1
|
Roig-Soriano J, Edo Á, Verdés S, Martín-Alonso C, Sánchez-de-Diego C, Rodriguez-Estevez L, Serrano AL, Abraham CR, Bosch A, Ventura F, Jordan BA, Muñoz-Cánoves P, Chillón M. Long-term effects of s-KL treatment in wild-type mice: Enhancing longevity, physical well-being, and neurological resilience. Mol Ther 2025; 33:1449-1465. [PMID: 39988871 PMCID: PMC11997498 DOI: 10.1016/j.ymthe.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025] Open
Abstract
Aging is a major risk factor for pathologies including sarcopenia, osteoporosis, and cognitive decline, which bring suffering, disability, and elevated economic and social costs. Therefore, new therapies are needed to achieve healthy aging. The protein Klotho (KL) has emerged as a promising anti-aging molecule due to its pleiotropic actions modulating insulin, insulin-like growth factor-1, and Wnt signaling pathways and reducing inflammatory and oxidative stress. Here, we explored the anti-aging potential of the secreted isoform of this protein on the non-pathological aging progression of wild-type mice. The delivery of an adeno-associated virus serotype 9 (AAV9) coding for secreted KL (s-KL) efficiently increased the concentration of s-KL in serum, resulting in a 20% increase in lifespan. Notably, KL treatment improved physical fitness, related to a reduction in muscle fibrosis and an increase in muscular regenerative capacity. KL treatment also improved bone microstructural parameters associated with osteoporosis. Finally, s-KL-treated mice exhibited increased cellular markers of adult neurogenesis and immune response, with transcriptomic analysis revealing induced phagocytosis and immune cell activity in the aged hippocampus. These results show the potential of elevating s-KL expression to simultaneously reduce the age-associated degeneration in multiple organs, increasing both life and health span.
Collapse
Affiliation(s)
- Joan Roig-Soriano
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Ángel Edo
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Sergi Verdés
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Carlos Martín-Alonso
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Laura Rodriguez-Estevez
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain; Altos Labs, San Diego Institute of Science, San Diego, CA 92122, USA
| | | | - Assumpció Bosch
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Ciberned, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Altos Labs, San Diego Institute of Science, San Diego, CA 92122, USA
| | - Miguel Chillón
- Institut de Neurociènces (INc), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Unitat de Producció de Vectors (UPV), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
2
|
Yao Q, Tsuboi K, Hongo H, Sakakibara M, Yamamoto T, Haraguchi-Kitakamae M, Ishizu H, Liu X, Shi Y, Li W, Cui J, Shimizu T, Amizuka N, Yokoyama A, Hasegawa T, Sakaguchi K. Histochemical assessment of the femora of spontaneously diabetic torii-lepr fa (SDT-fa/fa) rats that mimic type II diabetes. J Oral Biosci 2025; 67:100602. [PMID: 39706476 DOI: 10.1016/j.job.2024.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE To elucidate the mechanisms underlying diabetic osteoporosis, we conducted a comprehensive histological examination of the femora of Spontaneously Diabetic Torii-Leprfa (SDT-fa/fa) rats, an established model of obesity-related type 2 diabetes. MATERIALS AND METHODS Femora from 12 30-week-old male SDT-fa/fa rats and age-matched Sprague-Dawley (SD) rats (controls) were used for detailed histochemical analyses, including tartrate-resistant acid phosphatase (TRAP), cathepsin K, tissue nonspecific alkaline phosphatase (ALP), phosphoethanolamine/phosphocholine phosphatase 1 (PHOSPHO1), dentin matrix protein 1 (DMP-1), matrix extracellular phosphoglycoprotein (MEPE), sclerostin, osteocalcin staining, silver impregnation, von Kossa staining, and micro-computed tomography (CT). RESULTS Micro-CT and hematoxylin-eosin staining demonstrated significantly reduced trabecular bone volume in the femoral metaphyses of SDT-fa/fa rats. Although the number of TRAP-positive osteoclasts per bone surface remained comparable between both groups, SDT-fa/fa rats exhibited reduced areas of ALP-positive and PHOSPHO1-reactive mature osteoblasts/BS. Silver impregnation revealed a well-organized osteocytic lacunar-canalicular system in both groups. However, immunostaining identified aberrant DMP-1 and MEPE expression localized predominantly in the lacunae in SDT-fa/fa rats and in the lacunae and canaliculi of SD rats. Additionally, intense osteocalcin and sclerostin immunoreactivity was detected in osteocytes, along with a higher proportion of osteocalcin-positive osteocytes in SDT-fa/fa rats, distinguishing them from controls. CONCLUSION SDT-fa/fa rats displayed a significant decline in osteoblastic function and distinctive distribution patterns of osteocyte-derived peptides, suggesting that this diabetic model may manifest alterations in osteoblastic activity and the osteocytic lacunar-canalicular network.
Collapse
Affiliation(s)
- Qi Yao
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Oral Functional Prosthodontics, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako Tsuboi
- Department of Oral and Maxillofacial Surgery, Haibara General Hospital, Makinohara, Japan
| | - Hiromi Hongo
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mako Sakakibara
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Orthodontics, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Department of Dentistry, Japan Ground Self-Defense Force Camp, Shinmachi, Japan
| | - Mai Haraguchi-Kitakamae
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hotaka Ishizu
- Orthopaedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Xuanyu Liu
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yan Shi
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Weisong Li
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Jiaxin Cui
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Orthopaedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuro Yokoyama
- Oral Functional Prosthodontics, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Ultrastructure of Hard Tissues, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Kiwamu Sakaguchi
- Oral Functional Prosthodontics, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Haraguchi-Kitakamae M, Nakajima Y, Yamamoto T, Hongo H, Cui J, Shi Y, Liu X, Yao Q, Maruoka H, Abe M, Sekiguchi T, Yokoyama A, Amizuka N, Sasano Y, Hasegawa T. Regional difference in the distribution of alkaline phosphatase, PHOSPHO1, and calcein labeling in the femoral metaphyseal trabeculae in parathyroid hormone-administered mice. J Oral Biosci 2024; 66:554-566. [PMID: 38942193 DOI: 10.1016/j.job.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVES This study aimed to elucidate whether the administration of parathyroid hormone (PTH) results in remodeling- or modeling-based bone formation in different regions of the murine femora, and whether the PTH-driven bone formation would facilitate osteoblastic differentiation into osteocytes. METHODS Six-week-old male C57BL/6J mice were employed to examine the distribution of alkaline phosphatase (ALP), PHOSPHO1, podoplanin, and calcein labeling in two distinct long bone regions: the metaphyseal trabeculae close to the chondro-osseous junction (COJ) and those distant from the COJ in three mouse groups, a control group receiving a vehicle (sham group) and groups receiving hPTH (1-34) twice a day (PTH BID group) or four times a day (PTH QID group) for two weeks. RESULTS The sham group showed PHOSPHO1-reactive mature osteoblasts localized primarily at the COJ, whereas the PTH BID/QID groups exhibited extended lines of PHOSPHO1-reactive osteoblasts even in regions distant from the COJ. The PTH QID group displayed fragmented calcein labeling in trabeculae close to the COJ, whereas continuous labeling was observed in trabeculae distant from the COJ. Osteoblasts tended to express podoplanin and PHOSPHO1 independently in the close and distant regions of the sham group, while osteoblasts in the PTH-administered groups showed immunoreactivity of podoplanin and PHOSPHO1 together in the close and distant regions. CONCLUSIONS Administration of PTH may accelerate remodeling-based bone formation in regions close to the COJ while predominantly inducing modeling-based bone formation in distant regions. PTH appeared to simultaneously facilitate osteoblastic bone mineralization and differentiation into osteocytes in both remodeling- and modeling-based bone formation.
Collapse
Affiliation(s)
- Mai Haraguchi-Kitakamae
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan; Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Yuhi Nakajima
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Tomomaya Yamamoto
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan; Department of Dentistry, Japan Ground Self-Defense Force, Camp Shinmachi, Japan
| | - Hiromi Hongo
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Jiaxin Cui
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Yan Shi
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Xuanyu Liu
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan; Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Qi Yao
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Haruhi Maruoka
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Miki Abe
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Tamaki Sekiguchi
- Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Ayako Yokoyama
- Gerodontology, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Norio Amizuka
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Tomoka Hasegawa
- Ultrastructure of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Japan.
| |
Collapse
|
4
|
Makino A, Hasegawa T, Yamamoto T, Takagi H, Takahashi Y, Miyakoshi N, Amizuka N. Abaloparatide promotes bone repair of vertebral defects in ovariectomized rats by increasing bone formation. Bone 2024; 182:117056. [PMID: 38402920 DOI: 10.1016/j.bone.2024.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Osteoporotic vertebral fracture (OVF) is the most common type of osteoporotic fracture and is associated with immobility and mortality. Bone anabolic agents, such as abaloparatide (ABL), are usually administered to patients with OVF to prevent subsequent fractures. Although several studies have shown that bone anabolic agents promote healing of long bone fractures, there is little evidence of their healing effect on vertebral bone fractures. In the present study, we investigated the effect of ABL on vertebral bone defects using ovariectomized (OVX) rats with vertebral body drill-hole defects, an animal model of OVF. Eight-week-old female Sprague-Dawley rats were subjected to OVX, followed by the 32-36 days of bone depletion period, once-daily subcutaneous ABL was administered to OVX rats at a dose of 30 μg/kg for a maximum of 6 weeks from the day of the vertebral defect surgery. We found that ABL significantly increased bone mineral content and improved trabecular structural parameters at the vertebral defect site. Moreover, ABL significantly increased bone strength of the defected vertebrae. Bone histochemical analysis revealed formation of thick trabecular bone networks at the defect site after ABL administration, consistent with an improvement in trabecular structural parameters by ABL. ABL increased ALPase- and PHOSPHO1-positive osteoblastic cells and ALPase/PCNA double-positive cells, indicating enhanced preosteoblast proliferation as well as bone formation at the defect site. On the other hand, ABL did not affect the number of cathepsin K-positive osteoclasts per bone surface, suggesting that ABL did not promote excessive bone resorption. Our findings suggest that ABL is useful not only for preventing secondary vertebral fractures but also for promoting bone healing in OVF.
Collapse
Affiliation(s)
- Akito Makino
- Pharmacology Research Department, Teijin Pharma Limited, Tokyo, Japan.
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hideko Takagi
- Pharmacology Research Department, Teijin Pharma Limited, Tokyo, Japan
| | | | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Ahmed F, Minamizaki T, Aubin JE, Damayanti MA, Yoshiko Y. Large scale analysis of osteocyte lacunae in klotho hypomorphic mice using high-resolution micro-computed tomography. Ann Anat 2023; 250:152142. [PMID: 37572763 DOI: 10.1016/j.aanat.2023.152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Osteocytes are the most abundant cell type in adult bone, and the morphological characteristics of osteocytes and their lacunae appear to influence bone mass and fragility. Although conventional computed tomography (CT) has contributed greatly to advances in bone morphometry, capturing details of the entire hierarchical assembly, e.g., osteocyte lacuna parameters, has been limited by the analytical performance of CT (> 1 µm resolution). METHODS We used high-resolution (700 nm) micro-CT to evaluate and compare the osteocyte lacuna parameters over a large scale, i.e., in a maximum of about 45,700 lacunae (average), in tibial metaphyseal cortical bones of wild-type (WT) and αKlotho-hypomorphic (kl/kl) mice, the latter a model that exhibits osteopenia and aberrant osteocytes. RESULTS Of osteocyte lacuna parameters, lacunar surface per lacunar volume were significantly lower and lacuna diameter were significantly larger in kl/kl mice compared to WT mice. By analysis of individual osteocyte lacunae, we found that lacunar sphericity in kl/kl mice was higher than that in WT mice, and the diameters in the major and the minor axes were respectively lower and higher in kl/kl mice, especially at the proximal site of the region of interest. CONCLUSION We successfully assessed osteocyte lacuna parameters on the largest scale in mice reported to date and found that the shape of osteocyte lacunae of kl/kl mice are significantly different from those of WT mice. Although the mechanisms underlying the lacunar shape differences observed are not yet clear, changes in lacunar geometry are known to affect the transitions of strains to the osteocyte microenvironment and likely local osteocyte response(s). Thus, the fact that the differences are limited to the mesial region near the primary spongiosa suggests the likelihood of site-specific anomalies in mechanosensitive effects in kl/kl osteocytes with consequent site-specific effects bone metabolism and function.
Collapse
Affiliation(s)
- Faisal Ahmed
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jane E Aubin
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Merry Annisa Damayanti
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, Indonesia
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
6
|
Roig-Soriano J, Sánchez-de-Diego C, Esandi-Jauregui J, Verdés S, Abraham CR, Bosch A, Ventura F, Chillón M. Differential toxicity profile of secreted and processed α-Klotho expression over mineral metabolism and bone microstructure. Sci Rep 2023; 13:4211. [PMID: 36918615 PMCID: PMC10014869 DOI: 10.1038/s41598-023-31117-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
The aging-protective gene α-Klotho (KL) produces two main transcripts. The full-length mRNA generates a transmembrane protein that after proteolytic ectodomain shedding can be detected in serum as processed Klotho (p-KL), and a shorter transcript which codes for a putatively secreted protein (s-KL). Both isoforms exhibit potent pleiotropic beneficial properties, although previous reports showed negative side effects on mineral homeostasis after increasing p-KL concentration exogenously. Here, we expressed independently both isoforms using gene transfer vectors, to assess s-KL effects on mineral metabolism. While mice treated with p-KL presented altered expression of several kidney ion channels, as well as altered levels of Pi and Ca2+ in blood, s-KL treated mice had levels comparable to Null-treated control mice. Besides, bone gene expression of Fgf23 showed a fourfold increase after p-KL treatment, effects not observed with the s-KL isoform. Similarly, bone microstructure parameters of p-KL-treated mice were significantly worse than in control animals, while this was not observed for s-KL, which showed an unexpected increase in trabecular thickness and cortical mineral density. As a conclusion, s-KL (but not p-KL) is a safe therapeutic strategy to exploit KL anti-aging protective effects, presenting no apparent negative effects over mineral metabolism and bone microstructure.
Collapse
Affiliation(s)
- Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Jon Esandi-Jauregui
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Sergi Verdés
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Carmela R Abraham
- Departments of Biochemistry and Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Assumpció Bosch
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain.
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Unitat Producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
7
|
Histological Assessment of Endochondral Ossification and Bone Mineralization. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Finely tuned cartilage mineralization, endochondral ossification, and normal bone formation are necessary for normal bone growth. Hypertrophic chondrocytes in the epiphyseal cartilage secrete matrix vesicles, which are small extracellular vesicles initiating mineralization, into the intercolumnar septa but not the transverse partitions of the cartilage columns. Bone-specific blood vessels invade the unmineralized transverse septum, exposing the mineralized cartilage cores. Many osteoblast precursors migrate to the cartilage cores, where they synthesize abundant bone matrices, and mineralize them in a process of matrix vesicle-mediated bone mineralization. Matrix vesicle-mediated mineralization concentrates calcium (Ca) and inorganic phosphates (Pi), which are converted into hydroxyapatite crystals. These crystals grow radially and are eventually get out of the vesicles to form spherical mineralized nodules, leading to collagen mineralization. The influx of Ca and Pi into the matrix vesicle is regulated by several enzymes and transporters such as TNAP, ENPP1, PiT1, PHOSPHO1, annexins, and others. Such matrix vesicle-mediated mineralization is regulated by osteoblastic activities, synchronizing the synthesis of organic bone material. However, osteocytes reportedly regulate peripheral mineralization, e.g., osteocytic osteolysis. The interplay between cartilage mineralization and vascular invasion during endochondral ossification, as well as that of osteoblasts and osteocytes for normal mineralization, appears to be crucial for normal bone growth.
Collapse
|
8
|
Zhong J, Shibata Y. The structural motifs of mineralized hard tissues from nano- to mesoscale: A future perspective for material science. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:348-356. [DOI: 10.1016/j.jdsr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
|
9
|
Amitani H, Chiba S, Amitani M, Michihara S, Takemoto R, Han L, Fujita N, Takahashi R, Inui A. Impact of Ninjin’yoeito on frailty and short life in klotho-hypomorphic (kl/kl) mice. Front Pharmacol 2022; 13:973897. [DOI: 10.3389/fphar.2022.973897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
With the recent aging of society, the prevention of frailty has become an important issue because people desire both a long and healthy lifespan. Klotho-hypomorphic (kl/kl) mice are known to show phenotypes of premature aging. Ninjin’yoeito (NYT) is a traditional Japanese Kampo medicine used to treat patients with vulnerable constitution, fatigue or physical exhaustion caused by aging and illness. Recent studies have reported the potential efficacy of NYT against frailty. We therefore evaluated the effect of NYT on the gait function, activity, the histopathological status of organs and survival using kl/kl mice as a model of aging-related frailty. Two sets of 28-day-old male kl/kl mice were assigned to the vehicle (non-treated; NT), 3% or 5% NYT dietary groups. One set of groups (NT, n = 18; 3% NYT, n = 11; 5% NYT, n = 11) was subjected to the analysis of free walking, rotarod, and spontaneous activity tests at approximately 58 days old. Thereafter, we measured triceps surae muscles weight and myofiber cross-sectional area (CSA), and quantified its telomere content. In addition, we evaluated bone strength and performed histopathological examinations of organs. Survival was measured in the second set of groups (NT, 3% NYT and 5% NYT group, n = 8 each). In the walking test, several indicators such as gait velocity were improved in the NYT 3% group. Similar results were obtained for the latency to fall in the rotarod test and spontaneous motor activity. Triceps muscle mass, CSA and its telomere content were significantly improved in the NYT 3% group. Bone density, pulmonary alveolus destruction and testicular atrophy were also significantly improved in the NYT 3% group. Survival rate and body weight were both significantly improved in the NYT3% group compared with those in the NT group. Continuous administration of NYT from the early stage of aging improved not only gait performance, but also the survival in the aging-related frailty model. This effect may be associated with the improvements in aging-related organ changes such as muscle atrophy. Intervention with NYT against the progression of frailty may contribute to a longer, healthier life span among the elderly individuals.
Collapse
|
10
|
Hasegawa T, Hongo H, Yamamoto T, Abe M, Yoshino H, Haraguchi-Kitakamae M, Ishizu H, Shimizu T, Iwasaki N, Amizuka N. Matrix Vesicle-Mediated Mineralization and Osteocytic Regulation of Bone Mineralization. Int J Mol Sci 2022; 23:ijms23179941. [PMID: 36077336 PMCID: PMC9456179 DOI: 10.3390/ijms23179941] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bone mineralization entails two mineralization phases: primary and secondary mineralization. Primary mineralization is achieved when matrix vesicles are secreted by osteoblasts, and thereafter, bone mineral density gradually increases during secondary mineralization. Nearby extracellular phosphate ions (PO43−) flow into the vesicles via membrane transporters and enzymes located on the vesicles’ membranes, while calcium ions (Ca2+), abundant in the tissue fluid, are also transported into the vesicles. The accumulation of Ca2+ and PO43− in the matrix vesicles induces crystal nucleation and growth. The calcium phosphate crystals grow radially within the vesicle, penetrate the vesicle’s membrane, and continue to grow outside the vesicle, ultimately forming mineralized nodules. The mineralized nodules then attach to collagen fibrils, mineralizing them from the contact sites (i.e., collagen mineralization). Afterward, the bone mineral density gradually increases during the secondary mineralization process. The mechanisms of this phenomenon remain unclear, but osteocytes may play a key role; it is assumed that osteocytes enable the transport of Ca2+ and PO43− through the canaliculi of the osteocyte network, as well as regulate the mineralization of the surrounding bone matrix via the Phex/SIBLINGs axis. Thus, bone mineralization is biologically regulated by osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo 005-8543, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8577, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tomohiro Shimizu
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| |
Collapse
|
11
|
Roig‐Soriano J, Griñán‐Ferré C, Espinosa‐Parrilla JF, Abraham CR, Bosch A, Pallàs M, Chillón M. AAV-mediated expression of secreted and transmembrane αKlotho isoforms rescues relevant aging hallmarks in senescent SAMP8 mice. Aging Cell 2022; 21:e13581. [PMID: 35274439 PMCID: PMC9009104 DOI: 10.1111/acel.13581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 11/26/2022] Open
Abstract
Senescence represents a stage in life associated with elevated incidence of morbidity and increased risk of mortality due to the accumulation of molecular alterations and tissue dysfunction, promoting a decrease in the organism's protective systems. Thus, aging presents molecular and biological hallmarks, which include chronic inflammation, epigenetic alterations, neuronal dysfunction, and worsening of physical status. In this context, we explored the AAV9-mediated expression of the two main isoforms of the aging-protective factor Klotho (KL) as a strategy to prevent these general age-related features using the senescence-accelerated mouse prone 8 (SAMP8) model. Both secreted and transmembrane KL isoforms improved cognitive performance, physical state parameters, and different molecular variables associated with aging. Epigenetic landscape was recovered for the analyzed global markers DNA methylation (5-mC), hydroxymethylation (5-hmC), and restoration occurred in the acetylation levels of H3 and H4. Gene expression of pro- and anti-inflammatory mediators in central nervous system such as TNF-α and IL-10, respectively, had improved levels, which were comparable to the senescence-accelerated-mouse resistant 1 (SAMR1) healthy control. Additionally, this improvement in neuroinflammation was supported by changes in the histological markers Iba1, GFAP, and SA β-gal. Furthermore, bone tissue structural variables, especially altered during senescence, recovered in SAMP8 mice to SAMR1 control values after treatment with both KL isoforms. This work presents evidence of the beneficial pleiotropic role of Klotho as an anti-aging therapy as well as new specific functions of the KL isoforms for the epigenetic regulation and aged bone structure alteration in an aging mouse model.
Collapse
Affiliation(s)
- J. Roig‐Soriano
- Institut de Neurociènces (INc) Department of Biochemistry and Molecular Biology Universitat Autònoma Barcelona Bellaterra Spain
| | - C. Griñán‐Ferré
- Pharmacology Section Department of Pharmacology, Toxicology, and Therapeutic Chemistry Faculty of Pharmacy and Food Sciences Institut de Neurosciències‐Universitat de Barcelona (NeuroUB) Barcelona Spain
| | - J. F. Espinosa‐Parrilla
- Institut de Neurociènces (INc) Department of Biochemistry and Molecular Biology Universitat Autònoma Barcelona Bellaterra Spain
| | - C. R. Abraham
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - A. Bosch
- Institut de Neurociènces (INc) Department of Biochemistry and Molecular Biology Universitat Autònoma Barcelona Bellaterra Spain
- Vall d'Hebron Institut de Recerca (VHIR) Barcelona Spain
- Unitat producció de Vectors (UPV) Universitat Autònoma Barcelona Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III Madrid Spain
| | - M. Pallàs
- Pharmacology Section Department of Pharmacology, Toxicology, and Therapeutic Chemistry Faculty of Pharmacy and Food Sciences Institut de Neurosciències‐Universitat de Barcelona (NeuroUB) Barcelona Spain
| | - Miguel Chillón
- Institut de Neurociènces (INc) Department of Biochemistry and Molecular Biology Universitat Autònoma Barcelona Bellaterra Spain
- Vall d'Hebron Institut de Recerca (VHIR) Barcelona Spain
- Unitat producció de Vectors (UPV) Universitat Autònoma Barcelona Bellaterra Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluis Companys Barcelona Spain
| |
Collapse
|
12
|
Xie FF, Zhang YF, Hu YF, Xie YY, Wang XY, Wang SZ, Xie BQ. Significance of serum glucagon-like peptide-1 and matrix Gla protein levels in patients with diabetes and osteoporosis. World J Clin Cases 2022; 10:1527-1535. [PMID: 35211590 PMCID: PMC8855254 DOI: 10.12998/wjcc.v10.i5.1527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoporosis is a systemic bone disease characterized by decreased bone mass, impaired bone mass, and reduced bone strength that leads to increased bone fragility and fracture. Type 2 diabetes mellitus (T2DM) complicated with osteoporosis is a common systemic metabolic bone disease, and reduced bone mass and bone strength are considered the main clinical features; however, the pathogenesis of this disease has not been fully clarified. Its occurrence is considered related to sex, age, and genetic factors. There are many risk factors for diabetes complicated with osteoporosis. Therefore, exploring these risk factors will help prevent it.
AIM To investigate the relationships among serum glucagon-like peptide-1 (GLP-1) levels, matrix Gla protein (MGP) levels, and diabetes with osteoporosis.
METHODS Sixty patients with T2DM complicated with osteoporosis confirmed by the endocrinology department of our hospital were selected as the case group. Sixty T2DM patients with bone loss were selected as the control group. Sixty healthy participants were selected as the healthy group. The general data, bone mineral density index, and bone metabolic markers of the three groups were compared. The relationships among GLP-1 levels, MGP levels, and the bone mineral density index of the case group were analyzed using linear correlation analysis and a logistic regression model.
RESULTS Differences in sex, smoking, and drinking among the case group, control group, and healthy group were not statistically significant (P > 0.05). The mean age of the case group was older than those of the control and healthy groups (P < 0.05). The body mass index, fasting plasma glucose level, HbA1c level, hypertension rate, and coronary heart disease rate of the case and control groups were higher than those of the healthy group (P < 0.05). The serum GLP-1 and MGP levels of the case group were lower than those of the control and healthy groups; these differences were statistically significant (P < 0.05). The serum GLP-1 and MGP levels of the control group were lower than those of the healthy group; these differences were statistically significant (P < 0.05). The serum GLP-1 and MGP levels of the case group were significantly positively correlated with the bone mineral density values of the hip and lumbar spine (P < 0.05). The results of the logistic regression model showed that age and duration of diabetes were independent risk factors for osteoporosis in diabetic patients (P < 0.05) and that increased GLP-1 and MGP values were protective factors against osteoporosis in diabetic patients (P < 0.05).
CONCLUSION Serum GLP-1 and MGP levels of diabetic patients with osteoporosis were significantly decreased and positively correlated with bone mineral density and were independent risk factors for osteoporosis in diabetic patients.
Collapse
Affiliation(s)
- Fei-Fei Xie
- Department of Endocrinology, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, Jiangxi Province, China
| | - Yu-Fang Zhang
- Department of Endocrinology, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, Jiangxi Province, China
| | - Yan-Fang Hu
- Department of Endocrinology, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, Jiangxi Province, China
| | - Yun-Yun Xie
- Department of Endocrinology, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, Jiangxi Province, China
| | - Xiao-Ying Wang
- Department of Endocrinology, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, Jiangxi Province, China
| | - Shu-Zhen Wang
- Department of Endocrinology, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, Jiangxi Province, China
| | - Bao-Qiang Xie
- Department of Endocrinology, Guangdong Provincial People’s Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou 341000, Jiangxi Province, China
| |
Collapse
|
13
|
Yang Y, Li L, Zhang Y, Yang H, Bai J, Lv H, Fu S. Association Between Coronary Artery Calcium Score and Bone Mineral Density in Type 2 Diabetes Mellitus with Different Visceral Fat Area. Diabetes Metab Syndr Obes 2022; 15:3949-3960. [PMID: 36561919 PMCID: PMC9766512 DOI: 10.2147/dmso.s392152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The relationship between coronary artery calcification and bone mineral density (BMD) in T2DM is still unclear. The aim of this study is to analyze the association between coronary artery calcium score (CACs) and BMD in T2DM with different visceral fat area (VFA), and further to explore the clinical significance of CACs in predicting osteoporosis in T2DM patients. PATIENTS AND METHODS A total of 479 T2DM patients aged ≥50 years were included. Agatston was applied to calculate CACs to evaluate the degree of coronary artery calcification. Dual-energy X-ray absorptiometry (DXA) was used to measure BMD. According to VFA, all subjects were divided into VFA <100cm2 and VFA ≥100cm2 group. Adjusted regression analysis was performed to analyze the association between CACs and BMD. ROC curve was used to analyze the optimal cut-off value of CACs for screening osteoporosis. RESULTS The baseline showed that in VFA ≥100cm2 group, CACs increased significantly than that in VFA <100cm2 group (212.1±195.9 vs 139.3±141.8, p<0.001) and total hip BMD decreased obviously (0.968±0.19 vs 1.021±0.184, p=0.01). After multivariable adjustment, CACs was not significantly associated with BMD in all patients (p>0.05). However, CACs was negatively associated with BMD of total hip and lumbar spine in patients with VFA ≥100cm2 (total hip β=-0.087 p=0.01; lumbar spine β=-0.052 p=0.005), but not VFA <100cm2. ROC curve analysis showed that the optimal cut-off value of CACs for screening osteoporosis was 191.505. CONCLUSION The present study implied that associations between CACs and BMD varied by the visceral fat deposition. It is critical to evaluate the condition of visceral fat accumulation for exploring the complex interplay of coronary artery calcification and BMD in T2DM patients. It may be of some clinical value for CACs in predicting osteoporosis in T2DM with visceral obesity.
Collapse
Affiliation(s)
- Ying Yang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Lingling Li
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Yangyang Zhang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Hong Yang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Jia Bai
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Correspondence: Haihong Lv; Songbo Fu, Department of Endocrinology, The First Hospital of Lanzhou University, No. 1Donggang West Road, Lanzhou, Gansu, 730000, People’s Republic of China, Tel +86 13893324091; +86 13993122257, Email ;
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| |
Collapse
|
14
|
Makino A, Hasegawa T, Takagi H, Takahashi Y, Hase N, Amizuka N. Frequent administration of abaloparatide shows greater gains in bone anabolic window and bone mineral density in mice: A comparison with teriparatide. Bone 2021; 142:115651. [PMID: 32950699 DOI: 10.1016/j.bone.2020.115651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Abaloparatide (ABL) is a novel 34-amino acid peptide analog of parathyroid hormone-related protein. In clinical studies, although ABL showed a greater bone mineral density (BMD) increase than teriparatide (TPTD, human parathyroid hormone 1-34), the responses of ABL to bone formation and resorption markers were weaker, making it difficult to understand the relationship between the bone anabolic window (increase in bone formation versus resorption) and bone mass. In the present study, the effects of ABL and TPTD were compared in mice. Given that the rate of bone turnover is higher in rodents than in humans, the comparison was made with several administration regimens providing equivalent daily dosages: once daily (QD, 30 μg/kg every 24 h), twice daily (BID, 15 μg/kg every 12 h), or three times a day (TID, 10 μg/kg every 8 h). Frequent administration of ABL showed higher BMD with enhancement of trabecular and cortical bone mass and structures than that of TPTD, consistent with the clinical results seen with once daily administration. ABL increased bone formation marker levels more than TPTD with more frequent regimens, while bone resorption marker levels were not different between ABL and TPTD in all regimens. Analysis of bone histomorphometry and gene expression also suggested that ABL increased bone formation more than TPTD, while the effect on bone resorption was almost comparable between ABL and TPTD. The bone anabolic windows calculated from bone turnover markers indicated that ABL enhanced the anabolic windows more than TPTD, leading to a robust increase in BMD. The mechanism by which ABL showed a better balance of bone turnover was suggested to be partly due to the enhanced remodeling-based bone formation involved in Ephb4. Taken together, our findings would help elucidate the mechanism by which ABL shows excellent BMD gain and reduction of fractures in patients with osteoporosis.
Collapse
Affiliation(s)
- Akito Makino
- Pharmacology Research Department, Teijin Pharma Limited, Tokyo, Japan; Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hideko Takagi
- Pharmacology Research Department, Teijin Pharma Limited, Tokyo, Japan
| | | | - Naoki Hase
- Pharmacology Research Department, Teijin Pharma Limited, Tokyo, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Hongo H, Hasegawa T, Saito M, Tsuboi K, Yamamoto T, Sasaki M, Abe M, Henrique Luiz de Freitas P, Yurimoto H, Udagawa N, Li M, Amizuka N. Osteocytic Osteolysis in PTH-treated Wild-type and Rankl-/- Mice Examined by Transmission Electron Microscopy, Atomic Force Microscopy, and Isotope Microscopy. J Histochem Cytochem 2020; 68:651-668. [PMID: 32942927 DOI: 10.1369/0022155420961375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To demonstrate the ultrastructure of osteocytic osteolysis and clarify whether osteocytic osteolysis occurs independently of osteoclastic activities, we examined osteocytes and their lacunae in the femora and tibiae of 11-week-old male wild-type and Rankl-/- mice after injection of human parathyroid hormone (PTH) [1-34] (80 µg/kg/dose). Serum calcium concentration rose temporarily 1 hr after PTH administration in wild-type and Rankl-/- mice, when renal arteries and veins were ligated. After 6 hr, enlargement of osteocytic lacunae was evident in the cortical bones of wild-type and Rankl-/- mice, but not so in their metaphyses. Von Kossa staining and transmission electron microscopy showed broadly demineralized bone matrix peripheral to enlarged osteocytic lacunae, which contained fragmented collagen fibrils and islets of mineralized matrices. Nano-indentation by atomic force microscopy revealed the reduced elastic modulus of the PTH-treated osteocytic perilacunar matrix, despite the microscopic verification of mineralized matrix in that region. In addition, 44Ca deposition was detected by isotope microscopy and calcein labeling in the eroded osteocytic lacunae of wild-type and Rankl-/- mice. Taken together, our findings suggest that osteocytes can erode the bone matrix around them and deposit minerals on their lacunar walls independently of osteoclastic activity, at least in the murine cortical bone. (J Histochem Cytochem 68: -XXX, 2020).
Collapse
Affiliation(s)
- Hiromi Hongo
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Masami Saito
- Bruker Japan K.K., Nano Surfaces & Metrology Division, Tokyo, Japan
| | - Kanako Tsuboi
- Dental Surgery, Haibara General Hospital, Makinohara, Japan
| | - Tomomaya Yamamoto
- Department of Dentistry, Japan Ground Self Defense Force Camp Asaka, Tokyo, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Hisayoshi Yurimoto
- Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Hasegawa T, Yamamoto T, Sakai S, Miyamoto Y, Hongo H, Qiu Z, Abe M, Takeda S, Oda K, de Freitas PHL, Li M, Endo K, Amizuka N. Histological Effects of the Combined Administration of Eldecalcitol and a Parathyroid Hormone in the Metaphyseal Trabeculae of Ovariectomized Rats. J Histochem Cytochem 2018; 67:169-184. [PMID: 30311820 DOI: 10.1369/0022155418806865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intermittent administration of human parathyroid hormone (1-34) (hPTH(1-34)) promotes anabolic action in bone by stimulating bone remodeling, while eldecalcitol, an analog of active vitamin D3, suppresses osteoclastic bone resorption, and forms new bone by minimodeling. We have examined the biological effects of combined administration of eldecalcitol and hPTH(1-34) on 9-week-old Wistar rats that underwent an ovariectomy (OVX) or Sham operation. They were divided into a Sham group, OVX with vehicle (OVX group), OVX with 10 µg/kg/day of hPTH(1-34) (PTH group), OVX with 20 ng/kg/day of eldecalcitol (eldecalcitol group) or OVX with 10 μg/kg/day of hPTH(1-34), and 20 ng/kg/day of eldecalcitol (combined group) for 4 or 8 weeks. As a consequence, the combined group showed a marked increase in bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) than OVX and had the highest bone mineral density (BMD) compared with other groups. OVX and PTH groups exhibited a high osteoblastic surface/bone surface (Ob.S/BS), mineral apposition rate (MAR), and bone formation rate/bone surface (BFR/BS) indices and many TRAP-reactive osteoclasts. Contrastingly, eldecalcitol and combined groups tended to attenuate the indices of osteoclastic surface/bone surface (Oc.S/BS) and Ob.S/BS than that the other groups. The combined group revealed histological profiles of minimodeling- and remodeling-based bone formation. Thus, the combined administration of eldecalcitol and hPTH(1-34) augments their anabolic effects by means of minimodeling and remodeling.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.,Department of Dentistry, Japan Self Defense Force Hanshin Hospital, Kawanishi, Japan
| | | | - Yukina Miyamoto
- Department of Dentistry, International University of Health and Welfare Atami Hospital, Atami, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Zixuan Qiu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| | - Koichi Endo
- Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Desbiens LC, Sidibé A, Ung RV, Fortier C, Munger M, Wang YP, Bisson SK, Marquis K, Agharazii M, Mac-Way F. FGF23-klotho axis, bone fractures, and arterial stiffness in dialysis: a case-control study. Osteoporos Int 2018; 29:2345-2353. [PMID: 29959497 DOI: 10.1007/s00198-018-4598-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
UNLABELLED We performed a case-control study on 130 age- and sex-matched hemodialysis patients. In multivariate analysis, we observed that FGF23 levels were associated with fracture incidence and that soluble α-klotho levels were associated with the aortic-brachial arterial stiffness ratio. INTRODUCTION New bone markers such as sclerostin, Dickkopf-related protein 1 (DKK1), fibroblast growth factor-23 (FGF23), and α-klotho have been identified as potential key players in bone and vascular abnormalities of chronic kidney disease. Therefore, we aimed to assess whether these markers are associated with fractures, bone metabolism, and vascular stiffness in dialysis patients. METHODS In a prospective hemodialysis cohort, where plasma samples and vascular assessment were performed at baseline, we matched patients who experienced a fracture during follow-up with sex- and age-matched non-fractured patients on a 1:4 ratio. Sclerostin, DKK1, α-klotho, FGF23, and markers of bone formation (alkaline phosphatase and procollagen type 1-N terminal propeptide [P1NP]) and bone resorption (tartrate-resistant acid phosphatase 5b [TRAP5b]) were measured in baseline plasma samples. Aortic-brachial pulse wave velocity ratio, a blood pressure independent measure of arterial stiffness, was used to assess vascular stiffness at baseline. RESULTS We included 130 hemodialysis patients (26 fractured, 104 non-fractured) with a median follow-up of 42 months and a median age of 72 years. In multivariate Cox regression models, high FGF23 levels were associated with increased fracture incidence (adjusted HR = 2.97; 95% CI 1.18, 7.43). α-Klotho levels were associated with bone formation but not resorption markers. In both univariate and multivariable adjusted models, α-klotho levels were inversely associated with the aortic-brachial pulse wave velocity ratio (β = - 0.070; 95% CI - 0.133, - 0.006). CONCLUSIONS These results suggest a role for FGF23/klotho axis on bone and vascular metabolism in dialysis populations.
Collapse
Affiliation(s)
- L-C Desbiens
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
- Faculty and Department of Medicine, Université Laval, Quebec, Canada
| | - A Sidibé
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - R-V Ung
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
| | - C Fortier
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
- Faculty and Department of Medicine, Université Laval, Quebec, Canada
| | - M Munger
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
- Faculty and Department of Medicine, Université Laval, Quebec, Canada
| | - Y-P Wang
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
- Faculty and Department of Medicine, Université Laval, Quebec, Canada
| | - S-K Bisson
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
- Faculty and Department of Medicine, Université Laval, Quebec, Canada
| | - K Marquis
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
| | - M Agharazii
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada
- Faculty and Department of Medicine, Université Laval, Quebec, Canada
| | - F Mac-Way
- CHU de Québec Research Center, Endocrinology and Nephrology Axis, Quebec, Canada.
- Faculty and Department of Medicine, Université Laval, Quebec, Canada.
- CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, 10 McMahon, Quebec City, G1R 2J6, Canada.
| |
Collapse
|
18
|
Histochemical examination on the peri-implant bone with early occlusal loading after the immediate placement into extraction sockets. Histochem Cell Biol 2018; 149:433-447. [DOI: 10.1007/s00418-018-1644-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 01/20/2023]
|
19
|
Sakurai A, Hasegawa T, Kudo A, Shen Z, Nagai T, Abe M, Yoshida T, Hongo H, Yamamoto T, Yamamoto T, Oda K, Freitas PHLD, Li M, Sano H, Amizuka N. Chronological immunolocalization of sclerostin and FGF23 in the mouse metaphyseal trabecular and cortical bone. Biomed Res 2017; 38:257-267. [PMID: 28794403 DOI: 10.2220/biomedres.38.257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To assess the chronological participation of sclerostin and FGF23 in bone metabolism, this study tracked the immunolocalization of sclerostin and FGF23 in the metaphyses of murine long bones from embryonic day 18 (E18) through 1 day after birth, 1 week, 2 weeks, 4 weeks, 8 weeks, and 20 weeks of age. We have selected two regions in the metaphyseal trabeculae for assessing sclerostin and FGF23 localization: close to the chondro-osseous junction, i.e., bone modeling site even in the adult animals, and the trabecular region distant from the growth plate, where bone remodeling takes place. As a consequence, sclerostin-immunopositive osteocytes could not be observed in both close and distant trabecular regions early at the embryonic and young adult stages. However, osteocytes gradually started to express sclerostin in the distant region earlier than in the close region of the trabeculae. Immunoreactivity for FGF23 was observed mainly in osteoblasts in the early stages, but detectable in osteocytes in the later stages of growth in trabecular and cortical bones. Fgf23 was weakly expressed in the embryonic and neonatal stages, while the receptors, Fgfr1c and αKlotho were strongly expressed in femora. At the adult stages, Fgf23 expression became more intense while Fgfr1c and aKlotho were weakly expressed. These findings suggest that sclerostin is secreted by osteocytes in mature bone undergoing remodeling while FGF23 is synthesized by osteoblasts and osteocytes depending on the developmental/growth stage. In addition, it appears that FGF23 acts in an autocrine and paracrine fashion in fetal and neonatal bones.
Collapse
Affiliation(s)
- Atsunaka Sakurai
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Ai Kudo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Department of Crown and Bridge Prosthodontics, Graduate School of Dental Medicine, Hokkaido University
| | - Zhao Shen
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University
| | - Tomoya Nagai
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Department of Oral Functional Prosthodontics, Graduate School of Dental Medicine, Hokkaido University
| | - Miki Abe
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Taiji Yoshida
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University.,Self- Defense Force Hanshin Hospital
| | - Tsuneyuki Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Kimimitsu Oda
- Biochemistry, Niigata University Graduate School of Medical and Dental Sciences
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University
| | - Hidehiko Sano
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| |
Collapse
|
20
|
Kaludjerovic J, Komaba H, Lanske B. Effects of klotho deletion from bone during chronic kidney disease. Bone 2017; 100:50-55. [PMID: 28232146 PMCID: PMC5474158 DOI: 10.1016/j.bone.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/24/2022]
Abstract
Klotho is a type I transmembrane protein that acts as a permissive co-receptor for FGF23 and helps to maintain proper mineral metabolism. Mice carrying a loss-of-function mutation in either the Klotho or Fgf23 gene develop many similar phenotypes including osteoporosis. Based on these observations it was hypothesized that the bone phenotypes in Klotho- and Fgf23-null mice may be mediated through a common signaling pathway. Recent improvements in antibody specificity have shown that osteoblasts and osteocytes, which produce FGF23, also express low amount of membrane Klotho. But, the role of Klotho in bone is still largely unclear. In this review we summarize the literature and show that Klotho has an FGF23 dependent and independent effect in bone.
Collapse
Affiliation(s)
- Jovana Kaludjerovic
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Hirotaka Komaba
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Beate Lanske
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Hongo H, Sasaki M, Kobayashi S, Hasegawa T, Yamamoto T, Tsuboi K, Tsuchiya E, Nagai T, Khadiza N, Abe M, Kudo A, Oda K, Henrique Luiz de Freitas P, Li M, Yurimoto H, Amizuka N. Localization of Minodronate in Mouse Femora Through Isotope Microscopy. J Histochem Cytochem 2017; 64:601-22. [PMID: 27666429 DOI: 10.1369/0022155416665577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023] Open
Abstract
Minodronate is highlighted for its marked and sustained effects on osteoporotic bones. To determine the duration of minodronate's effects, we have assessed the localization of the drug in mouse bones through isotope microscopy, after labeling it with a stable nitrogen isotope ([(15)N]-minodronate). In addition, minodronate-treated bones were assessed by histochemistry and transmission electron microscopy (TEM). Eight-week-old male ICR mice received [(15)N]-minodronate (1 mg/kg) intravenously and were sacrificed after 3 hr, 24 hr, 1 week, and 1 month. Isotope microscopy showed that [(15)N]-minodronate was present mainly beneath osteoblasts rather than nearby osteoclasts. At 3 hr after minodronate administration, histochemistry and TEM showed osteoclasts with well-developed ruffled borders. However, osteoclasts were roughly attached to the bone surfaces and did not feature ruffled borders at 24 hr after minodronate administration. The numbers of tartrate-resistant acid phosphatase-positive osteoclasts and alkaline phosphatase-reactive osteoblastic area were not reduced suddenly, and apoptotic osteoclasts appeared in 1 week and 1 month after the injections. Von Kossa staining demonstrated that osteoclasts treated with minodronate did not incorporate mineralized bone matrix. Taken together, minodronate accumulates in bone underneath osteoblasts rather than under bone-resorbing osteoclasts; therefore, it is likely that the minodronate-coated bone matrix is resistant to osteoclastic resorption, which results in a long-lasting and bone-preserving effect.
Collapse
Affiliation(s)
- Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Muneteru Sasaki
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Sachio Kobayashi
- Hokkaido University, Sapporo, JapanNatural History Sciences, Isotope Imaging Laboratory, Creative Research Institution (SK, HY) Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Kanako Tsuboi
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Erika Tsuchiya
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Tomoya Nagai
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Naznin Khadiza
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Miki Abe
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Ai Kudo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| | - Kimimitsu Oda
- Division of Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan (KO)
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China (ML)
| | - Hisayoshi Yurimoto
- Hokkaido University, Sapporo, JapanNatural History Sciences, Isotope Imaging Laboratory, Creative Research Institution (SK, HY) Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (HH, MS, TH, TY, KT, ET, TN, NK, MA, AK, NA) Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Toray H, Hasegawa T, Sakagami N, Tsuchiya E, Kudo A, Zhao S, Moritani Y, Abe M, Yoshida T, Yamamoto T, Yamamoto T, Oda K, Udagawa N, Luiz de Freitas PH, Li M. Histochemical assessment for osteoblastic activity coupled with dysfunctional osteoclasts in c-src deficient mice. Biomed Res 2017; 38:123-134. [PMID: 28442663 DOI: 10.2220/biomedres.38.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos-/- or c-src-/- mice. Osteopetrotic c-fos deficient (c-fos-/-) mice have no osteoclasts, while c-src deficient (c-src-/-) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos-/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src-/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src-/- bone matrix. This indicates the possibility that in c-src-/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src-/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.
Collapse
Affiliation(s)
- Hisashi Toray
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Naoko Sakagami
- Divisions of Reconstructive Surgery for Oral and Maxillofacial Region, Niigata University Graduate School of Medical and Dental Sciences
| | - Erika Tsuchiya
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Ai Kudo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Shen Zhao
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Yasuhito Moritani
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Miki Abe
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Taiji Yoshida
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Tsuneyuki Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University
| | - Kimimitsu Oda
- Divisions of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences
| | | | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University
| |
Collapse
|
23
|
Klotho preservation via histone deacetylase inhibition attenuates chronic kidney disease-associated bone injury in mice. Sci Rep 2017; 7:46195. [PMID: 28387374 PMCID: PMC5384196 DOI: 10.1038/srep46195] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023] Open
Abstract
Bone loss and increased fracture are the devastating outcomes of chronic kidney disease-mineral and bone disorder (CKD-MBD) resulting from Klotho deficit-related mineral disturbance and hyperparathyroidism. Because Klotho down-regulation after renal injury is presumably affected by aberrant histone deacetylase (HDAC) activities, here we assess whether HDAC inhibition prevents Klotho loss and attenuates the CKD-associated bone complication in a mouse model of CKD-MBD. Mice fed adenine-containing diet developed the expected renal damage, a substantial Klotho loss and the deregulated key factors causally affecting bone remodeling, which were accompanied by a marked reduction of bone mineral density. Intriguingly, administration of a potent HDAC inhibitor trichostatin A (TSA) impressively alleviated the Klotho deficit and the observed alterations of serum, kidney and bone. TSA prevented Klotho loss by increasing the promoter-associated histone acetylation, therefore increasing Klotho transcription. More importantly the mice lacking Klotho by siRNA interference largely abolished the TSA protections against the serum and renal abnormalities, and the deranged bone micro-architectures. Thus, our study identified Klotho loss as a key event linking HDAC deregulation to the renal and bone injuries in CKD-MBD mice and demonstrated the therapeutic potentials of endogenous Klotho restoration by HDAC inhibition in treating CKD and the associated extrarenal complications.
Collapse
|
24
|
Hikone K, Hasegawa T, Tsuchiya E, Hongo H, Sasaki M, Yamamoto T, Kudo A, Oda K, Haraguchi M, de Freitas PHL, Li M, Iida J, Amizuka N. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet. J Histochem Cytochem 2017; 65:207-221. [PMID: 28122194 DOI: 10.1369/0022155416689670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho-/- mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho-/-norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho-/- lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling.
Collapse
Affiliation(s)
- Kumiko Hikone
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Department of Orthodontics (KH, JI), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Erika Tsuchiya
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan (MS)
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ai Kudo
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kimimitsu Oda
- Division of Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan (KO)
| | - Mai Haraguchi
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China (ML)
| | - Junichiro Iida
- Department of Orthodontics (KH, JI), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Yamamoto T, Hasegawa T, Sasaki M, Hongo H, Tsuboi K, Shimizu T, Ota M, Haraguchi M, Takahata M, Oda K, Luiz de Freitas PH, Takakura A, Takao-Kawabata R, Isogai Y, Amizuka N. Frequency of Teriparatide Administration Affects the Histological Pattern of Bone Formation in Young Adult Male Mice. Endocrinology 2016; 157:2604-20. [PMID: 27227535 DOI: 10.1210/en.2015-2028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Evidence supports that daily and once-weekly administration of teriparatide, human (h)PTH(1-34), enhance bone mass in osteoporotic patients. However, it is uncertain whether different frequencies of hPTH(1-34) administration would induce bone formation similarly in terms of quantity and quality. To investigate that issue, mice were subjected to different frequencies of PTH administration, and their bones were histologically examined. Frequencies of administration were 1 time/2 days, 1 time a day, and 2 and 4 times a day. Mice were allocated to either to control or to 3 different dosing regimens: 80 μg/kg of hPTH(1-34) per injection (80 μg/kg per dose), 80 μg/kg of hPTH(1-34) per day (80 μg/kg · d), or 20 μg/kg of hPTH(1-34) per day (20 μg/kg · d). With the regimens of 80 μg/kg per dose and 80 μg/kg · d, high-frequency hPTH(1-34) administration increased metaphyseal trabecular number. However, 4 doses per day induced the formation of thin trabeculae, whereas the daily PTH regimen resulted in thicker trabeculae. A similar pattern was observed with the lower daily hPTH(1-34) dose (20 μg/kg · d): more frequent PTH administration led to the formation of thin trabeculae, showing a thick preosteoblastic cell layer, several osteoclasts, and scalloped cement lines that indicated accelerated bone remodeling. On the other hand, low-frequency PTH administration induced new bone with mature osteoblasts lying on mildly convex surfaces representative of arrest lines, which suggests minimodeling-based bone formation. Thus, high-frequency PTH administration seems to increase bone mass rapidly by forming thin trabeculae through accelerated bone remodeling. Alternatively, low-frequency PTH administration leads to the formation of thicker trabeculae through bone remodeling and minimodeling.
Collapse
Affiliation(s)
- Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Muneteru Sasaki
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Kanako Tsuboi
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Tomohiro Shimizu
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Masahiro Ota
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Mai Haraguchi
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Masahiko Takahata
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Kimimitsu Oda
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Paulo Henrique Luiz de Freitas
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Aya Takakura
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Ryoko Takao-Kawabata
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Yukihiro Isogai
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue (T.Y., T.H., H.H., K.T., M.H., N.A.), Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586 Japan; Department of Applied Prosthodontics (M.S.), Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 Japan; Department of Orthopedic Surgery Graduate School of Medicine (T.S., M.O., M.T.), Hokkaido University, Sapporo, 951-8514 Japan; Division of Biochemistry (K.O.), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514 Japan; Department of Dentistry (P.H.L.d.F.), Federal University of Sergipe at Lagarto, Campus Legarto, 49400-000 Brazil; and Asahi Kasei Pharma Co. Ltd (A.T., R.T.-K., Y.I.), Tokyo, 101-8101 Japan
| |
Collapse
|
26
|
Tsuboi K, Hasegawa T, Yamamoto T, Sasaki M, Hongo H, de Freitas PHL, Shimizu T, Takahata M, Oda K, Michigami T, Li M, Kitagawa Y, Amizuka N. Effects of drug discontinuation after short-term daily alendronate administration on osteoblasts and osteocytes in mice. Histochem Cell Biol 2016; 146:337-50. [PMID: 27235014 DOI: 10.1007/s00418-016-1450-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
In order to determine whether osteoclastic bone resorption is restarted after withdrawn of bisphosphonates, we conducted histological examinations on murine osteoclasts, osteoblasts and osteocytes after discontinuation of a daily regimen of alendronate (ALN) with a dosage of 1 mg/kg/day for 10 days. After drug discontinuation, metaphyseal trabecular number and bone volume remained unaltered for the first 4 days. Osteoclast number did not increase, while the number of apoptotic osteoclasts was elevated. On the other hand, tissue non-specific alkaline phosphatase-immunoreactive area was markedly reduced after ALN discontinuation. In addition, osteocytes showed an atrophic profile with empty lacunar areas during and after ALN treatment. Interestingly, as early as 36 h after a single ALN injection, osteocytes show signs of atrophy despite the presence of active osteoblasts. Structured illumination microscopy system showed shortening of osteocytic cytoplasmic processes after drug cessation, suggesting a possible morphological and functional disconnection between osteocytes and osteoblasts. Taken together, it appears that osteoclastic bone resorption is not resumed after ALN discontinuation; also, osteoblasts and osteocytes hardly seem to recover once they are inactivated and atrophied by ALN. In summary, it seems that one must pay more attention to the responses of osteoblasts and osteocytes, rather focusing on the resuming of osteoclastic bone resorption after the ALN discontinuation.
Collapse
Affiliation(s)
- Kanako Tsuboi
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo, 060-8586, Japan.,Department of Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo, 060-8586, Japan
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo, 060-8586, Japan
| | - Muneteru Sasaki
- Unit of Translational Medicine, Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo, 060-8586, Japan
| | | | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kimimitsu Oda
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral, Research Institute, Osaka Medical Center for Maternal and Child Health, Osaka, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo, 060-8586, Japan.
| |
Collapse
|
27
|
Rubinek T, Modan-Moses D. Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions. VITAMINS AND HORMONES 2016; 101:85-118. [PMID: 27125739 DOI: 10.1016/bs.vh.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis.
Collapse
Affiliation(s)
- T Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - D Modan-Moses
- The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Wei K, Yin Z, Xie Y. Roles of the kidney in the formation, remodeling and repair of bone. J Nephrol 2016; 29:349-357. [PMID: 26943181 PMCID: PMC4879154 DOI: 10.1007/s40620-016-0284-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022]
Abstract
The relationship between the kidney and bone is highly complex, and the kidney plays an important role in the regulation of bone development and metabolism. The kidney is the major organ involved in the regulation of calcium and phosphate homeostasis, which is essential for bone mineralization and development. Many substances synthesized by the kidney, such as 1,25(OH)2D3, Klotho, bone morphogenetic protein-7, and erythropoietin, are involved in different stages of bone formation, remodeling and repair. In addition, some cytokines which can be affected by the kidney, such as osteoprotegerin, sclerostin, fibroblast growth factor -23 and parathyroid hormone, also play important roles in bone metabolism. In this paper, we summarize the possible effects of these kidney-related cytokines on bone and their possible mechanisms. Most of these cytokines can interact with one another, constituting an intricate network between the kidney and bone. Therefore, kidney diseases should be considered among patients presenting with osteodystrophy and disturbances in bone and mineral metabolism, and treatment for renal dysfunction may accelerate their recovery.
Collapse
Affiliation(s)
- Kai Wei
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, 100853, People's Republic of China.,Medical College, NanKai University, Tianjin, 300071, People's Republic of China
| | - Zhiwei Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yuansheng Xie
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
29
|
Wolf I, Stein D, Shahmoon S, Ziv SI, Hemi R, Kanety H, Rubinek T, Modan-Moses D. Alteration in serum klotho levels in anorexia nervosa patients. Clin Nutr 2015; 35:958-62. [PMID: 26243062 DOI: 10.1016/j.clnu.2015.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 06/21/2015] [Accepted: 07/13/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Klotho is a trans-membrane protein which can be shed to act as a hormone; its blood levels may be regulated by the GH/IGF-1 axis. Klotho deficient mice exhibit short lifespan and characteristics of aging and malnutrition, including decreased fat and muscle mass, osteopenia, and impaired fertility. As anorexia nervosa (AN) is characterized by malnutrition and GH resistance, we hypothesized klotho levels would be altered in AN, and aimed to assess klotho levels in undernourished AN patients and changes in klotho following weight rehabilitation. PARTICIPANTS AND METHODS 19 adolescent female AN inpatients (aged 16.1 ± 1.8 years) admitted to an inpatient service for eating disorders in a tertiary center were recruited. Blood samples were obtained on admission and after weight restoration (interval 4.0 ± 2.3 months) and analyzed for klotho, IGF-1, calcium, phosphorus, and alkaline phosphatase. RESULTS Klotho levels on admission were lower than expected for age, and correlated with lumbar spine BMD Z-score (r = -0.81, p < 0.001) and alkaline phosphatase levels (r = 0.66, p = 0.003) but not with age, height-SDS, weight-SDS, BMI-SDS, or serum calcium, phosphorus and IGF-1 levels. Both IGF-1 and klotho levels increased significantly during hospitalization (IGF-1: 44 ± 17 nmol/l to 53 ± 11 nmol/l, p = 0.008; klotho: 1061 ± 421 pg/ml to 1519 ± 781 pg/ml, p = 0.008). CONCLUSIONS Klotho levels are low in the acute stage of AN and increase with nutritional rehabilitation. Low klotho on admission may be secondary to low IGF-1 levels and may contribute to the clinical manifestations of AN. The role of klotho in the pathophysiology of AN and as a novel marker of disease severity should be further explored.
Collapse
Affiliation(s)
- Ido Wolf
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Stein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Psychosomatic Department, The Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Shiri Shahmoon
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shimrit Ilana Ziv
- Pediatric Psychosomatic Department, The Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Rina Hemi
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Hannah Kanety
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Tami Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dalit Modan-Moses
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.
| |
Collapse
|
30
|
Expression of DMP1 in the developing mouse tongue embryo. Ann Anat 2015; 200:136-48. [PMID: 25978185 DOI: 10.1016/j.aanat.2015.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/03/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
Abstract
Dentin matrix protein 1 (DMP-1) is an important factor in the mineralization of hard tissues. However, it has many other functions in addition to the regulation of mineralized tissues. We analyzed the expression and localization of DMP-1 by immunohistochemical staining and in situ hybridization in the developing mouse tongue during embryonic days 12.5 (E12.5), E14.5, E17.5, and E18.5. We also detected the mRNA abundance of tongue morphogenesis markers such as FGF6, TGF-β1, Collagen I, osteocalcin, chondromodulin 1, tenomodulin, Vascular endothelial growth factor (VEGF), caspase-3, and Aifm from embryonic stages by real-time RT-PCR. The antisense probe for DMP-1 was detected in a few mesenchymal cells surrounding blood vessels at E12.5, and faint localization was seen at E18.5 in the embryonic mouse tongue by in situ hybridization. The DMP-1 and osteocalcin abundance levels gradually increased compared with the other tongue markers from E12.5 to E18.5 (p<0.001). Cluster analyses identified the following distinct clusters for mRNA abundance in the tongue: cluster 1, E12.5; cluster 2, E14.5 and E17.5; and cluster 3, E18.5. The positive correlation between DMP-1 and osteocalcin (Pearson's r=0.685; p<0.05) and negative correlation between DMP-1 and Caspase-3 (Pearson's r=-0.632; p<0.05) were analyzed. These data suggested that DMP-1 potentially influences osteocalcin and Caspase-3 during mouse tongue development and morphogenesis. DMP-1 also affects the angiogenic marker VEGF in specific stages and areas, terminating the differentiation of the tongue from other developing tissues. We conclude that DMP-1 may be involved in regulating the temporal expression at embryonic stages in the mouse tongue.
Collapse
|
31
|
Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: In situ nanoindentation assessment of dilatational bands. Biomaterials 2015; 47:62-71. [DOI: 10.1016/j.biomaterials.2015.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/13/2015] [Indexed: 01/17/2023]
|
32
|
Abstract
The Klotho family consists of three single-pass transmembrane proteins—αKlotho, βKlotho and γKlotho. Each of them combines with fibroblast growth factor (FGF) receptors (FGFRs) to form receptor complexes for various FGF’s. αKlotho is a co-receptor for physiological FGF23 signaling and appears essential for FGF23-mediated regulation of mineral metabolism. αKlotho protein also plays a FGF23-independent role in phosphate homeostasis. Animal experimental studies and clinical observations have demonstrated that αKlotho deficiency leads to severe hyperphosphatemia; moderate elevation of αKlotho reduces serum phosphate and extremely high αKlotho induces hypophosphatemia and high-FGF23. αKlotho maintains circulating phosphate in a narrow range by modulating intestinal phosphate absorption, urinary phosphate excretion by the kidney, and phosphate distribution into bone rather than soft tissue in concerted interaction with other calciophosphotropic hormones such as PTH, FGF23, and 1,25-(OH)2 vitamin D. The role of αKlotho in maintenance of phosphate homeostasis is mediated by direct suppression of Na-dependent phosphate cotransporters in target organs. Therefore, αKlotho manipulation may be a novel strategy for genetic and acquired phosphate disorders and for medical conditions with αKlotho deficiency such as chronic kidney disease in future.
Collapse
Affiliation(s)
- Ao Bian
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR of China
| | - Changying Xing
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR of China
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Corresponding author: Ming Chang Hu, M.D.; Ph.D., Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-885 USA, Telephone: 1-214-648-9797, Tax: 1-214-648-5652,
| |
Collapse
|