1
|
Ferrando-Marco M, Barkoulas M. EFL-3/E2F7 modulates Wnt signalling by repressing the Nemo-like kinase LIT-1 during asymmetric epidermal cell division in Caenorhabditis elegans. Development 2025; 152:DEV204546. [PMID: 40026193 PMCID: PMC11925398 DOI: 10.1242/dev.204546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025]
Abstract
The E2F family of transcription factors is conserved in higher eukaryotes and plays pivotal roles in controlling gene expression during the cell cycle. Most canonical E2Fs associate with members of the Dimerisation Partner (DP) family to activate or repress target genes. However, atypical repressors, such as E2F7 and E2F8, lack DP interaction domains and their functions are less understood. We report here that EFL-3, the E2F7 homologue of Caenorhabditis elegans, regulates epidermal stem cell differentiation. We show that phenotypic defects in efl-3 mutants depend on the Nemo-like kinase LIT-1. EFL-3 represses lit-1 expression through direct binding to a lit-1 intronic element. Increased LIT-1 expression in efl-3 mutants reduces POP-1/TCF nuclear distribution, and consequently alters Wnt pathway activation. Our findings provide a mechanistic link between an atypical E2F family member and NLK during C. elegans asymmetric cell division, which may be conserved in other animals.
Collapse
|
2
|
Premnath P, Lun T, Siddiqui H, Stahl AR, Ardebili AA, Olsen A, Krawetz R. Absence of E2f1 Negates Pro-osteogenic Impacts of p21 Absence. Calcif Tissue Int 2024; 114:625-637. [PMID: 38643416 DOI: 10.1007/s00223-024-01210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/03/2024] [Indexed: 04/22/2024]
Abstract
Loss of p21 leads to increased bone formation post-injury; however, the mechanism(s) by which this occurs remains undetermined. E2f1 is downstream of p21 and as a transcription factor can act directly on gene expression; yet it is unknown if E2f1 plays a role in the osteogenic effects observed when p21 is differentially regulated. In this study we aimed to investigate the interplay between p21 and E2f1 and determine if the pro-regenerative osteogenic effects observed with the loss of p21 are E2f1 dependent. To accomplish this, we employed knockout p21 and E2f1 mice and additionally generated a p21/E2f1 double knockout. These mice underwent burr-hole injuries to their proximal tibiae and healing was assessed over 7 days via microCT imaging. We found that p21 and E2f1 play distinct roles in bone regeneration where the loss of p21 increased trabecular bone formation and loss of E2f1 increased cortical bone formation, yet loss of E2f1 led to poorer bone repair overall. Furthermore, when E2f1 was absent, either individually or simultaneously with p21, there was a dramatic decrease of the number of osteoblasts, osteoclasts, and chondrocytes at the site of injury compared to p21-/- and C57BL/6 mice. Together, these results suggest that E2f1 regulates the cell populations required for bone repair and has a distinct role in bone formation/repair compared to p21-/-E2f1-/-. These results highlight the possibility of cell cycle and/or p21/E2f1 being potential druggable targets that could be leveraged in clinical therapies to improve bone healing in pathologies such as osteoporosis.
Collapse
Affiliation(s)
- Priyatha Premnath
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Theodore Lun
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Humza Siddiqui
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Alana Ruth Stahl
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Aria Ahadzadeh Ardebili
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Alexandra Olsen
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Roman Krawetz
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Liu W, Zhang Z, Zhang L, Jiang X, Chen C, Wu X, Zhao Q. Gfi-1 modulates HMGB1-Mediated autophagy to overcome oxaliplatin resistance in colorectal cancer. Heliyon 2024; 10:e29859. [PMID: 38694127 PMCID: PMC11058305 DOI: 10.1016/j.heliyon.2024.e29859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Background Resistance to oxaliplatin (L-OHP) is a major barrier in the treatment of colorectal cancer (CRC). Autophagy is the main cause of L-OHP tolerance in CRC cells. Method The human colon cancer cell lines HCT116 and SW480 were treated with L-OHP to obtain the drug-resistant cell lines HCT116/L-OHP and SW480/L-OHP, respectively. To probe the relationship between autophagy and L-OHP tolerance of growth factor independent 1 (Gfi-1) and high-mobility group protein 1 (HMGB1) in CRC cells, gene knockout or overexpression was performed, and Western blotting was used to determine the levels of drug tolerance interrelated proteins. Transwell and CCK-8 assays were employed to analyze the proliferation of cancer cells. Immunofluorescence detection of LC3 reflected autophagy levels. Finally, the relationship between Gfi-1 and HMGB1 was detected by chromatin immunoprecipitation (ChIP). Result Compared to normal CRC cells, L-OHP-tolerant CRC cells exhibited greater autophagy (8.2 times greater in HCT116/L-OHP cells and 7.4 times greater in SW480/L-OHP cells). In addition, we detected low levels of Gfi-1 (0.6-fold for HCT116/L-OHP cells and 0.4-fold for SW480/L-OHP cells), and OE-Gfi-1 decreased HMGB1 levels (0.6-fold for HCT116/L-OHP + OE-Gfi-1 cells and 0.5-fold for SW480/L-OHP + OE-Gfi-1 cells). The inhibition of Gfi-1 further enhanced cell viability (1.7 times in HCT116+sh-Gfi-1 cells and 1.2 times in SW480+sh-Gfi-1 cells) and invasion (1.8 times in HCT116+sh-Gfi-1 cells and 2.1 times in SW480+sh-Gfi-1 cells) in CRC cells, thus promoting oxaliplatin resistance in these cells. The autophagy inhibitor 3-MA reversed the above effects. Furthermore, we noted that Gfi-1 can restrain HMGB1 expression by binding to its promoter (0.5 times in HCT116+OE-Gfi-1 cells and 0.5 times in SW480+OE-Gfi-1 cells). The inhibitory influence of 3-MA on HMGB1 reversed the influence of Gfi-1 on autophagy and malignant progression in CRC cells. Conclusion Our study suggested that Gfi-1 inhibited HMGB1 to reduce CRC autophagy levels, increasing CRC sensitivity to L-OHP.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Anorectal Diseases, The First People's Hospital of Yunnan Province, Affiliated Hospital to Kunming University of Science and Technology, Kunming, 650032, PR China
| | - Zhenyong Zhang
- Department of Anorectal Diseases, The First People's Hospital of Yunnan Province, Affiliated Hospital to Kunming University of Science and Technology, Kunming, 650032, PR China
| | - Liju Zhang
- Yunnan University School Medicine, Kunming, 650032, PR China
| | - Xiaoming Jiang
- Department of Anorectal Diseases, The First People's Hospital of Yunnan Province, Affiliated Hospital to Kunming University of Science and Technology, Kunming, 650032, PR China
| | - Changxian Chen
- Department of Anorectal Diseases, The First People's Hospital of Yunnan Province, Affiliated Hospital to Kunming University of Science and Technology, Kunming, 650032, PR China
| | - Xi Wu
- Medical School, Kunming University of Science and Technology, Kunming, 650504, PR China
| | - Quan Zhao
- Department of General Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital to Kunming University of Science and Technology, Kunming, 650032, PR China
| |
Collapse
|
4
|
Chen Y, Tan J, Yang C, Ling Z, Xu J, Sun D, Luo F. Dynamic chromatin accessibility landscapes of osteoblast differentiation and mineralization. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166938. [PMID: 37931716 DOI: 10.1016/j.bbadis.2023.166938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Bone acts as a self-healing organ, which undergoes continuous regeneration process that is tightly regulated by the cooperation of osteoclasts with the capability of bone resorption and osteoblasts with the capability of bone formation. Generally, bone marrow derived mesenchymal stem cells (BMSCs) differentiated to final osteoblasts have been considered as critical role in bone remodeling. In this regard, several transcription factors (TFs) whose binding sites are initially hidden deep within accessible chromatin that participate in modulating osteoblast differentiation and bone matrix mineralization. Then, it is necessary to explore further the dynamic changes about the epigenetic transcription machinery during osteoblastogenesis. Here, we performed the chromatin accessibility and transcriptomic landscape of osteoblast differentiation and mineralization by using transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-Seq). Our data found that global chromatin accessibility during osteoblastogenesis was extensively improved. Above this, it is shown that key target genes including Col6a3, Serpina3n, Ms4a4d, Lyz2, Phf11b and Grin3a were enriched in differential loci RNA-seq and ATAC-Seq peaks with continuous changed tendency during osteoblasts differentiation and mineralization. In addition, Analysis of Motif Enrichment (AME) was used to elucidate TFs which modulated these target genes. In this study, it was shown for the first time that these important TFs including MEF2A, PRRX1, Shox2 and HOXB13 could alter promoter accessibility of target genes during osteoblastogenesis. This helps us understand how TF binding motif accessibility influences osteoblast differentiation. In addition, it also suggests that modulating the chromatin accessibility of osteogenesis could be developed as the promising strategies to regulate bone regeneration.
Collapse
Affiliation(s)
- Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Department of Orthopedics, 76nd Group Army Hospital, Xining, People's Republic of China.
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhiguo Ling
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Dong Sun
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
5
|
Liu Y, Chen Y, Li XH, Cao C, Zhang HX, Zhou C, Chen Y, Gong Y, Yang JX, Cheng L, Chen XD, Shen H, Xiao HM, Tan LJ, Deng HW. Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution. Int J Stem Cells 2023; 16:342-355. [PMID: 37105556 PMCID: PMC10465330 DOI: 10.15283/ijsc22101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Xi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
6
|
Pagel CN, Kularathna PK, Sanaei R, Young ND, Hooper JD, Mackie EJ. Protease-activated receptor-2 dependent and independent responses of bone cells to prostate cancer cell secretory products. Prostate 2022; 82:723-739. [PMID: 35167724 DOI: 10.1002/pros.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Metastatic prostate cancer lesions in the skeleton are frequently characterized by excessive formation of bone. Prostate cancer cells secrete factors, including serine proteases, that are capable of influencing the behavior of surrounding cells. Some of these proteases activate protease-activated receptor-2 (PAR2 ), which is expressed by osteoblasts (bone-forming cells) and precursors of osteoclasts (bone-resorbing cells). The aim of the current study was to investigate a possible role for PAR2 in regulating the behavior of bone cells exposed to metastatic prostate cancer cells. METHODS The effect of medium conditioned by the PC3, DU145, and MDA-PCa-2b prostate cancer cell lines was investigated in assays of bone cell function using cells isolated from wildtype and PAR2 -null mice. Osteoclast differentiation was assessed by counting tartrate-resistant acid phosphatase-positive multinucleate cells in bone marrow cultured in osteoclastogenic medium. Osteoblasts were isolated from calvariae of neonatal mice, and BrdU incorporation was used to assess their proliferation. Assays of alkaline phosphatase activity and quantitative PCR analysis of osteoblastic gene expression were used to assess osteoblast differentiation. Responses of osteoblasts to medium conditioned by MDA-PCa-2b cells were analyzed by RNAseq. RESULTS Conditioned medium (CM) from all three cell lines inhibited osteoclast differentiation independently of PAR2 . Media from PC3 and DU145 cells had no effect on assays of osteoblast function. Medium conditioned by MDA-PCa-2b cells stimulated BrdU incorporation in both wildtype and PAR2 -null osteoblasts but increased alkaline phosphatase activity and Runx2 and Col1a1 expression in wildtype but not PAR2 -null cells. Functional enrichment analysis of RNAseq data identified enrichment of multiple gene ontology terms associated with lysosomal function in both wildtype and PAR2 -null cells in response to MDA-PCa-2b-CM. Analysis of individual genes identified osteogenesis-associated genes that were either upregulated by MDA-PCa-2b-CM selectively in wildtype cells or downregulated selectively in PAR2 -null cells. CONCLUSIONS Factors secreted by prostate cancer cells influence bone cell behavior through both PAR2 -dependent and -independent mechanisms. Both PAR2 -independent suppression of osteoclast differentiation and PAR2 -dependent stimulation of osteogenesis are likely to determine the nature of prostate cancer metastases in bone.
Collapse
Affiliation(s)
- Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pamu K Kularathna
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Sanaei
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - John D Hooper
- Mater Research Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Eleanor J Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Chen TY, Li X, Goobie GC, Hung CH, Hung TK, Hamilton K, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. Identification of a distal RXFP1 gene enhancer with differential activity in fibrotic lung fibroblasts involving AP-1. PLoS One 2022; 16:e0254466. [PMID: 34972106 PMCID: PMC8719731 DOI: 10.1371/journal.pone.0254466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Relaxin/insulin-like family peptide receptor 1 (RXFP1) mediates relaxin’s antifibrotic effects and has reduced expression in the lung and skin of patients with fibrotic interstitial lung disease (fILD) including idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). This may explain the failure of relaxin-based anti-fibrotic treatments in SSc, but the regulatory mechanisms controlling RXFP1 expression remain largely unknown. This study aimed to identify regulatory elements of RXFP1 that may function differentially in fibrotic fibroblasts. We identified and evaluated a distal regulatory region of RXFP1 in lung fibroblasts using a luciferase reporter system. Using serial deletions, an enhancer upregulating pGL3-promoter activity was localized to the distal region between -584 to -242bp from the distal transcription start site (TSS). This enhancer exhibited reduced activity in IPF and SSc lung fibroblasts. Bioinformatic analysis identified two clusters of activator protein 1 (AP-1) transcription factor binding sites within the enhancer. Site-directed mutagenesis of the binding sites confirmed that only one cluster reduced activity (-358 to -353 relative to distal TSS). Co-expression of FOS in lung fibroblasts further increased enhancer activity. In vitro complex formation with a labeled probe spanning the functional AP-1 site using nuclear proteins isolated from lung fibroblasts confirmed a specific DNA/protein complex formation. Application of antibodies against JUN and FOS resulted in the complex alteration, while antibodies to JUNB and FOSL1 did not. Analysis of AP-1 binding in 5 pairs of control and IPF lung fibroblasts detected positive binding more frequently in control fibroblasts. Expression of JUN and FOS was reduced and correlated positively with RXFP1 expression in IPF lungs. In conclusion, we identified a distal enhancer of RXFP1 with differential activity in fibrotic lung fibroblasts involving AP-1 transcription factors. Our study provides insight into RXFP1 downregulation in fILD and may support efforts to reevaluate relaxin-based therapeutics alongside upregulation of RXFP1 transcription.
Collapse
Affiliation(s)
- Ting-Yun Chen
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Gillian C. Goobie
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Medicine, Clinician Investigator Program, University of British Columbia, Vancouver, B.C., Canada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tin-Kan Hung
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kyle Hamilton
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jiangning Tan
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daniel J. Kass
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Johnson de Sousa Brito FM, Butcher A, Pisconti A, Poulet B, Prior A, Charlesworth G, Sperinck C, Scotto di Mase M, Liu K, Bou-Gharios G, Jurgen van 't Hof R, Daroszewska A. Syndecan-3 enhances anabolic bone formation through WNT signaling. FASEB J 2021; 35:e21246. [PMID: 33769615 PMCID: PMC8251628 DOI: 10.1096/fj.202002024r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Osteoporosis is the most common age‐related metabolic bone disorder, which is characterized by low bone mass and deterioration in bone architecture, with a propensity to fragility fractures. The best treatment for osteoporosis relies on stimulation of osteoblasts to form new bone and restore bone structure, however, anabolic therapeutics are few and their use is time restricted. Here, we report that Syndecan‐3 increases new bone formation through enhancement of WNT signaling in osteoblasts. Young adult Sdc3−/− mice have low bone volume, reduced bone formation, increased bone marrow adipose tissue, increased bone fragility, and a blunted anabolic bone formation response to mechanical loading. This premature osteoporosis‐like phenotype of Sdc3−/− mice is due to delayed osteoblast maturation and impaired osteoblast function, with contributing increased osteoclast‐mediated bone resorption. Indeed, overexpressing Sdc3 in osteoblasts using the Col1a1 promoter rescues the low bone volume phenotype of the Sdc3−/− mice, and also increases bone volume in WT mice. Mechanistically, SDC3 enhances canonical WNT signaling in osteoblasts through stabilization of Frizzled 1, making SDC3 an attractive target for novel bone anabolic drug development.
Collapse
Affiliation(s)
- Francesca Manuela Johnson de Sousa Brito
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Andrew Butcher
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Addolorata Pisconti
- Department of Biochemistry, IIB, University of Liverpool, Liverpool, UK.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Blandine Poulet
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Amanda Prior
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Gemma Charlesworth
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Catherine Sperinck
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Michele Scotto di Mase
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Ke Liu
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - George Bou-Gharios
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Robert Jurgen van 't Hof
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK
| | - Anna Daroszewska
- Department of Musculoskeletal and Ageing Science (formerly Department of Musculoskeletal Biology), Institute of Life Course and Medical Sciences (formerly Institute of Ageing and Chronic Disease), University of Liverpool, Liverpool, UK.,Department of Clinical Biochemistry and Metabolic Medicine, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.,Department of Rheumatology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
9
|
Meng P, Bedolla RG, Yun H, Fitzpatrick JE, Kumar AP, Ghosh R. Contextual role of E2F1 in suppression of melanoma cell motility and invasiveness. Mol Carcinog 2019; 58:1701-1710. [PMID: 31124185 DOI: 10.1002/mc.23043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 12/29/2022]
Abstract
The general transcription factor E2F1 reportedly functions in a protumorigenic manner in several cancer models. We show that the genetic context of cancer cells influence E2F1's role to impede the protumorigenic role. Thirty to fifty percent of melanoma patients carry mutant BRAF with about 90% of mutant BRAF melanomas being V600E mutation. Tissue microarrays from melanoma patients were used to establish an association between E2F1 and BRAFV600E . We show for the first time that low E2F1 levels in BRAFV600E melanomas are associated with lymph node metastasis. Genetic manipulation of E2F1 in BRAFV600E and BRAFwt cells were used to determine its role in malignant melanoma progression by examining effects on migration and invasion. E2F1-mediated negative regulation of myosin light chain kinase (MYLK) increased migration and invasion in BRAFV600E cells by phosphorylating myosin light chain and increased stress fiber formation. We show that E2F1 inhibits extracellular signal-regulated kinase (ERK) activation in BRAFV600E cells and provide evidence for a negative feedback loop between E2F1 and ERK in these cells. This study shows for the first time that E2F1 has a cancer protective role in oncogenic BRAF-activated melanoma cells and that loss of E2F1 can allow disease progression through a novel mechanism of E2F1-mediated MYLK regulation. This study has implications for oncogenic BRAF-activated tumors and resistance to targeted oncogenic BRAF therapy.
Collapse
Affiliation(s)
- Peng Meng
- Department of Cell Systems & Anatomy, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
- Department of Urology, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
| | - Roble G Bedolla
- Department of Urology, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
| | - Huiyoung Yun
- Department of Pharmacology, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
| | - James E Fitzpatrick
- Department of Dermatology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Addanki P Kumar
- Department of Urology, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
- Department of Pharmacology, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
- Department of Molecular Medicine, & Mays Cancer Center, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
| | - Rita Ghosh
- Department of Urology, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
- Department of Pharmacology, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
- Department of Molecular Medicine, & Mays Cancer Center, School of Medicine, The University of Texas Health at San Antonio, San Antonio, Texas
| |
Collapse
|
10
|
Wu F, Jiao J, Liu F, Yang Y, Zhang S, Fang Z, Dai Z, Sun Z. Hypermethylation of Frizzled1 is associated with Wnt/β-catenin signaling inactivation in mesenchymal stem cells of patients with steroid-associated osteonecrosis. Exp Mol Med 2019; 51:1-9. [PMID: 30808872 PMCID: PMC6391470 DOI: 10.1038/s12276-019-0220-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is associated with the pathogenesis of steroid-induced osteonecrosis. Our investigation studied whether aberrant CpG island hypermethylation of the FZD1 gene was present in patients with osteonecrosis of the femoral head (ONFH), which results in Wnt/β-catenin signaling inactivation and subsequent cell dysfunction. Bone marrow was collected from the proximal femurs of patients with steroid-associated ONFH (n = 21) and patients with new femoral neck fractures (n = 22), and then mesenchymal stem cells (MSCs) were isolated. We investigated cell viability, the transcription and translation levels of Wnt/β-catenin signaling-related genes, the extent of methylation at CpG islands of the FZD1 promoter, and the osteogenic and adipogenic differentiation abilities of MSCs from the control group and from the ONFH group treated with or without 5′-Aza-dC. According to the results, MSCs from the ONFH group showed a reduced proliferation ability, low transcription and translation levels of FZD1, inhibition of the Wnt/β-catenin signaling pathway, weakened osteogenesis and enhanced adipogenesis ability. Aberrant CpG island hypermethylation of FZD1 was observed in the ONFH group. Treatment with 5’-Aza-dC resulted in de novo FZD1 expression, reactivation of the Wnt/β-catenin signaling pathway and promotion of osteogenesis. Taken together, our study not only provides novel insights into the regulation of the Wnt/β-catenin signaling pathway in this disease but also reveals potential for the use of demethylating agents for the treatment of GC-associated ONFH. Studies of genetic and molecular signaling processes in the bone disease osteonecrosis, when it is associated with steroid use, reveal insights into disease development and suggest new approaches for treatment. Steroid drugs increase the risk of osteonecrosis, in which bone tissue dies due to insufficient blood supply, but the mechanism of this effect is unclear. Researchers in China, led by Zhibo Sun at Wuhan University, investigated a link between the aberrant addition of methyl groups (CH3) to the DNA of a specific gene and the onset of the disease. They identified an important molecular signaling pathway in cultured bone marrow cells from patients that is inhibited by the gene methylation. Treating these cells with a drug that inhibits methylation led to reactivation of the gene and the associated signalling pathway that promotes healthy bone formation.
Collapse
Affiliation(s)
- Fei Wu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jing Jiao
- Department of Orthopedics, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yue Yang
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shanfeng Zhang
- Department of Orthopedics, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenhua Fang
- Department of Orthopedics, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhipeng Dai
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhibo Sun
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan, Hubei, China. .,Department of Orthopedics, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Wang Y, Ye F, Huang C, Xue F, Li Y, Gao S, Qiu Z, Li S, Chen Q, Zhou H, Song Y, Huang W, Tan W, Wang Z. Bioinformatic Analysis of Potential Biomarkers for Spinal Cord-injured Patients with Intractable Neuropathic Pain. Clin J Pain 2018; 34:825-830. [PMID: 29547407 PMCID: PMC6078488 DOI: 10.1097/ajp.0000000000000608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/05/2017] [Accepted: 10/22/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Neuropathic pain is one of the common complications after spinal cord injury (SCI), affecting individuals' quality of life. The molecular mechanism for neuropathic pain after SCI is still unclear. We aimed to discover potential genes and microRNAs (miRNAs) related to neuropathic pain by the bioinformatics method. METHODS Microarray data of GSE69901 were obtained from Gene Expression Omnibus (GEO) database. Peripheral blood samples from individuals with or without neuropathic pain after SCI were collected. Twelve samples from individuals with neuropathic pain and 13 samples from individuals without pain as controls were included in the downloaded microarray. Differentially expressed genes (DEGs) between the neuropathic pain group and the control group were detected using the GEO2R online tool. Functional enrichment analysis of DEGs was performed using the DAVID database. Protein-protein interaction network was constructed from the STRING database. MiRNAs targeting these DEGs were obtained from the miRNet database. A merged miRNA-DEG network was constructed and analyzed with Cytoscape software. RESULTS In total, 1134 DEGs were identified between individuals with or without neuropathic pain (case and control), and 454 biological processes were enriched. We identified 4 targeted miRNAs, including mir-204-5p, mir-519d-3p, mir-20b-5p, mir-6838-5p, which may be potential biomarkers for SCI patients. CONCLUSION Protein modification and regulation of the biological process of the central nervous system may be a risk factor in SCI. Certain genes and miRNAs may be potential biomarkers for the prediction of and potential targets for the prevention and treatment of neuropathic pain after SCI.
Collapse
Affiliation(s)
- Yimin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, Guangzhou
| | - Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Chanyan Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Faling Xue
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Yingyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Zeting Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Si Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Qinchang Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Huaqiang Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Yiyan Song
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University
| |
Collapse
|
12
|
Muller J, Bolomsky A, Dubois S, Duray E, Stangelberger K, Plougonven E, Lejeune M, Léonard A, Marty C, Hempel U, Baron F, Beguin Y, Cohen-Solal M, Ludwig H, Heusschen R, Caers J. Maternal embryonic leucine zipper kinase inhibitor OTSSP167 has preclinical activity in multiple myeloma bone disease. Haematologica 2018; 103:1359-1368. [PMID: 29748441 PMCID: PMC6068043 DOI: 10.3324/haematol.2017.185397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
Multiple myeloma bone disease is characterized by an uncoupling of bone remodeling in the multiple myeloma microenvironment, resulting in the development of lytic bone lesions. Most myeloma patients suffer from these bone lesions, which not only cause morbidity but also negatively impact survival. The development of novel therapies, ideally with a combined anti-resorptive and bone-anabolic effect, is of great interest because lesions persist with the current standard of care, even in patients in complete remission. We have previously shown that MELK plays a central role in proliferation-associated high-risk multiple myeloma and its inhibition with OTSSP167 resulted in decreased tumor load. MELK inhibition in bone cells has not yet been explored, although some reports suggest that factors downstream of MELK stimulate osteoclast activity and inhibit osteoblast activity, which makes MELK inhibition a promising therapeutic approach. Therefore, we assessed the effect of OTSSP167 on bone cell activity and the development of myeloma-induced bone disease. OTSSP167 inhibited osteoclast activity in vitro by decreasing progenitor viability as well as via a direct anti-resorptive effect on mature osteoclasts. In addition, OTSSP167 stimulated matrix deposition and mineralization by osteoblasts in vitro. This combined anti-resorptive and osteoblast-stimulating effect of OTSSP167 resulted in the complete prevention of lytic lesions and bone loss in myeloma-bearing mice. Immunohistomorphometric analyses corroborated our in vitro findings. In conclusion, we show that OTSSP167 has a direct effect on myeloma-induced bone disease in addition to its anti-multiple myeloma effect, which warrants further clinical development of MELK inhibition in multiple myeloma.
Collapse
Affiliation(s)
| | - Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Department of Medicine I, Wilhelminenspital, Vienna, Austria
| | - Sophie Dubois
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium
| | - Elodie Duray
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium
| | - Kathrin Stangelberger
- Wilhelminen Cancer Research Institute, Department of Medicine I, Wilhelminenspital, Vienna, Austria
| | - Erwan Plougonven
- PEPs (Products, Environments, Processes), Chemical Engineering, Liège, Belgium
| | - Margaux Lejeune
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium
| | - Angélique Léonard
- PEPs (Products, Environments, Processes), Chemical Engineering, Liège, Belgium
| | | | - Ute Hempel
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium.,Department of Hematology, CHU de Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium.,Department of Hematology, CHU de Liège, Belgium
| | | | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Department of Medicine I, Wilhelminenspital, Vienna, Austria
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium .,Department of Hematology, CHU de Liège, Belgium
| |
Collapse
|
13
|
Liu S, Fang T, Yang L, Chen Z, Mu S, Fu Q. Gastrodin protects MC3T3-E1 osteoblasts from dexamethasone-induced cellular dysfunction and promotes bone formation via induction of the NRF2 signaling pathway. Int J Mol Med 2018; 41:2059-2069. [PMID: 29393365 PMCID: PMC5810206 DOI: 10.3892/ijmm.2018.3414] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis (GIO) is one of the most common secondary and iatrogenic forms of osteoporosis. GCs are widely used in clinical therapy and play a key role in the normal regulation of bone remodeling. However, the prolonged and high-dose administration of GCs results in the occurrence of osteoporosis, which is partially due to the dysfunction and apoptosis of osteoblasts and osteocytes. The aim of the present study was to investigate the effects of gastrodin, a natural bioactive compound isolated from the traditional Chinese herbal agent Gastrodia elata, on GC-treated MC3T3‑E1 murine osteoblastic cells. MC3T3‑E1 cells were exposed to dexamethasone (DEX), with or without gastrodin pretreatment, and cell viability was measured by the cell counting kit-8 (CCK-8) assay. Quantitative polymerase chain reaction analysis was performed to evaluate osteogenic gene expression, and cellular alkaline phosphatase (ALP) activity was measured as well. Alizarin Red staining of calcium deposits was found to reflect the degree of osteoblast maturity. Western blotting was performed to determine the expression of osteogenic and adipogenic differentiation key proteins, as well as nuclear factor-like 2 (NRF2) pathway‑related proteins. Annexin V-fluorescein isothiocyanate̸propidium iodide flow cytometric analysis was performed to determine osteoblast apoptosis. JC-1 staining was used to detect the changes of the mitochondrial membrane potential in cells. The results revealed that gastrodin prevented the decrease in cell viability caused by DEX-induced MC3T3‑E1 cell dysfunction, and that groups pretreated with gastrodin exhibited higher mRNA levels of osteogenic genes, such as Runx2, osterix, bone morphogenetic protein-2 and osteocalcin. Furthermore, treatment with both DEX and gastrodin was associated with increased ALP activity in MC3T3-E1 cells, as well as more calcium deposits, compared with cells treated with DEX alone. In addition, gastrodin increased osteogenic key marker protein Runx2 while activating NRF2 and downstream effector protein expression. Therefore, gastrodin may have the potential to reduce DEX-induced cell apoptosis and increase the mitochondrial membrane potential against DEX. These results demonstrated that gastrodin was able to prevent and/or delay DEX‑induced osteoporosis by improving osteoblast function, and these protective effects were verified in an animal model.
Collapse
Affiliation(s)
- Shengye Liu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tao Fang
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Liyu Yang
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhiguang Chen
- Emergency Department, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuai Mu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qin Fu
- Department of Spine and Joint Surgery, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
14
|
Gastrodin alleviates glucocorticoid induced osteoporosis in rats via activating the Nrf2 signaling pathways. Oncotarget 2018; 9:11528-11540. [PMID: 29545917 PMCID: PMC5837737 DOI: 10.18632/oncotarget.23936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Background Prolonged and over-dosed administration of glucocorticoids results in more bone remodeling, leading to glucocorticoid-induced osteoporosis, which is primarily due to dysfunction and apoptosis of osteoblasts. The present study investigated the therapeutic effect and molecular mechanism of gastrodin, a natural bioactive compound isolated from the traditional Chinese herbal agent Gastrodia elata, on osteoblastic cells in vivo and in vitro. Materials and Methods The anti-dexamethasone (DEX) effects of gastrodin on primary osteoblasts were measured by cell viability, flow cytometry, and western blot analysis in vitro, and also extensively examined in a rat model in vivo. Results The results show that gastrodin pretreatment significantly increased osteoblast viability and alkaline phosphatase activity when exposed to DEX. Alizarin Red staining indicated more calcium deposits formed in the gastrodin pretreatment against DEX group. Gastrodin alleviated DEX-induced reactive oxygen species at both the mitochondrial and cellular levels in osteoblasts. In addition, gastrodin protected primary osteoblasts from caspase3-related apoptosis by reducing the loss in the mitochondrial membrane potential and decreasing the release of DEX-induced cytochrome-C, bax, and apoptosis inducing factor. Gastrodin also antagonized upregulated endoplasmic reticulum stress signals induced by DEX, including the expression of GRP78, CHOP, and phosphorylated eIF2α. Furthermore, gastrodin protected osteoblasts by activating the nuclear factor erythroid derived 2-related factor-2 (Nrf2) pathway. Furthermore, femoral micro-computed tomography scans and biomechanical tests revealed that gastrodin improved bone microstructure and mitigated DEX-induced deterioration in bone quality. Conclusions These findings suggest that gastrodin alleviated glucocorticoid-induced osteoporosis in rats by protecting osteoblasts via the Nrf2 regulated mitochondrial and ER stress-related signaling pathways.
Collapse
|
15
|
Son HE, Kim EJ, Jang WG. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells. Life Sci 2017; 193:34-39. [PMID: 29223538 DOI: 10.1016/j.lfs.2017.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
AIMS Curcumin (diferuloylmethane or [1E,6E]-1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6heptadiene-3,5-dione) is a phenolic natural product derived from the rhizomes of the turmeric plant, Curcuma longa. It is reported to have various biological actions such as anti-oxidative, anti-inflammatory, and anti-cancer effects. However, the molecular mechanism of osteoblast differentiation by curcumin has not yet been reported. MAIN METHODS The cytotoxicity of curcumin was identified using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of osteogenic markers and endoplasmic reticulum (ER) stress markers in C3H1-T1/2 cells were measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity in C3H10T1/2 cells. Transcriptional activity was detected using a luciferase reporter assay. KEY FINDINGS Curcumin increased the expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC), which subsequently induced osteoblast differentiation in C3H10T1/2 cells. In addition, ALP activity and mineralization was found to be increased by curcumin treatment. Curcumin also induced mild ER stress similar to bone morphogenetic protein 2 (BMP2) function in osteoblast cells. Next, we confirmed that curcumin increased mild ER stress and osteoblast differentiation similar to BMP2 in C3H10T1/2 mesenchymal stem cells. Transient transfection studies also showed that curcumin increased ATF6-Luc activity, while decreasing the activities of CREBH-Luc and SMILE-Luc. In addition, similar to BMP2, curcumin induced the phosphorylation of Smad 1/5/9. SIGNIFICANCE Overall, these results demonstrate that curcumin-induced mild ER stress increases osteoblast differentiation via ATF6 expression in C3H10T1/2 cells.
Collapse
Affiliation(s)
- Hyo-Eun Son
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Eun-Jung Kim
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
16
|
Sebastian A, Hum NR, Murugesh DK, Hatsell S, Economides AN, Loots GG. Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts. PLoS One 2017; 12:e0188264. [PMID: 29176883 PMCID: PMC5703471 DOI: 10.1371/journal.pone.0188264] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/05/2017] [Indexed: 01/10/2023] Open
Abstract
Wnt3a is a major regulator of bone metabolism however, very few of its target genes are known in bone. Wnt3a preferentially signals through transmembrane receptors Frizzled and co-receptors Lrp5/6 to activate the canonical signaling pathway. Previous studies have shown that the canonical Wnt co-receptors Lrp5 and Lrp6 also play an essential role in normal postnatal bone homeostasis, yet, very little is known about specific contributions by these co-receptors in Wnt3a-dependent signaling. We used high-throughput sequencing technology to identify target genes regulated by Wnt3a in osteoblasts and to elucidate the role of Lrp5 and Lrp6 in mediating Wnt3a signaling. Our study identified 782 genes regulated by Wnt3a in primary calvarial osteoblasts. Wnt3a up-regulated the expression of several key regulators of osteoblast proliferation/ early stages of differentiation while inhibiting genes expressed in later stages of osteoblastogenesis. We also found that Lrp6 is the key mediator of Wnt3a signaling in osteoblasts and Lrp5 played a less significant role in mediating Wnt3a signaling.
Collapse
Affiliation(s)
- Aimy Sebastian
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Deepa K. Murugesh
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
| | - Sarah Hatsell
- Regeneron Pharmaceuticals, Tarrytown, NY, United States of America
| | | | - Gabriela G. Loots
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Silva IAL, Conceição N, Gagnon É, Caiado H, Brown JP, Gianfrancesco F, Michou L, Cancela ML. Effect of genetic variants of OPTN in the pathophysiology of Paget's disease of bone. Biochim Biophys Acta Mol Basis Dis 2017; 1864:143-151. [PMID: 28993189 DOI: 10.1016/j.bbadis.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/14/2023]
Abstract
Paget's disease of bone (PDB) is the second most frequent metabolic bone disease after osteoporosis. Genetic factors play an important role in PDB, but to date PDB causing mutations were identified only in the Sequestosome 1 gene at the PDB3 locus. OPTN has been recently associated with PDB, however little is known about the effect of genetic variants in this gene in PDB pathophysiology. By sequencing OPTN in SQSTM1 non-carriers PDB patients we found 16 SNPs in regulatory, coding and non-coding regions. One of those was found to be associated with PDB in our cohort - rs2234968. Our results show that rs2238968 effect may be explained by a change in OPTN splicing that give rise to a predicted truncated protein. We also performed functional studies on the variants located in OPTN promoter - rs3829923 and the rare variant -9906 - to investigate putative regulators of OPTN. Our results show that OPTN expression seems to be regulated by SP1, RXR, E47, and the E2F family. In conclusion, our work suggests a potential pathophysiological role of SNPs in OPTN, giving a new perspective about the regulatory mechanisms of this gene. Ultimately we discovered a new variant associated with PDB in OPTN, reinforcing the relevance of this gene for the development of this bone disease.
Collapse
Affiliation(s)
- Iris A L Silva
- PhD program in Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Édith Gagnon
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Helena Caiado
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; PhD program in Regenerative Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Jacques P Brown
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval and Department of Rheumatology, CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council of Italy, 80131 Naples, Italy
| | - Laëtitia Michou
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval and Department of Rheumatology, CHU de Québec-Université Laval, Québec City, QC, Canada.
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal.
| |
Collapse
|
18
|
Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML. High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development 2017; 144:292-304. [PMID: 28096217 DOI: 10.1242/dev.139220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023]
Abstract
During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA-sequencing analysis to comprehensively interrogate animal and vegetal pole RNAs in the fully grown Xenopus laevis oocyte. We identified 411 (198 annotated) and 27 (15 annotated) enriched mRNAs at the vegetal and animal pole, respectively. Ninety were novel mRNAs over 4-fold enriched at the vegetal pole and six were over 10-fold enriched at the animal pole. Unlike mRNAs, microRNAs were not asymmetrically distributed. Whole-mount in situ hybridization confirmed that all 17 selected mRNAs were localized. Biological function and network analysis of vegetally enriched transcripts identified protein-modifying enzymes, receptors, ligands, RNA-binding proteins, transcription factors and co-factors with five defining hubs linking 47 genes in a network. Initial functional studies of maternal vegetally localized mRNAs show that sox7 plays a novel and important role in primordial germ cell (PGC) development and that ephrinB1 (efnb1) is required for proper PGC migration. We propose potential pathways operating at the vegetal pole that highlight where future investigations might be most fruitful.
Collapse
Affiliation(s)
- Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Tristan H Aguero
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Karen M Newman
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Derek Van Booven
- The Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
19
|
Tan J, Tedrow JR, Nouraie M, Dutta JA, Miller DT, Li X, Yu S, Chu Y, Juan-Guardela B, Kaminski N, Ramani K, Biswas PS, Zhang Y, Kass DJ. Loss of Twist1 in the Mesenchymal Compartment Promotes Increased Fibrosis in Experimental Lung Injury by Enhanced Expression of CXCL12. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2269-2285. [PMID: 28179498 PMCID: PMC5337810 DOI: 10.4049/jimmunol.1600610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/12/2017] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by the accumulation of apoptosis-resistant fibroblasts in the lung. We have previously shown that high expression of the transcription factor Twist1 may explain this prosurvival phenotype in vitro. However, this observation has never been tested in vivo. We found that loss of Twist1 in COL1A2+ cells led to increased fibrosis characterized by very significant accumulation of T cells and bone marrow-derived matrix-producing cells. We found that Twist1-null cells expressed high levels of the T cell chemoattractant CXCL12. In vitro, we found that the loss of Twist1 in IPF lung fibroblasts increased expression of CXCL12 downstream of increased expression of the noncanonical NF-κB transcription factor RelB. Finally, blockade of CXCL12 with AMD3100 attenuated the exaggerated fibrosis observed in Twist1-null mice. Transcriptomic analysis of 134 IPF patients revealed that low expression of Twist1 was characterized by enrichment of T cell pathways. In conclusion, loss of Twist1 in collagen-producing cells led to increased bleomycin-induced pulmonary fibrosis, which is mediated by increased expression of CXCL12. Twist1 expression is associated with dysregulation of T cells in IPF patients. Twist1 may shape the IPF phenotype and regulate inflammation in fibrotic lung injury.
Collapse
Affiliation(s)
- Jiangning Tan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - John R Tedrow
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Justin A Dutta
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - David T Miller
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Shibing Yu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yanxia Chu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brenda Juan-Guardela
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520; and
| | - Kritika Ramani
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Partha S Biswas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213;
| |
Collapse
|
20
|
Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing W, Wang H, Tian W. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci 2017; 130:1158-1168. [PMID: 28167681 DOI: 10.1242/jcs.197764] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/31/2017] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue is an active endocrine organ that can secrete a wide number of factors to regulate adipogenesis via paracrine signals. In addition to soluble proteins in adipose tissue, microRNAs (miRNAs) enriched in extracellular vesicles (EVs), such as exosomes or microvesicles, could modulate intercellular communications. In this study, we demonstrated that exosome-like vesicles derived from adipose tissue (Exo-AT) were internalized by adipose tissue-derived stem cells (ADSCs), and that these, in turn, induced adipogenesis. High-throughput sequencing showed that 45 miRNAs were enriched in Exo-AT, and 31.11% of them were associated with adipogenesis, compared with ADSC-derived exosome-like vesicles (Exo-ADSC). miR-450a-5p, one of the most abundant miRNAs in Exo-AT, was a proadipogenic miRNA. Further study demonstrated that miR-450a-5p promoted adipogenesis through repressing expression of WISP2 by targeting its 3' untranslated region. Additionally, Exo-AT could also downregulate the expression of WISP2, while miR-450a-5p inhibitor reversed this effect. Moreover, inhibition of miR-450a-5p impaired adipogenesis mediated by exosome-like vesicles. In conclusion, Exo-AT mediates adipogenic differentiation through a mechanism involving transfer of miR-450a-5p.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China
| | - Minjia Dai
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chang Chen
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qi Tang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Jing
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu 610041, China .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, Sichuan Province 610041, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Galea GL, Meakin LB, Harris MA, Delisser PJ, Lanyon LE, Harris SE, Price JS. Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle. Gene 2017; 599:36-52. [PMID: 27840164 PMCID: PMC5139832 DOI: 10.1016/j.gene.2016.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/06/2016] [Indexed: 02/08/2023]
Abstract
In old animals, bone's ability to adapt its mass and architecture to functional load-bearing requirements is diminished, resulting in bone loss characteristic of osteoporosis. Here we investigate transcriptomic changes associated with this impaired adaptive response. Young adult (19-week-old) and aged (19-month-old) female mice were subjected to unilateral axial tibial loading and their cortical shells harvested for microarray analysis between 1h and 24h following loading (36 mice per age group, 6 mice per loading group at 6 time points). In non-loaded aged bones, down-regulated genes are enriched for MAPK, Wnt and cell cycle components, including E2F1. E2F1 is the transcription factor most closely associated with genes down-regulated by ageing and is down-regulated at the protein level in osteocytes. Genes up-regulated in aged bone are enriched for carbohydrate metabolism, TNFα and TGFβ superfamily components. Loading stimulates rapid and sustained transcriptional responses in both age groups. However, genes related to proliferation are predominantly up-regulated in the young and down-regulated in the aged following loading, whereas those implicated in bioenergetics are down-regulated in the young and up-regulated in the aged. Networks of inter-related transcription factors regulated by E2F1 are loading-responsive in both age groups. Loading regulates genes involved in similar signalling cascades in both age groups, but these responses are more sustained in the young than aged. From this we conclude that cells in aged bone retain the capability to sense and transduce loading-related stimuli, but their ability to translate acute responses into functionally relevant outcomes is diminished.
Collapse
Affiliation(s)
- Gabriel L Galea
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lee B Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK.
| | - Marie A Harris
- Department of Periodontics & Cellular and Structural Biology, University of Texas Health Science Centre, San Antonio, USA
| | - Peter J Delisser
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Stephen E Harris
- Department of Periodontics & Cellular and Structural Biology, University of Texas Health Science Centre, San Antonio, USA
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Liu L, Zhao GH, Gao QQ, Chen YJ, Chen ZP, Xu ZS, Li WD. Changes of mineralogical characteristics and osteoblast activities of raw and processed pyrites. RSC Adv 2017. [DOI: 10.1039/c7ra03970k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pyrite, a commonly used mineral medicine in traditional Chinese medicine (TCM), is normally prescribed in the form of calcined or processed pyrite to ensure clinical safety and efficacy.
Collapse
Affiliation(s)
- L. Liu
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - G. H. Zhao
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Q. Q. Gao
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Y. J. Chen
- Modern Analysis Center of Nanjing University
- Nanjing
- China
| | - Z. P. Chen
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing
| | - Z. S. Xu
- Wuhu Pure Sunshine Natural Medicine Company Limited
- Wuhu
- China
| | - W. D. Li
- College of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
- Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing
| |
Collapse
|
23
|
Yu S, Yerges-Armstrong LM, Chu Y, Zmuda JM, Zhang Y. Transcriptional Regulation of Frizzled-1 in Human Osteoblasts by Sp1. PLoS One 2016; 11:e0163277. [PMID: 27695039 PMCID: PMC5047477 DOI: 10.1371/journal.pone.0163277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/05/2016] [Indexed: 02/03/2023] Open
Abstract
The wingless pathway has a powerful influence on bone metabolism and is a therapeutic target in skeletal disorders. Wingless signaling is mediated in part through the Frizzled (FZD) receptor family. FZD transcriptional regulation is poorly understood. Herein we tested the hypothesis that Sp1 plays an important role in the transcriptional regulation of FZD1 expression in osteoblasts and osteoblast mineralization. To test this hypothesis, we conducted FZD1 promoter assays in Saos2 cells with and without Sp1 overexpression. We found that Sp1 significantly up-regulates FZD1 promoter activity in Saos2 cells. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift (EMSA) assays identified a novel and functional Sp1 binding site at -44 to -40 from the translation start site in the FZD1 promoter. The Sp1-dependent activation of the FZD1 promoter was abolished by mithramycin A (MMA), an antibiotic affecting both Sp1 binding and Sp1 protein levels in Saos2 cells. Similarly, down-regulation of Sp1 in hFOB cells resulted in less FZD1 expression and lower alkaline phosphatase activity. Moreover, over-expression of Sp1 increased FZD1 expression and Saos2 cell mineralization while MMA decreased Sp1 and FZD1 expression and Saos2 cell mineralization. Knockdown of FZD1 prior to Sp1 overexpression partially abolished Sp1 stimulation of osteoblast differentiation markers. Taken together, our results suggest that Sp1 plays a role in human osteoblast differentiation and mineralization, which is at least partially mediated by Sp1-dependent transactivation of FZD1.
Collapse
Affiliation(s)
- Shibing Yu
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
| | - Laura M. Yerges-Armstrong
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- Program in Personalized and Genomic Medicine and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, School of Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Yanxia Chu
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
| | - Joseph M. Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Hei H, Gao J, Dong J, Tao J, Tian L, Pan W, Wang H, Zhang X. BK Knockout by TALEN-Mediated Gene Targeting in Osteoblasts: KCNMA1 Determines the Proliferation and Differentiation of Osteoblasts. Mol Cells 2016; 39:530-5. [PMID: 27329042 PMCID: PMC4959017 DOI: 10.14348/molcells.2016.0033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022] Open
Abstract
Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BK-knockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases.
Collapse
Affiliation(s)
- Hongya Hei
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203,
China
| | - Jianjun Gao
- Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai, 200032,
China
| | - Jibin Dong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203,
China
| | - Jie Tao
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062,
China
| | - Lulu Tian
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203,
China
| | - Wanma Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203,
China
| | - Hongyu Wang
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016,
China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203,
China
| |
Collapse
|
25
|
AP2 suppresses osteoblast differentiation and mineralization through down-regulation of Frizzled-1. Biochem J 2015; 465:395-404. [DOI: 10.1042/bj20140668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AP2 is an important transcription factor in bone development. AP2 binds to the human Frizzled 1 (FZD1) promoter and down-regulates FZD1 expression in osteoblasts. In addition, AP2 negatively regulates osteoblast differentiation and mineralization in part through down-regulation of FZD1 expression.
Collapse
|