadeh K, Sharifi AM, Tayyebi H, Heidari R, Amiri S, Noorigaravand S. Core decompression combined with local DFO administration loaded on polylactic glycolic acid scaffolds for the treatment of osteonecrosis of the femoral head: a pilot study. BMC Pharmacol Toxicol 2023; 24:44. [PMID: 37670365 PMCID: PMC10478340 DOI: 10.1186/s40360-023-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Deferoxamine (DFO) angiogenesis induction potential has been demonstrated in earlier studies, but not in the osteonecrosis of the femoral head (ONFH). In this study, we evaluated the outcome of ONFH treated with combined core decompression and local DFO administration loaded on Polylactic Glycolic Acid (PLGA). PATIENTS AND METHODS In a pilot experimental study, six patients (10 hips) with early-stage non-traumatic ONFH were treated by core decompression, and concurrent injection of local DFO loaded on PLGA scaffold into the subchondral femoral head. Outcome measures were evaluated before the surgery and 12 and 24 months after the surgery and included visual analog scale (VAS) for pain, modified Merle d'Aubigné-Postel (MAP) score for hip function by MRI, and rate of osteonecrosis assessed by the modified. RESULTS The mean MPA score was 14.7 ± 1.16 before the surgery and 16.7 ± 1.41 one year after the surgery (P = 0.004). The mean VAS for pain was 4.7 ± 1.25 before the surgery and 1.8 ± 1.03 one year after the surgery (P = 0.005). The mean Kerboul angle was 219 ± 58.64 before the operation and 164.6 ± 41.82 one year after the operation (P < 0.001). Osteonecrosis progression or collapse was not seen in any of the patients at the final follow-up. No postoperative side effect attributed to the DFO was noticed, as well. CONCLUSION In short-term follow-up, combined core decompression and local DFO administration not only prevent the progression of ONFH but also reduces the rate of osteonecrosis significantly. However, future controlled studies are required to confirm the present results. TRIAL REGISTRATION IRCT20161121031003N3, 16/04/2019.
Collapse
Affiliation(s)
- Kaveh Gharanizadeh
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Tayyebi
- Shohadaye Haftom-e-Tir Hospital, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Razieh Heidari
- Department of Radiology, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Shohadaye Haftom-e-Tir Hospital, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Noorigaravand
- Shohadaye Haftom-e-Tir Hospital, School of medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
16
|
Zhang T, Zhao J, Guan Y, Li X, Bai J, Song X, Jia Z, Chen S, Li C, Xu Y, Peng J, Wang Y. Deferoxamine promotes peripheral nerve regeneration by enhancing Schwann cell function and promoting axon regeneration of dorsal root ganglion. Neuroscience 2023:S0306-4522(23)00249-X. [PMID: 37286159 DOI: 10.1016/j.neuroscience.2023.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Deferoxamine (DFO) is a potent iron chelator for clinical treatment of various diseases. Recent studies have also shown its potential to promote vascular regeneration during peripheral nerve regeneration. However, the effect of DFO on the Schwann cell function and axon regeneration remains unclear. In this study, we investigated the effects of different concentrations of DFO on Schwann cell viability, proliferation, migration, expression of key functional genes, and axon regeneration of dorsal root ganglia (DRG) through a series of in vitro experiments. We found that DFO improves Schwann cell viability, proliferation, and migration in the early stages, with an optimal concentration of 25 μM. DFO also upregulates the expression of myelin-related genes and nerve growth-promoting factors in Schwann cells, while inhibiting the expression of Schwann cell dedifferentiation genes. Moreover, the appropriate concentration of DFO promotes axon regeneration in DRG. Our findings demonstrate that DFO, with suitable concentration and duration of action, can positively affect multiple stages of peripheral nerve regeneration, thereby improving the effectiveness of nerve injury repair. This study also enriches the theory of DFO promoting peripheral nerve regeneration and provides a basis for the design of sustained-release DFO nerve grafts.
Collapse
Affiliation(s)
- Tieyuan Zhang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Jinjuan Zhao
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Yanjun Guan
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiangling Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, China
| | - Jun Bai
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiangyu Song
- Hebei North University, Zhangjiakou, 075000, China
| | - Zhibo Jia
- Hebei North University, Zhangjiakou, 075000, China
| | - Shengfeng Chen
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Guizhou Medical University, Guiyang, 550025, China
| | - Chaochao Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Medical School of Chinese PLA, Beijing, 100853, China
| | - Yifan Xu
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China.
| |
Collapse
|
17
|
Li R, Zhang J, Shi J, Yue J, Cui Y, Ye Q, Wu G, Zhang Z, Guo Y, Fu D. An intelligent phase transformation system based on lyotropic liquid crystals for sequential biomolecule delivery to enhance bone regeneration. J Mater Chem B 2023; 11:2946-2957. [PMID: 36916173 DOI: 10.1039/d2tb02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Endogenous repair of critical bone defects is typically hampered by inadequate vascularization in the early stages and insufficient bone regeneration later on. Therefore, drug delivery systems with the ability to couple angiogenesis and osteogenesis in a spatiotemporal manner are highly desirable for vascularized bone formation. Herein, we devoted to develop a liquid crystal formulation system (LCFS) attaining a controlled temporal release of angiogenic and osteoinductive bioactive molecules that could orchestrate the coupling of angiogenesis and osteogenesis in an optimal way. It has been demonstrated that the release kinetics of biomolecules depend on the hydrophobicity of the loaded molecules, making the delivery profile programmable and controllable. The hydrophilic deferoxamine (DFO) could be released rapidly within 5 days to activate angiogenic signaling, while the lipophilic simvastatin (SIM) showed a slow and sustained release for continuous osteogenic induction. Apart from its good biocompatibility with mesenchymal stem cells derived from rat bone marrow (rBMSCs), the DFO/SIM loaded LCFS could stimulate the formation of a vascular morphology in human umbilical vein endothelial cells (HUVECs) and the osteogenic differentiation of rBMSCs in vitro. The in vivo rat femoral defect models have witnessed the prominent angiogenic and osteogenic effects induced by the sequential presentation of DFO and SIM. This study suggests that the sequential release of DFO and SIM from the LCFS results in enhanced bone formation, offering a facile and viable treatment option for bone defects by mimicking the physiological process of bone regeneration.
Collapse
Affiliation(s)
- Rui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Jiao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Jingyu Shi
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P. R. China.
| | - Jiang Yue
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201114, P. R. China
| | - Yongzhi Cui
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430066, P. R. China
| | - Gang Wu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P. R. China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P. R. China.
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China.
| |
Collapse
|
18
|
Yalcin-Ülker GM, Günbatan M, Duygu G, Soluk-Tekkesin M, Özcakir-Tomruk C. Could Local Application of Hypoxia Inducible Factor 1-α Enhancer Deferoxamine Be Promising for Preventing of Medication-Related Osteonecrosis of the Jaw? Biomedicines 2023; 11:biomedicines11030758. [PMID: 36979736 PMCID: PMC10045901 DOI: 10.3390/biomedicines11030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
This experimental study investigates the prophylactic effect of deferoxamine (DFO) on medication-related osteonecrosis of the jaw (MRONJ). Thirty-six female Sprague Dawley rats received zoledronic acid (ZA) for eight weeks to create an osteonecrosis model. DFO was locally applied into the extraction sockets with gelatin sponge (GS) carriers to prevent MRONJ. The specimens were histopathologically and histomorphometrically evaluated. Hypoxia-inducible factor 1-alpha (HIF-1α) protein levels in the extraction sockets were quantified. New bone formation rate differed significantly between groups (p = 0.005). Newly formed bone ratios in the extraction sockets did not differ significantly between the control group and the GS (p = 1), GS/DFO (p = 0.749), ZA (p = 0.105), ZA-GS (p = 0.474), and ZA-GS/DFO (p = 1) groups. While newly formed bone rates were higher in the ZA-GS and ZA-GS/DFO groups than in the ZA group, the differences were not significant. HIF-1α levels differed significantly between groups (p < 0.001) and were significantly higher in the DFO and ZA-GS/DFO groups than in the control group (p = 0.001 and p = 0.004, respectively). While HIF-1α levels were higher in the ZA-GS/DFO group than in the ZA group, the difference was not significant. While HIF-1α protein levels and new bone formation rate were elevated in the DFO-treated group, the effect was not significant. Further large-scale studies are needed to understand DFO’s preventative effects on MRONJ and the role of HIF-1α in MRONJ pathogenesis.
Collapse
Affiliation(s)
- Gül Merve Yalcin-Ülker
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Istanbul Okan University, Istanbul 34947, Türkiye
- Correspondence: or
| | - Murat Günbatan
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Istanbul Okan University, Istanbul 34947, Türkiye
| | - Gonca Duygu
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Tekirdag Namık Kemal University, Tekirdag 59030, Türkiye
| | - Merva Soluk-Tekkesin
- Department of Tumour Pathology, Institute of Oncology, Istanbul University, Istanbul 34093, Türkiye
| | - Ceyda Özcakir-Tomruk
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Yeditepe University, Istanbul 34728, Türkiye
| |
Collapse
|
19
|
Jing X, Xiong Z, Lin Z, Sun T. The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14122634. [PMID: 36559127 PMCID: PMC9787998 DOI: 10.3390/pharmaceutics14122634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, research on and the application of nanomaterials such as graphene, carbon nanotubes, and metal-organic frameworks has become increasingly popular in tissue engineering. In 2014, a two-dimensional sheet of black phosphorus (BP) was isolated from massive BP crystals. Since then, BP has attracted significant attention as an emerging nanomaterial. BP possesses many advantages such as light responsiveness, electrical conductivity, degradability, and good biocompatibility. Thus, it has broad prospects in biomedical applications. Moreover, BP is composed of phosphorus, which is a key bone tissue component with good biocompatibility and osteogenic repair ability. Thereby, BP exhibits excellent advantages for application in bone tissue engineering. In this review, the structure and the physical and chemical properties of BP are described. In addition, the current applications of BP in bone tissue engineering are reviewed to aid the future research and application of BP.
Collapse
Affiliation(s)
- Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zian Lin
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
20
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
21
|
Wei S, Zhang RG, Wang ZY. Deferoxamine/magnesium modified β-tricalcium phosphate promotes the bone regeneration in osteoporotic rats. J Biomater Appl 2022; 37:838-849. [PMID: 35984333 DOI: 10.1177/08853282221121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, Deferoxamine (DFO) and magnesium (Mg) have been identified as critical factors for angiogenesis and bone formation. However, in current research studies, there is a lack of focus on whether DFO plus Mg can affect the regeneration of β-tricalcium phosphate (β-TCP) in osteoporosis and through what biological mechanisms. Therefore, the present work was aimed to preparation and evaluate the effect of Deferoxamine/magnesium modified β-tricalcium phosphate promotes (DFO/Mg-TCP) in ovariectomized rats model and preliminary exploration of possible mechanisms. The MC3T3-E1 cells were co-cultured with the exudate of DFO/Mg-TCP and induced to osteogenesis, and the cell viability, osteogenic activity were observed by Cell Counting Kit-8(CCK-8), Alkaline Phosphatase (ALP) staining, Alizarin Red Staining (RES) and Western Blot. In vitro experiments, CCK-8, ALP and ARS staining results show that the mineralization and osteogenic activity of MC3T3-E1increased significantly after intervention by DFO/Mg-TCP, as well as a higher levels of protein expressions including VEGF, OC, Runx-2 and HIF-1α. In vivo experiment, Micro-CT and Histological analysis evaluation show that DFO/Mg-TCP treatment presented the stronger effect on bone regeneration, bone mineralization and biomaterial degradation, when compared with OVX+Mg-TCP group and OVX+TCP group, as well as a higher VEGF, OC, Runx-2 and HIF-1α gene expression. The present study indicates that treatment with DFO/Mg-TCP was associated with increased regeneration by enhancing the function of osteoblasts in an OVX rat.
Collapse
Affiliation(s)
- Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, P.R. China
- Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, P.R. China
| | - Ren-Gang Zhang
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, P.R. China
| | - Zheng-Yu Wang
- Department of Orthopedics, 74649The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, P.R. China
| |
Collapse
|
22
|
Tevlin R, Longaker MT, Wan DC. Deferoxamine to Minimize Fibrosis During Radiation Therapy. Adv Wound Care (New Rochelle) 2022; 11:548-559. [PMID: 34074152 PMCID: PMC9347384 DOI: 10.1089/wound.2021.0021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/14/2021] [Indexed: 01/29/2023] Open
Abstract
Significance: By 2030, there will be >4 million radiation-treated cancer survivors living in the United States. Irradiation triggers inflammation, fibroblast activation, and extracellular matrix deposition in addition to reactive oxygen species generation, leading to a chronic inflammatory response. Radiation-induced fibrosis (RIF) is a progressive pathology resulting in skin pigmentation, reduced elasticity, ulceration and dermal thickening, cosmetic deformity, pain, and the need for reconstructive surgery. Recent Advances: Deferoxamine (DFO) is a U.S. Food and Drug Administration (FDA)-approved iron chelator for blood dyscrasia management, which has been found to be proangiogenic, to decrease free radical formation, and reduce cell death. DFO has shown great promise in the treatment and prophylaxis of RIF in preclinical studies. Critical Issues: Systemic DFO has a short half-life and is cumbersome to deliver to patients intravenously. Transdermal DFO delivery is complicated by its high atomic mass and hydrophilicity, preventing stratum corneum penetration. A transdermal drug delivery system was developed to address these challenges, in addition to a strategy for topical administration. Future Directions: DFO has great potential to translate from bench to bedside. An important step in translation of DFO for RIF prophylaxis is to ensure that DFO treatment does not affect the efficacy of radiation therapy. Furthermore, after an initial plethora of studies reporting DFO treatment by intravenous and subcutaneous routes, a significant advantage of recent studies is the success of transdermal and topical delivery. Given the strong foundation of basic scientific research supporting the use of DFO treatment on RIF, clinicians will be closely following the results of the ongoing human studies.
Collapse
Affiliation(s)
- Ruth Tevlin
- Division of Plastic and Reconstructive Surgery, and Stanford University School of Medicine, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- School of Postgraduate Studies, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, and Stanford University School of Medicine, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, and Stanford University School of Medicine, Stanford, California, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Li Z, Li S, Yang J, Ha Y, Zhang Q, Zhou X, He C. 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration. Carbohydr Polym 2022; 290:119469. [DOI: 10.1016/j.carbpol.2022.119469] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
|
24
|
Joshi A, Choudhury S, Gugulothu SB, Visweswariah SS, Chatterjee K. Strategies to Promote Vascularization in 3D Printed Tissue Scaffolds: Trends and Challenges. Biomacromolecules 2022; 23:2730-2751. [PMID: 35696326 DOI: 10.1021/acs.biomac.2c00423] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing techniques for scaffold fabrication have shown promising advancements in recent years owing to the ability of the latest high-performance printers to mimic the native tissue down to submicron scales. Nevertheless, host integration and performance of scaffolds in vivo have been severely limited owing to the lack of robust strategies to promote vascularization in 3D printed scaffolds. As a result, researchers over the past decade have been exploring strategies that can promote vascularization in 3D printed scaffolds toward enhancing scaffold functionality and ensuring host integration. Various emerging strategies to enhance vascularization in 3D printed scaffolds are discussed. These approaches include simple strategies such as the enhancement of vascular in-growth from the host upon implantation by scaffold modifications to complex approaches wherein scaffolds are fabricated with their own vasculature that can be directly anastomosed or microsurgically connected to the host vasculature, thereby ensuring optimal integration. The key differences among the techniques, their pros and cons, and the future opportunities for utilizing each technique are highlighted here. The Review concludes with the current limitations and future directions that can help 3D printing emerge as an effective biofabrication technique to realize tissues with physiologically relevant vasculatures to ultimately accelerate clinical translation.
Collapse
|
25
|
Optimization of a Tricalcium Phosphate-Based Bone Model Using Cell-Sheet Technology to Simulate Bone Disorders. Processes (Basel) 2022. [DOI: 10.3390/pr10030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bone diseases such as osteoporosis, delayed or impaired bone healing, and osteoarthritis still represent a social, financial, and personal burden for affected patients and society. Fully humanized in vitro 3D models of cancellous bone tissue are needed to develop new treatment strategies and meet patient-specific needs. Here, we demonstrate a successful cell-sheet-based process for optimized mesenchymal stromal cell (MSC) seeding on a β-tricalcium phosphate (TCP) scaffold to generate 3D models of cancellous bone tissue. Therefore, we seeded MSCs onto the β-TCP scaffold, induced osteogenic differentiation, and wrapped a single osteogenically induced MSC sheet around the pre-seeded scaffold. Comparing the wrapped with an unwrapped scaffold, we did not detect any differences in cell viability and structural integrity but a higher cell seeding rate with osteoid-like granular structures, an indicator of enhanced calcification. Finally, gene expression analysis showed a reduction in chondrogenic and adipogenic markers, but an increase in osteogenic markers in MSCs seeded on wrapped scaffolds. We conclude from these data that additional wrapping of pre-seeded scaffolds will provide a local niche that enhances osteogenic differentiation while repressing chondrogenic and adipogenic differentiation. This approach will eventually lead to optimized preclinical in vitro 3D models of cancellous bone tissue to develop new treatment strategies.
Collapse
|
26
|
Lang A, Stefanowski J, Pfeiffenberger M, Wolter A, Damerau A, Hemmati-Sadeghi S, Haag R, Hauser AE, Löhning M, Duda GN, Hoff P, Schmidt-Bleek K, Gaber T, Buttgereit F. MIF does only marginally enhance the pro-regenerative capacities of DFO in a mouse-osteotomy-model of compromised bone healing conditions. Bone 2022; 154:116247. [PMID: 34743042 DOI: 10.1016/j.bone.2021.116247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
The initial phase of fracture healing is crucial for the success of bone regeneration and is characterized by an inflammatory milieu and low oxygen tension (hypoxia). Negative interference with or prolongation of this fine-tuned initiation phase will ultimately lead to a delayed or incomplete healing such as non-unions which then requires an effective and gentle therapeutic intervention. Common reasons include a dysregulated immune response, immunosuppression or a failure in cellular adaptation to the inflammatory hypoxic milieu of the fracture gap and a reduction in vascularizing capacity by environmental noxious agents (e.g. rheumatoid arthritis or smoking). The hypoxia-inducible factor (HIF)-1α is responsible for the cellular adaptation to hypoxia, activating angiogenesis and supporting cell attraction and migration to the fracture gap. Here, we hypothesized that stabilizing HIF-1α could be a cost-effective and low-risk prevention strategy for fracture healing disorders. Therefore, we combined a well-known HIF-stabilizer - deferoxamine (DFO) - and a less known HIF-enhancer - macrophage migration inhibitory factor (MIF) - to synergistically induce improved fracture healing. Stabilization of HIF-1α enhanced calcification and osteogenic differentiation of MSCs in vitro. In vivo, only the application of DFO without MIF during the initial healing phase increased callus mineralization and vessel formation in a preclinical mouse-osteotomy-model modified to display a compromised healing. Although we did not find a synergistically effect of MIF when added to DFO, our findings provide additional support for a preventive strategy towards bone healing disorders in patients with a higher risk by accelerating fracture healing using DFO to stabilize HIF-1α.
Collapse
Affiliation(s)
- Annemarie Lang
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| | - Jonathan Stefanowski
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Moritz Pfeiffenberger
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Angelique Wolter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alexandra Damerau
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Max Löhning
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany
| | - Paula Hoff
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany; Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany
| | - Timo Gaber
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
| | - Frank Buttgereit
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany; Berlin Institute of Health at Charité Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
27
|
Dong X, Wu P, Yan L, Liu K, Wei W, Cheng Q, Liang X, Chen Y, Dai H. Oriented nanofibrous P(MMD-co-LA)/Deferoxamine nerve scaffold facilitates peripheral nerve regeneration by regulating macrophage phenotype and revascularization. Biomaterials 2021; 280:121288. [PMID: 34894585 DOI: 10.1016/j.biomaterials.2021.121288] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Delayed injured nerve regeneration remains a clinical problem, partly ascribing to the lack of regulation of regenerative microenvironment, topographical cues, and blood nourishment. Functional electrospun conduits have been established as an efficacious strategy to facilitate nerve regeneration by providing structural guidance, regulating the regenerative immune microenvironment, and improving vascular regeneration. However, the synthetic polymers conventionally used to fabricate electrospinning scaffolds, such as poly(L-lactic acid), poly(glycolic acid), and poly(lactic-co-glycolic acid), can cause aseptic inflammation due to acidic degradation products. Therefore, a poly[3(S)-methyl-morpholine-2,5-dione-co-lactic] [P(MMD-co-LA)] containing alanine units with good mechanical properties and reduced acid degradation products, was obtained by melt ring-opening polymerization (ROP). Here, we aimed to explore the effect of oriented nanofiber/Deferoxamine (DFO, a hydrophilic angiogenic drug) scaffold in the rapid construction of a favorable regenerative microenvironment, including cell bridge, polarized vascular system, and immune microenvironment. In vitro studies have shown that the scaffold can sustainably release DFO, which accelerates the migration and tube formation of human umbilical vein endothelial cells (HUVECs), as well as the expression of genes related to angiogenesis. The physical clues provided by the arranged nanofibers can regulate the polarization of macrophages and reduce the expression of inflammatory factors. Furthermore, the in vivo results demonstrated a higher M2 polarization level of the oriented nanofibrous scaffold treatment group with reducedinflammation reaction in the injured nerve. Moreover, the in-situ release of DFO up-regulated the expression of HIF1-α and SDF-1α genes, as well as the expression of HIF1-α's target gene VEGF, further promoting revascularization and enhancing nerve regeneration at the defect site. The obtained results provide essential insights on accelerating the creation of the nerve regeneration microenvironment by combining the physiological processes of nerve regeneration with topographical cues and chemical signal induction.
Collapse
Affiliation(s)
- Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Wu
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Xinyue Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China.
| |
Collapse
|
28
|
Liu J, Kang H, Lu J, Dai Y, Wang F. Experimental study of the effects of hypoxia simulator on osteointegration of titanium prosthesis in osteoporotic rats. BMC Musculoskelet Disord 2021; 22:944. [PMID: 34763682 PMCID: PMC8588664 DOI: 10.1186/s12891-021-04777-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background Poor osseointegration is the key reason for implant failure after arthroplasty,whether under osteoporotic or normal bone conditions. To date, osseointegration remains a major challenge. Recent studies have shown that deferoxamine (DFO) can accelerate osteogenesis by activating the hypoxia signaling pathway. The purpose of this study was to test the following hypothesis: after knee replacement, intra-articular injection of DFO will promote osteogenesis and osseointegration with a 3D printed titanium prosthesis in the bones of osteoporotic rats. Materials and methods Ninety female Sprague–Dawley rats were used for the experiment. Ten rats were used to confirm the successful establishment of the osteoporosis model: five rats in the sham operation group and five rats in the ovariectomy group. After ovariectomy and knee arthroplasty were performed, the remaining 80 rats were randomly divided into DFO and control groups (n = 40 per group). The two groups were treated by intraarticular injection of DFO and saline respectively. After 2 weeks, polymerase chain reaction (PCR) and immunohistochemistry were used to evaluate the levels of HIF-1a, VEGF, and CD31. HIF-1a and VEGF have been shown to promote angiogenesis and bone regeneration, and CD31 is an important marker of angiogenesis. After 12 weeks, the specimens were examined by micro-computed tomography (micro-CT), biomechanics, and histopathology to evaluate osteogenesis and osseointegration. Results The results of PCR showed that the mRNA levels of VEGF and CD31 in the DFO group were significantly higher than those in the control group. The immunohistochemistry results indicated that positive cell expression of HIF-1a, VEGF, and CD31 in the DFO group was also higher. Compared with the control group, the micro-CT parameters of BMD, BV/TV, TB. N, and TB. Th were significantly higher. The maximal pull-out force and the bone-to-implant contact value were also higher. Conclusions The local administration of DFO, which is used to activate the HIF-1a signaling pathway, can promote osteogenesis and osseointegration with a prosthesis in osteoporotic bone.
Collapse
Affiliation(s)
- Jiangfeng Liu
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Huijun Kang
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Jiangfeng Lu
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Yike Dai
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China
| | - Fei Wang
- Department of Joint Surgery, Third Hospital of Hebei Medical University, Ziqiang Road 139, Shijiazhuang, 050051, China.
| |
Collapse
|
29
|
Lee YN, Wang HH, Su CH, Lee HI, Chou YH, Hsieh CL, Liu WT, Shu KT, Chang KT, Yeh HI, Wu YJ. Deferoxamine accelerates endothelial progenitor cell senescence and compromises angiogenesis. Aging (Albany NY) 2021; 13:21364-21384. [PMID: 34508614 PMCID: PMC8457614 DOI: 10.18632/aging.203469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Senescence reduces the circulating number and angiogenic activity of endothelial progenitor cells (EPCs), and is associated with aging-related vascular diseases. However, it is very time-consuming to obtain aged cells (~1 month of repeated replication) or animals (~2 years) for senescence studies. Here, we established an accelerated senescence model by treating EPCs with deferoxamine (DFO), an FDA-approved iron chelator. Four days of low-dose (3 μM) DFO induced senescent phenotypes in EPCs, including a senescent pattern of protein expression, impaired mitochondrial bioenergetics, altered mitochondrial protein levels and compromised angiogenic activity. DFO-treated early EPCs from young and old donors (< 35 vs. > 70 years old) displayed similar senescent phenotypes, including elevated senescence-associated β-galactosidase activity and reduced relative telomere lengths, colony-forming units and adenosine triphosphate levels. To validate this accelerated senescence model in vivo, we intraperitoneally injected Sprague-Dawley rats with DFO for 4 weeks. Early EPCs from DFO-treated rats displayed profoundly senescent phenotypes compared to those from control rats. Additionally, in hind-limb ischemic mice, DFO pretreatment compromised EPC angiogenesis by reducing both blood perfusion and capillary density. DFO thus accelerates EPC senescence and appears to hasten model development for cellular senescence studies.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Cheng-Huang Su
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Hsin-I Lee
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Yen-Hung Chou
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei 25245, Taiwan
| | - Chin-Ling Hsieh
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Wen-Ting Liu
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Kuo-Tung Shu
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Kai-Ting Chang
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Hung-I Yeh
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Yih-Jer Wu
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei 25245, Taiwan
| |
Collapse
|
30
|
Overcoming Nuclear Winter: The Cutting-edge Science of Bone Healing and Regeneration in Irradiated Fields. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3605. [PMID: 34235033 PMCID: PMC8245112 DOI: 10.1097/gox.0000000000003605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
Background: The incidence of cancer worldwide is expected to be more than 22 million annually by 2030. Approximately half of these patients will likely require radiation therapy. Although radiotherapy has been shown to improve disease control and increase survivorship, it also results in damage to adjacent healthy tissues, including the bone, which can lead to devastating skeletal complications, such as nonunion, pathologic fractures, and osteoradionecrosis. Pathologic fractures and osteoradionecrosis are ominous complications that can result in large bone and soft tissue defects requiring complex reconstruction. Current clinical management strategies for these conditions are suboptimal and dubious at best. The gold standard in treatment of severe radiation injury is free tissue transfer; however, this requires a large operation that is limited to select candidates. Methods: With the goal to expand current treatment options and to assuage the devastating sequelae of radiation injury on surrounding normal tissue, our laboratory has performed years of translational studies aimed at remediating bone healing and regeneration in irradiated fields. Three therapeutics (amifostine, deferoxamine, and adipose-derived stem cells) have demonstrated great promise in promoting healing and regeneration of irradiated bone. Results: Amifostine confers prophylactic protection, whereas deferoxamine and adipose-derived stem cells function to remediate postradiation associated injury. Conclusions: These prospective therapeutics exploit a mechanism attributed to increasing angiogenesis and ultimately function to protect or restore cellularity, normal cellular function, osteogenesis, and bone healing to nonirradiated metrics. These discoveries may offer innovative treatment alternatives to free tissue transfer with the added benefit of potentially preventing and treating osteoradionecrosis and pathologic fractures
Collapse
|
31
|
Radiobiological Studies of Microvascular Damage through In Vitro Models: A Methodological Perspective. Cancers (Basel) 2021; 13:cancers13051182. [PMID: 33803333 PMCID: PMC7967181 DOI: 10.3390/cancers13051182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation (IR) is used in radiotherapy as a treatment to destroy cancer. Such treatment also affects other tissues, resulting in the so-called normal tissue complications. Endothelial cells (ECs) composing the microvasculature have essential roles in the microenvironment's homeostasis (ME). Thus, detrimental effects induced by irradiation on ECs can influence both the tumor and healthy tissue. In-vitro models can be advantageous to study these phenomena. In this systematic review, we analyzed in-vitro models of ECs subjected to IR. We highlighted the critical issues involved in the production, irradiation, and analysis of such radiobiological in-vitro models to study microvascular endothelial cells damage. For each step, we analyzed common methodologies and critical points required to obtain a reliable model. We identified the generation of a 3D environment for model production and the inclusion of heterogeneous cell populations for a reliable ME recapitulation. Additionally, we highlighted how essential information on the irradiation scheme, crucial to correlate better observed in vitro effects to the clinical scenario, are often neglected in the analyzed studies, limiting the translation of achieved results.
Collapse
|
32
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
33
|
Geng M, Zhang Q, Gu J, Yang J, Du H, Jia Y, Zhou X, He C. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Biomater Sci 2021; 9:2631-2646. [DOI: 10.1039/d0bm02058c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3D printed scaffolds with micro and nano architectures that facilitate cell growth and migration were prepared, and the scaffolds allowed deferoxamine release to accelerate bone formation.
Collapse
Affiliation(s)
- Mengru Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Qianqian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Jiani Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Jin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Haibo Du
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Yating Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- P. R. China
| |
Collapse
|
34
|
Hadidi L, Constantin J, Dalisson B, Vieira D, Drager J, Harvey E, Merle G. Biodegradable hypoxia biomimicry microspheres for bone tissue regeneration. J Biomater Appl 2019; 34:1028-1037. [PMID: 31648612 DOI: 10.1177/0885328219884023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lina Hadidi
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Justine Constantin
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | | | - Daniela Vieira
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Justin Drager
- Department of Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Edward Harvey
- Department of Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Geraldine Merle
- Department of Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
35
|
The Role of Deferoxamine in Irradiated Breast Reconstruction: A Study of Oncologic Safety. Plast Reconstr Surg 2019; 143:1666-1676. [PMID: 30907808 DOI: 10.1097/prs.0000000000005647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Radiotherapy plays an essential role in the oncologic management of breast cancer. However, patients who undergo radiotherapy experience significantly more wound complications during the reconstructive process. Deferoxamine has immense potential to up-regulate angiogenesis and improve reconstructive outcomes. The purpose of this study was to determine the impact of deferoxamine on breast cancer cell proliferation in vitro, to delineate oncologic safety concerns regarding the use of deferoxamine as a regenerative therapeutic. METHODS The dose-dependent effect of radiation and deferoxamine on two triple-negative breast cancer cell lines (MDA-MB-231 and MDA-MB-468) was determined by means of MTS (percentage cell viability) and tumorsphere (sphere number) analysis. Radiation therapy and deferoxamine were delivered both individually and in combination, and all experiments were completed in triplicate. Intracellular iron, nuclear factor-κB localization, and apoptosis/necrosis assays were performed to delineate mechanism. Analysis of variance statistical analysis was performed using SPSS (p < 0.05). RESULTS For both cell lines, percentage viability and sphere number significantly decreased following exposure to 10 Gy of radiation. Surprisingly, the administration of 25 µM deferoxamine also significantly decreased each metric. The administration of deferoxamine (100 µM) in combination with radiation (10 Gy) resulted in significantly reduced percentage viability and sphere number compared with the administration of radiation alone. Deferoxamine treatment decreased intracellular iron, suppressed nuclear factor-κB activation, and induced apoptosis. CONCLUSION Radiation and deferoxamine significantly decrease breast cancer proliferation when delivered independently and in combination, suggesting deferoxamine may be safely used to facilitate improved reconstructive outcomes among triple-negative breast cancer survivors. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
36
|
Holden P, Nair LS. Deferoxamine: An Angiogenic and Antioxidant Molecule for Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:461-470. [PMID: 31184273 DOI: 10.1089/ten.teb.2019.0111] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Deferoxamine (DFO) has been in use for half a century as a Food and Drug Administration-approved iron chelator, but recent studies indicate a variety of properties that could expand this drug's application into the fields of tissue and regenerative engineering. DFO has been implicated as an angiogenic agent in studies on ischemia, wound healing, and bone regeneration because of its ability to upregulate hypoxia-inducible factor-1 alpha (HIF-1α) and other key downstream angiogenic factors. DFO has also demonstrated antioxidant capabilities unrelated to its iron-chelating properties, making it a potential modulator of the oxidative stress involved in the inflammation response. Together, these properties make DFO a potential bioactive molecule to promote wound healing and enhance tissue integration of biomaterials in vivo. Impact Statement Deferoxamine (DFO) is approved by the Food and Drug Administration as an iron chelator and is been used to treat iron overload. Recent studies indicate that DFO may have important applications in the growing field of tissue regeneration because of its unique properties of downregulating inflammation while promoting vascularization, thereby enhancing wound healing in vivo.
Collapse
Affiliation(s)
- Paige Holden
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Lakshmi S Nair
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut.,Department of Material Science and Engineering, Institute of Material Science, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
37
|
Hann SY, Cui H, Esworthy T, Miao S, Zhou X, Lee SJ, Fisher JP, Zhang LG. Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res 2019; 211:46-63. [PMID: 31004563 PMCID: PMC6702061 DOI: 10.1016/j.trsl.2019.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
Over the past years, the fabrication of adequate vascular networks has remained the main challenge in engineering tissues due to technical difficulties, while the ultimate objective of tissue engineering is to create fully functional and sustainable organs and tissues to transplant in the human body. There have been a number of studies performed to overcome this limitation, and as a result, 3D printing has become an emerging technique to serve in a variety of applications in constructing vascular networks within tissues and organs. 3D printing incorporated technical approaches allow researchers to fabricate complex and systematic architecture of vascular networks and offer various selections for fabrication materials and printing techniques. In this review, we will discuss materials and strategies for 3D printed vascular networks as well as specific applications for certain vascularized tissue and organ regeneration. We will also address the current limitations of vascular tissue engineering and make suggestions for future directions research may take.
Collapse
Affiliation(s)
- Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland; Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC; Department of Biomedical Engineering, The George Washington University, Washington, DC; Department of Medicine, The George Washington University Medical Center, Washington, DC.
| |
Collapse
|
38
|
Implantable hyaluronic acid-deferoxamine conjugate prevents nonunions through stimulation of neovascularization. NPJ Regen Med 2019; 4:11. [PMID: 31123600 PMCID: PMC6529413 DOI: 10.1038/s41536-019-0072-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/08/2019] [Indexed: 01/05/2023] Open
Abstract
Approximately 6.3 million fractures occur in the U.S. annually, with 5–10% resulting in debilitating nonunions. A major limitation to achieving successful bony union is impaired neovascularization. To augment fracture healing, we designed an implantable drug delivery technology containing the angiogenic stimulant, deferoxamine (DFO). DFO activates new blood vessel formation through iron chelation and upregulation of the HIF-1α pathway. However, due to its short half-life and rapid clearance, maintaining DFO at the callus site during peak fracture angiogenesis has remained challenging. To overcome these limitations, we composed an implantable formulation of DFO conjugated to hyaluronic acid (HA). This compound immobilizes DFO within the fracture callus throughout the angiogenic window, making it a high-capacity iron sponge that amplifies blood vessel formation and prevents nonunions. We investigated implanted HA-DFO’s capacity to facilitate fracture healing in the irradiated rat mandible, a model whereby nonunions routinely develop secondary to obliteration of vascularity. HA-DFO implantation significantly improved radiomorphometrics and metrics of biomechanical strength. In addition, HA-DFO treated mandibles exhibited a remarkable 91% bone union rate, representing a 3.5-fold improvement over non-treated/irradiated controls (20% bone union rate). Collectively, our work proposes a unique methodology for the targeted delivery of DFO to fracture sites in order to facilitate neovascularization. If these findings are successfully translated into clinical practice, millions of patients will benefit from the prevention of nonunions.
Collapse
|
39
|
Zhang J, Zheng L, Wang Z, Pei H, Hu W, Nie J, Shang P, Li B, Hei TK, Zhou G. Lowering iron level protects against bone loss in focally irradiated and contralateral femurs through distinct mechanisms. Bone 2019; 120:50-60. [PMID: 30304704 DOI: 10.1016/j.bone.2018.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/21/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022]
Abstract
Radiation therapy leads to increased risk of late-onset fragility and bone fracture due to the loss of bone mass. On the other hand, iron overloading causes osteoporosis by enhancing bone resorption. It has been shown that total body irradiation increases iron level, but whether the systemic bone loss is related to the changes in iron level and hepcidin regulation following bone irradiation remains unknown. To investigate the potential link between them, we first created an animal model of radiation-induced systemic bone loss by targeting the mid-shaft femur with a single 2 Gy dose of X-rays. We found that mid-shaft femur focal irradiation led to structural deterioration in the distal region of the trabecular bone with increased osteoclasts surface and expressions of bone resorption markers in both irradiated and contralateral femurs relative to non-irradiated controls. Following irradiation, reduced hepcidin activity of the liver contributed to elevated iron levels in the serum and liver. By injecting hepcidin or deferoxamine (an iron chelator) to reduce iron level, deterioration of trabecular bone microarchitecture in irradiated mice was abrogated. The ability of iron chelation to inhibit radiation-induced osteoclast differentiation was observed in vitro as well. We further showed that ionizing radiation (IR) directly stimulated osteoclast differentiation and bone resorption in bone marrow cells isolated not from contralateral femurs but from directly irradiated femurs. These results suggest that increased iron levels after focal radiation is at least one of the main reasons for systemic bone loss. Furthermore, bone loss in directly irradiated bones is not only due to the elevated iron level, but also from increased osteoclast differentiation. In contrast, the bone loss in the contralateral femurs is mainly due to the elevated iron level induced by IR alone. These novel findings provide proof-of-principle evidence for the use of iron chelation or hepcidin as therapeutic treatments for IR-induced osteoporosis.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lijun Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ziyang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen, China
| | - Bingyan Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tom K Hei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China; Center for Radiological Research, College of Physician and Surgeons, Columbia University, New York, USA.
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China.
| |
Collapse
|
40
|
Müller AS, Gashi M, Janjić K, Edelmayer M, Moritz A, Agis H. The impact of clay-based hypoxia mimetic hydrogel on human fibroblasts of the periodontal soft tissue. J Biomater Appl 2019; 33:1277-1284. [PMID: 30760093 DOI: 10.1177/0885328218821042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thixotropic clays have favorable properties for tissue regeneration. Hypoxia mimetic agents showed promising results in pre-clinical models for hard and soft tissue regeneration. It is unclear if clays can be used as carrier for hypoxia mimetic agent in a periodontal regenerative setting. Here, we tested the response of human fibroblasts of the periodontal soft tissue to synthetic clay hydrogels and assessed hypoxia mimetic agent release. Cells were cultured on synthetic clay hydrogels (5.00%-0.15%). We assessed viability and differentiation capacity with resazurin-based toxicity assays, MTT staining, Live-Dead staining, and alkaline phosphatase staining. To reveal the response of fibroblasts to hypoxia mimetic agent-loaded clay hydrogels, cells were exposed to clay supplemented with dimethyloxalylglycine, deferoxamine, l-mimosine, and CoCl2. Supernatants from hypoxia mimetic agent-loaded clay hydrogels were harvested and replaced with medium at hour 1, 3, 6, 24, 48, and 72. To reveal the hypoxia mimetic capacity of supernatants, vascular endothelial growth factor production in the fibroblasts was assessed in the culture medium. Our data show that clay did not induce relevant toxic effects in the fibroblasts which remained capable to differentiate into alkaline phosphatase-positive cells at the relevant concentrations. Fibroblasts cultured on clay hydrogel loaded with dimethyloxalylglycine, deferoxamine, l-mimosine, and CoCl2 remained vital, however, no significant increase in vascular endothelial growth factor levels was found in the culture medium. Only dimethyloxalylglycine-loaded clay supernatants taken in the first hours stimulated vascular endothelial growth factor production in fibroblasts. In conclusion no pronounced toxic effects of synthetic clay were observed. Supplementation with dimethyloxalylglycine leads to hypoxia mimetic activity. This pilot study provides first insights into the impact of synthetic clay on periodontal tissue.
Collapse
Affiliation(s)
- Anna Sonja Müller
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Milot Gashi
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Klara Janjić
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michael Edelmayer
- 2 Austrian Cluster for Tissue Regeneration, Vienna, Austria.,3 Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- 1 Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
41
|
Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, Cheng R, Qian N, Sandler N, Zhang YS, Shen H, Qi J, Cui W, Deng L. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials 2019; 190-191:97-110. [DOI: 10.1016/j.biomaterials.2018.10.033] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
|
42
|
Treatment With Topical Deferoxamine Improves Cutaneous Vascularity and Tissue Pliability in an Irradiated Animal Model of Tissue Expander–Based Breast Reconstruction. Ann Plast Surg 2019; 82:104-109. [DOI: 10.1097/sap.0000000000001655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Zhang J, Qiu X, Xi K, Hu W, Pei H, Nie J, Wang Z, Ding J, Shang P, Li B, Zhou G. Therapeutic ionizing radiation induced bone loss: a review of in vivo and in vitro findings. Connect Tissue Res 2018; 59:509-522. [PMID: 29448860 DOI: 10.1080/03008207.2018.1439482] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radiation therapy is one of the routine treatment modalities for cancer patients. Ionizing radiation (IR) can induce bone loss, and consequently increases the risk of fractures with delayed and nonunion of the bone in the cancer patients who receive radiotherapy. The orchestrated bone remodeling can be disrupted due to the affected behaviors of bone cells, including bone mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts. BMSCs and osteoblasts are relatively radioresistant compared with osteoclasts and its progenitors. Owing to different radiosensitivities of bone cells, unbalanced bone remodeling caused by IR is closely associated with the dose absorbed. For doses less than 2 Gy, osteoclastogenesis and adipogenesis by BMSCs are enhanced, while there are limited effects on osteoblasts. High doses (>10 Gy) induce disrupted architecture of bone, which is usually related to decreased osteogenic potential. In this review, studies elucidating the biological effects of IR on bone cells (BMSCs, osteoblasts and osteoclasts) are summarized. Several potential preventions and therapies are also proposed.
Collapse
Affiliation(s)
- Jian Zhang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Xinyu Qiu
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Kedi Xi
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Wentao Hu
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Hailong Pei
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Jing Nie
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Ziyang Wang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Jiahan Ding
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| | - Peng Shang
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China.,c Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences , Northwestern Polytechnical University , Xi'an , China.,d Research & Development Institute in Shenzhen , Northwestern Polytechnical University, Fictitious College Garden , Shenzhen , China
| | - Bingyan Li
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China
| | - Guangming Zhou
- a State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection , Soochow University , Suzhou , China.,b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| |
Collapse
|
44
|
Efird WM, Fletcher AG, Draeger RW, Spang JT, Dahners LE, Weinhold PS. Deferoxamine-Soaked Suture Improves Angiogenesis and Repair Potential After Acute Injury of the Chicken Achilles Tendon. Orthop J Sports Med 2018; 6:2325967118802792. [PMID: 30370309 PMCID: PMC6201186 DOI: 10.1177/2325967118802792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: A major obstacle to the treatment of soft tissue injuries is the hypovascular
nature of the tissues. Deferoxamine (DFO) has been shown to stimulate
angiogenesis by limiting the degradation of intracellular hypoxia-inducible
factor 1–alpha. Hypothesis: DFO-saturated suture would induce angiogenesis and improve the markers of
early healing in an Achilles tendon repair model. Study Design: Controlled laboratory study. Methods: Broiler hens were randomly assigned to the control (CTL) group or DFO group
(n = 9 per group). The right Achilles tendon was partially transected at its
middle third. The defect was surgically repaired using 3-0 Vicryl suture
soaked in either sterile water (CTL group) or 324 mM DFO solution (DFO
group). All animals were euthanized 2 weeks after the injury, and the tendon
was harvested. Half of the tendon was used to evaluate angiogenesis via
hemoglobin content and tissue repair via DNA content and proteoglycan (PG)
content. The other half of the tendon was sectioned and stained with
hematoxylin and eosin, safranin O, and lectin to evaluate vessel
density. Results: Hemoglobin content (percentage of wet tissue weight) was significantly
increased in the DFO group compared with the CTL group (0.081 ± 0.012 vs
0.063 ± 0.016, respectively; P = .046). DNA content
(percentage of wet tissue weight) was also significantly increased in the
DFO group compared with the CTL group (0.31 ± 0.05 vs 0.23 ± 0.03,
respectively; P = .024). PG content (percentage of wet
tissue weight) was significantly decreased in the DFO group compared with
the CTL group (0.26 ± 0.02 vs 0.33 ± 0.08, respectively; P
= .035). Total chondroid area (number of vessels per mm2 of
tissue area evaluated) was significantly decreased in the DFO group compared
with the CTL group (17.2 ± 6.6 vs 24.6 ± 5.1, respectively;
P = .038). Articular zone vessel density
(vessels/mm2) was significantly increased in the DFO group
compared with the CTL group (7.1 ± 2.5 vs 2.1 ± 0.9, respectively;
P = .026). Conclusion: The significant increase in hemoglobin content as well as articular zone
vessel density in the DFO group compared with the CTL group is evidence of
increased angiogenesis in the fibrocartilaginous region of the tendon
exposed to DFO. The DFO group also displayed a significantly greater level
of DNA and significantly lower level of PG, suggesting enhanced early
healing by fibrous tissue formation. Clinical Relevance: Stimulating angiogenesis by DFO-saturated suture may be clinically useful to
improve healing of poorly vascularized tissues.
Collapse
Affiliation(s)
- William M Efird
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex G Fletcher
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Reid W Draeger
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laurence E Dahners
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul S Weinhold
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
45
|
Deferoxamine Preconditioning of Irradiated Tissue Improves Perfusion and Fat Graft Retention. Plast Reconstr Surg 2018; 141:655-665. [PMID: 29135894 DOI: 10.1097/prs.0000000000004167] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Radiation therapy is a mainstay in the treatment of many malignancies, but collateral damage to surrounding tissue, with resultant hypovascularity, fibrosis, and atrophy, can be difficult to reconstruct. Fat grafting has been shown to improve the quality of irradiated skin, but volume retention of the graft is significantly decreased. Deferoxamine is a U.S. Food and Drug Administration-approved iron-chelating medication for acute iron intoxication and chronic iron overload that has also been shown to increase angiogenesis. The present study evaluates the effects of deferoxamine treatment on irradiated skin and subsequent fat graft volume retention. METHODS Mice underwent irradiation to the scalp followed by treatment with deferoxamine or saline and perfusion and were analyzed using laser Doppler analysis. Human fat grafts were then placed beneath the scalp and retention was also followed up to 8 weeks radiographically. Finally, histologic evaluation of overlying skin was performed to evaluate the effects of deferoxamine preconditioning. RESULTS Treatment with deferoxamine resulted in significantly increased perfusion, as demonstrated by laser Doppler analysis and CD31 immunofluorescent staining (p < 0.05). Increased dermal thickness and collagen content secondary to irradiation, however, were not affected by deferoxamine (p > 0.05). Importantly, fat graft volume retention was significantly increased when the irradiated recipient site was preconditioned with deferoxamine (p < 0.05). CONCLUSIONS The authors' results demonstrated increased perfusion with deferoxamine treatment, which was also associated with improved fat graft volume retention. Preconditioning with deferoxamine may thus enhance fat graft outcomes for soft-tissue reconstruction following radiation therapy.
Collapse
|
46
|
Bennett PM, Stewart SK, Dretzke J, Bem D, Penn-Barwell JG. Preclinical therapies to prevent or treat fracture non-union: A systematic review. PLoS One 2018; 13:e0201077. [PMID: 30067783 PMCID: PMC6070249 DOI: 10.1371/journal.pone.0201077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/08/2018] [Indexed: 12/22/2022] Open
Abstract
Background Non-union affects up to 10% of fractures and is associated with substantial morbidity. There is currently no single effective therapy for the treatment or prevention of non-union. Potential treatments are currently selected for clinical trials based on results from limited animal studies, with no attempt to compare results between therapies to determine which have the greatest potential to treat non-union. Aim The aim of this systematic review was to define the range of therapies under investigation at the preclinical stage for the prevention or treatment of fracture non-union. Additionally, through meta-analysis, it aimed to identify the most promising therapies for progression to clinical investigation. Methods MEDLINE and Embase were searched from 1St January 2004 to 10th April 2017 for controlled trials evaluating an intervention to prevent or treat fracture non-union. Data regarding the model used, study intervention and outcome measures were extracted, and risk of bias assessed. Results Of 5,171 records identified, 197 papers describing 204 therapies were included. Of these, the majority were only evaluated once (179/204, 88%), with chitosan tested most commonly (6/204, 3%). Substantial variation existed in model design, length of survival and duration of treatment, with results poorly reported. These factors, as well as a lack of consistently used objective outcome measures, precluded meta-analysis. Conclusion This review highlights the variability and poor methodological reporting of current non-union research. The authors call for a consensus on the standardisation of animal models investigating non-union, and suggest journals apply stringent criteria when considering animal work for publication.
Collapse
Affiliation(s)
- Philippa M. Bennett
- Institute of Naval Medicine, Crescent Road, Alverstoke, Hampshire, United Kingdom
- * E-mail:
| | - Sarah K. Stewart
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom
| | - Janine Dretzke
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Danai Bem
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
47
|
Synthetic Clay–based Hypoxia Mimetic Hydrogel for Pulp Regeneration: The Impact on Cell Activity and Release Kinetics Based on Dental Pulp–derived Cells In Vitro. J Endod 2018; 44:1263-1269. [PMID: 29958677 DOI: 10.1016/j.joen.2018.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
|
48
|
Yao Q, Liu Y, Selvaratnam B, Koodali RT, Sun H. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release 2018; 279:69-78. [PMID: 29649529 DOI: 10.1016/j.jconrel.2018.04.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Controlled delivery systems play a critical role in the success of bone morphogenetic proteins (i.e., BMP2 and BMP7) for challenged bone repair. Instead of single-drug release that is currently and commonly prevalent, dual-drug delivery strategies are highly desired to achieve effective bone regeneration because natural bone repair process is driven by multiple factors. Particularly, angiogenesis is essential for osteogenesis and requires more than just one factor (e.g., Vascular Endothelial Growth Factor, VEGF). Therefore, we developed a novel mesoporous silicate nanoparticles (MSNs) incorporated-3D nanofibrous gelatin (GF) scaffold for dual-delivery of BMP2 and deferoxamine (DFO). DFO is a hypoxia-mimetic drug that can activate hypoxia-inducible factor-1 alpha (HIF-1α), and trigger subsequent angiogenesis. Sustained BMP2 release system was achieved through encapsulation into large-pored MSNs, while the relative short-term release of DFO was engineered through covalent conjugation with chitosan to reduce its cytotoxicity and elongate its half-life. Both MSNs and DFO were incorporated onto a porous 3D GF scaffold to serve as a biomimetic osteogenic microenvironment. Our data indicated that DFO and BMP2 were released from a scaffold at different release rates (10 vs 28 days) yet maintained their angiogenic and osteogenic ability, respectively. Importantly, our data indicated that the released DFO significantly improved BMP2-induced osteogenic differentiation where the dose/duration was important for its effects in both mouse and human stem cell models. Thus, we developed a novel and tunable MSNs/GF 3D scaffold-mediated dual-drug delivery system and studied the potential application of the both FDA-approved DFO and BMP2 for bone tissue engineering.
Collapse
Affiliation(s)
- Qingqing Yao
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA; School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China; Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yangxi Liu
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA
| | - Balaranjan Selvaratnam
- Department of Chemistry, University of South Dakota, 414 E. Clark Street, Vermillion 57069, SD, USA
| | - Ranjit T Koodali
- Department of Chemistry, University of South Dakota, 414 E. Clark Street, Vermillion 57069, SD, USA
| | - Hongli Sun
- Department of Biomedical Engineering, University of South Dakota, BioSNTR, Sioux Falls, SD 57107, USA.
| |
Collapse
|
49
|
Drager J, Ramirez-GarciaLuna JL, Kumar A, Gbureck U, Harvey EJ, Barralet JE. Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair. Tissue Eng Part A 2017; 23:1372-1381. [DOI: 10.1089/ten.tea.2016.0526] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Justin Drager
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| | | | - Abhishek Kumar
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Edward J. Harvey
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
- Bone Engineering Labs, Research Institute-McGill University Health Centre, Montreal, Canada
| | - Jake E. Barralet
- Division of Orthopaedics, McGill University Health Center, Montreal, Canada
| |
Collapse
|
50
|
Wang L, Jia P, Shan Y, Hao Y, Wang X, Jiang Y, Yuan Y, Du Q, Zhang H, Yang F, Zhang W, Sheng M, Xu Y. Synergistic protection of bone vasculature and bone mass by desferrioxamine in osteoporotic mice. Mol Med Rep 2017; 16:6642-6649. [PMID: 28901524 PMCID: PMC5865796 DOI: 10.3892/mmr.2017.7451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023] Open
Abstract
It has previously been demonstrated that impaired angiogenesis is associated with metabolic abnormalities in bone in addition to osteoporosis (including postmenopausal osteoporosis). Enhancing vessel formation in bone is therefore a potential clinical therapy for osteoporosis. The present study conducted an in-depth investigation using desferrioxamine (DFO) in an ovariectomy (OVX)-induced osteoporotic mouse model in order to determine the time frame of alteration of bone characteristics and the therapeutic effect of DFO. It was demonstrated that OVX induced instant bone mass loss 1 week following surgery, as expected. In contrast, DFO treatment protected the mice against OVX-induced osteoporosis during the first week, however failed to achieve long-term protection at a later stage. A parallel alteration for cluster of differentiation 31/endomucin double positive vessels (type H vessels) was observed, which have previously been reported to be associated with osteogenesis. DFO administration not only partially prevented bone loss and maintained trabecular bone microarchitecture, however additionally enhanced the type H vessels during the first week post-OVX. The molecular mechanism of how DFO influences type H vessels to regulate bone metabolism needs to be further investigated. However, the findings of the present study provide preliminary evidence to support combined vascular and osseous therapies for osteoporotic patients. Pharmacotherapy may offer a novel target for improving osteoporosis by promoting type H vessel formation, which indicates potential clinical significance in the field of bone metabolism.
Collapse
Affiliation(s)
- Liang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Peng Jia
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yu Shan
- Department of Orthopaedics, The First People's Hospital of Wujiang, Suzhou, Jiangsu 215200, P.R. China
| | - Yanming Hao
- Department of Orthopaedics, The First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, P.R. China
| | - Xiao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yu Jiang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ye Yuan
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Qiaoqiao Du
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Fan Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wen Zhang
- Orthopaedic Institute of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Mao Sheng
- Department of Radiology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|