1
|
Akens MK, Rangrez M, Tolgyesi A, Willett TL, Whyne CM. Temporal effect of docetaxel on bone quality in a rodent model of vertebral metastases. PLoS One 2025; 20:e0320134. [PMID: 40245075 PMCID: PMC12005523 DOI: 10.1371/journal.pone.0320134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/14/2025] [Indexed: 04/19/2025] Open
Abstract
This study investigates the effects of the anticancer drug docetaxel (DTX) and its timing of administration on tumor development and resultant bone quality in a rodent model, considering both healthy animals and those with osteolytic bone metastases secondary to intra-cardiac injection (d0) of HeLa cells. Healthy and tumor-bearing rats were treated with DTX on d7 or d14 and compared to the control (no treatment) and an additional cohort treated with Zoledronic acid (ZOL). Notably, DTX administration on d7 markedly curtailed tumor growth, as evidenced by bioluminescence and histological analysis, indicating its effectiveness in reducing bone metastases. Bone metastases were more established in animals treated with later DTX administration and ZOL, but still reduced compared to no treatment. When considering bone quality, we found that both the organic and mineral phases of bone are impacted by DTX treatment. Tumor-bearing animals exhibited decreased hydroxyproline/proline ratios reflecting change in collagen metabolism compared to healthy controls, but these decreases were only significant with no treatment or DTX administration on d14. This suggests a positive impact of early DTX treatment similar to ZOL on bone quality from an organic perspective. As well, increased CaMean and CaPeak reflecting the degree of calcification was found in healthy rats treated early with DTX, similar to that seen with ZOL compared to the tumor-bearing treated groups. Overall, early docetaxel administration reduced tumor formation and improved bone quality, suggesting its potential benefit in managing bone metastases.
Collapse
Affiliation(s)
- Margarete K. Akens
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammedayaz Rangrez
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Allison Tolgyesi
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of TorontoToronto, ON, Canada
| | - Thomas L. Willett
- Department of Systems Design Engineering, University of Waterloo, Canada
| | - Cari M. Whyne
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of TorontoToronto, ON, Canada
| |
Collapse
|
2
|
Ng K, Allam N, Neshatian M, Vaez M, Hirvonen LM, Lam E, Vitkin A, Bozec L. Effects of Ionizing Radiation on the Biophysical Properties of Type I Collagen Fibrils. PLoS One 2025; 20:e0319777. [PMID: 40173206 PMCID: PMC11964255 DOI: 10.1371/journal.pone.0319777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/08/2025] [Indexed: 04/04/2025] Open
Abstract
Ionizing radiation is extensively employed in both diagnostic and therapeutic medical practices. The impact of this radiation on collagen, a primary structural protein in humans, remains underexplored, particularly at varying doses and hydration states. This study explores the impact of ionizing radiation on type I collagen fibrils at three radiation doses (diagnostic, therapeutic, and sterilization) and under two hydration conditions using an engineered acellular collagen membrane to reflect varying biological conditions. Techniques including atomic force microscopy (AFM), fluorescence lifetime imaging microscopy (FLIM), and Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were utilized to assess changes in mechanical properties, biochemical stability, and molecular structure respectively. Our results demonstrate that ionizing radiation alters the mechanical properties of collagen fibrils, notably indentation modulus, which reflects changes in stiffness or elasticity. These modifications depended on the hydration state at the time of radiation exposure; hydrated fibrils typically exhibited increased stiffness, suggesting enhanced cross-linking, whereas dehydrated fibrils showed reduced stiffness, indicative of structural weakening, possibly due to bond breakdown. Morphological changes were minimal, suggesting that radiation primarily affects the internal structure rather than the overall appearance of the fibrils. Biochemically, variations in fluorescence lifetimes highlighted changes in the collagen's biochemical environment, dependent on the dose and hydration state. Despite these biochemical and mechanical changes, FTIR analysis indicated that the primary structure of collagen was largely preserved post-irradiation for all examined dose levels. These findings imply that radiation can modify the mechanical properties of collagen, potentially affecting tissue integrity in clinical settings. This could influence the management of radiation-induced conditions like osteoradionecrosis, fibrosis and cancer metastasis. Overall, our study underscores the need for further research into the effects of radiation on structural proteins to better understand and mitigate radiation-induced tissue damage.
Collapse
Affiliation(s)
- Kester Ng
- Faculty of Dentistry, University of Toronto, Toronto, Canada,
| | - Nader Allam
- Department of Medical Biophysics, University of Toronto, Toronto, Canada,
| | | | - Mina Vaez
- Faculty of Dentistry, University of Toronto, Toronto, Canada,
| | - Liisa M. Hirvonen
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, Australia
| | - Ernest Lam
- Faculty of Dentistry, University of Toronto, Toronto, Canada,
| | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada,
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Canada,
| |
Collapse
|
3
|
Li Q, Liang W, Wu H, Li J, Wang G, Zhen Y, An Y. Challenges in Application: Gelation Strategies of DAT-Based Hydrogel Scaffolds. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:76-87. [PMID: 38666688 DOI: 10.1089/ten.teb.2023.0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Decellularized adipose tissue (DAT) has great clinical applicability, owing to its abundant source material, natural extracellular matrix microenvironment, and nonimmunogenic attributes, rendering it a versatile resource in the realm of tissue engineering. However, practical implementations are confronted with multifarious limitations. Among these, the selection of an appropriate gelation strategy serves as the foundation for adapting to diverse clinical contexts. The cross-linking strategies under varying physical or chemical conditions exert profound influences on the ultimate morphology and therapeutic efficacy of DAT. This review sums up the processes of DAT decellularization and subsequent gelation, with a specific emphasis on the diverse gelation strategies employed in recent experimental applications of DAT. The review expounds upon methodologies, underlying principles, and clinical implications of different gelation strategies, aiming to offer insights and inspiration for the application of DAT in tissue engineering and advance research for tissue engineering scaffold development.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Jingming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Crocker DB, Akkus O, Rimnac CM. Sequential irradiation does not improve fatigue crack propagation resistance of human cortical bone at 15 kGy. J Mech Behav Biomed Mater 2025; 161:106814. [PMID: 39549473 PMCID: PMC11632722 DOI: 10.1016/j.jmbbm.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Sequential irradiation has been advocated for mitigating the reduction in fatigue properties of tendon compared to a single dose. However, to our knowledge, its capability of mitigating fatigue losses in bone is unknown. Recently, we reported that sequential irradiation did not mitigate losses in high-cycle S-N fatigue life of cortical bone at 15 kGy; however, it is unclear if sequential irradiation provides a benefit to fatigue crack propagation resistance. Our previous study also showed that radiation-induced collagen chain fragmentation and crosslinking increased from 0 to 15 kGy, suggesting that both likely contribute to the reduction in high-cycle S-N fatigue life within this dose range. Our objectives were: 1) to evaluate the fatigue crack propagation resistance of cortical bone and the effect of radiation on fracture plane damage zone thickness (DZT) at the crack tip in the dose range of 0-15 kGy, and 2) to evaluate whether sequential irradiation at 15 kGy mitigates the loss of fatigue crack propagation resistance of cortical bone compared to a single irradiation dose. Compact tension specimens from four male donor femoral pairs (ages 21-61 years old) were divided into 5 treatment groups (0 kGy, 5 kGy, 10 kGy, 15 kGy, and a 15 kGy sequential irradiation dose of 5 kGy sequentially irradiated with 10 kGy) and subjected to fatigue crack propagation testing (n = 3-4 specimens per group) where fatigue crack growth rate da/dN and cyclic stress intensity factor ΔK were determined. Following testing, specimens were bulk stained in basic fuchsin, embedded in poly(methylmethacrylate), sectioned, and mounted on acrylic slides to evaluate fracture plane DZT at known crack lengths. Sections were then imaged with a fluorescence microscope, and fracture plane DZT was measured using ImageJ (n = 3-4 specimens per group) and analyzed as a function of ΔK. We observed a decrease in fatigue crack propagation resistance at 15 kGy compared to doses of 10 kGy or lower (p ≤ 0.013). Fracture plane DZT decreased overall with increasing radiation dose from 0 to 15 kGy. Sequential irradiation offered no improvement in fatigue crack propagation resistance (p = 0.98). Radiation-induced collagen chain fragmentation and crosslinking in this dose range likely contribute to a decrease in energy dissipation capability with increasing radiation dose. Other alternative radiation sterilization methods besides sequential irradiation may be warranted to mitigate radiation-induced tissue damage and extend the functional lifetime of structural cortical bone allografts.
Collapse
Affiliation(s)
- Dylan B Crocker
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Clare M Rimnac
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Carney TE, Biggs AE, Miller MA, Mann KA, Oest ME. Therapeutic radiation directly alters bone fatigue strength and microdamage accumulation. J Mech Behav Biomed Mater 2024; 160:106766. [PMID: 39378671 DOI: 10.1016/j.jmbbm.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Radiotherapy (RTx) is an essential and efficacious oncologic treatment, however, post-RTx bone fragility fractures present a challenging clinical problem. Cancer survivors treated with RTx are at variable risk for these late-onset, complex fragility fractures. Little data exists regarding the effects of RTx on bone fatigue properties despite the likelihood of fatigue loading as a mechanism leading up to atraumatic fracture. In this study, femurs collected from adult male rats were irradiated ex vivo with a therapeutic dose of x-irradiation (20 Gy), and then fatigued using a three-point bend setup. Femurs positioned in an isotonic bath at room temperature were loaded to a range of prescribed initial strain levels (based on beam theory equations, prior to any fatigue damage) at 3 Hz in force control. The goals of this study were to determine the feasibility of assessing RTx-induced alterations in 1) femur fatigue strength, 2) structural microdamage (creep and stiffness), and 3) tissue damage (diffuse damage and/or linear microcracking). Mid-diaphyseal morphology and tissue mineral density were not different between the RTx and Sham groups (p ≥ 0.35). With increasing applied apparent strain, the number of cycles to failure was reduced for the RTx femurs when compared to the Sham femurs (treatment x εapp, p = 0.041). RTx femurs had a greater phase II (steady state) creep rate (p = 0.0462) compared to Sham femurs. For femurs that reached 500k cycles, the RTx group had greater diffuse damage area (p = 0.015) than the Sham. This study provides evidence that radiation at therapeutic doses can directly diminish bone fatigue properties. This loss of fatigue properties is associated with increased structural fatigue damage and diffuse microdamage, without alterations in morphology or tissue mineral density, indicating a reduction in bone quality.
Collapse
Affiliation(s)
- Tara E Carney
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Amy E Biggs
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Mark A Miller
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Kenneth A Mann
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Megan E Oest
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Crocker DB, Akkus O, Oest ME, Rimnac CM. The influence of radiation-induced collagen chain fragmentation, crosslinking, and sequential irradiation on the high-cycle fatigue life of human cortical bone. J Mech Behav Biomed Mater 2024; 160:106759. [PMID: 39366082 DOI: 10.1016/j.jmbbm.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Both high-cycle fatigue life and fatigue crack propagation resistance of human cortical bone allograft are radiation dose-dependent between 0 and 25 kGy such that higher doses exhibit progressively shorter lifetimes. Recently, we have shown that collagen chain fragmentation and stable crosslink accumulation may contribute to the radiation dose-dependent loss in fatigue crack propagation resistance of human cortical bone. To our knowledge, the influence of these mechanisms on high-cycle fatigue life of cortical bone have not been established. Sequential irradiation has also been shown to mitigate the loss of fatigue life of tendons, however, whether this mitigates losses in fatigue life of cortical bone has not been explored. Our objectives were to evaluate the influence of radiation-induced collagen chain fragmentation and crosslinking on the high-cycle fatigue life of cortical bone in the dose range of 0-15 kGy, and to evaluate the capability of sequential irradiation at 15 kGy to mitigate the loss of high-cycle fatigue life and radiation-induced collagen damage. High-cycle fatigue life specimens from four male donor femoral pairs were divided into 5 treatment groups (0 kGy, 5 kGy, 10 kGy, 15 kGy, and 15 kGy sequentially irradiated) and subjected to high-cycle fatigue life testing with a custom rotating-bending apparatus at a cyclic stress of 35 MPa. Following fatigue testing, collagen was isolated from fatigue specimens, and collagen chain fragmentation and crosslink accumulation were quantified using SDS-PAGE and a fluorometric assay, respectively. Both collagen chain fragmentation (p = 0.006) and non-enzymatic crosslinking (p < 0.001) influenced high-cycle fatigue life, which decreased with increasing radiation dose from 0 to 15 kGy (p = 0.016). Sequential irradiation at 15 kGy did not offer any mitigation in high-cycle fatigue life (p = 0.93), collagen chain fragmentation (p = 0.99), or non-enzymatic crosslinking (p ≥ 0.10) compared to a single radiation dose of 15 kGy. Taken together with our previous findings on the influence of collagen damage on fatigue crack propagation resistance, collagen chain fragmentation and crosslink accumulation both contribute to radiation-induced losses in notched and unnotched fatigue life of cortical bone. To maximize the functional lifetime of radiation sterilized structural cortical bone allografts, pathways other than sequential radiation should be explored to mitigate collagen matrix damage.
Collapse
Affiliation(s)
- Dylan B Crocker
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Megan E Oest
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Clare M Rimnac
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Crocker DB, Hering TM, Akkus O, Oest ME, Rimnac CM. Dose-dependent effects of gamma radiation sterilization on the collagen matrix of human cortical bone allograft and its influence on fatigue crack propagation resistance. Cell Tissue Bank 2024; 25:735-745. [PMID: 38750214 PMCID: PMC11639133 DOI: 10.1007/s10561-024-10135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 09/06/2024]
Abstract
Fatigue crack propagation resistance and high-cycle S-N fatigue life of cortical bone allograft tissue are both negatively impacted in a radiation dose-dependent manner from 0 to 25 kGy. The standard radiation sterilization dose of 25-35 kGy has been shown to induce cleavage of collagen molecules into smaller peptides and accumulation of stable crosslinks within the collagen matrix, suggesting that these mechanisms may influence radiation-induced losses in cyclic fracture resistance. The objective of this study was to determine the radiation dose-dependency of collagen chain fragmentation and crosslink accumulation within the dose range of 0-25 kGy. Previously, cortical bone compact tension specimens from two donor femoral pairs were divided into four treatment groups (0 kGy, 10 kGy, 17.5 kGy, and 25 kGy) and underwent cyclic loading fatigue crack propagation testing. Following fatigue testing, collagen was isolated from one compact tension specimen in each treatment group from both donors. Radiation-induced collagen chain fragmentation was assessed using SDS-PAGE (n = 5), and accumulation of pentosidine, pyridinoline, and non-specific advanced glycation end products were assessed using a fluorometric assay (n = 4). Collagen chain fragmentation increased progressively in a dose-dependent manner (p < 0.001). Crosslink accumulation at all radiation dose levels increased relative to the 0 kGy control but did not demonstrate dose-dependency (p < 0.001). Taken together with our previous findings on fatigue crack propagation behavior, these data suggest that while collagen crosslink accumulation may contribute to reduced notched fatigue behavior with irradiation, dose-dependent losses in fatigue crack propagation resistance are mainly influenced by radiation-induced chain fragmentation.
Collapse
Affiliation(s)
- Dylan B Crocker
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Thomas M Hering
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Megan E Oest
- Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Clare M Rimnac
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Iranmanesh F, Dapaah DY, Nyman JS, Willett TL. An improved linear systems model of hydrothermal isometric tension testing to aid in assessing bone collagen quality: Effects of ribation and type-2 diabetes. Bone 2024; 186:117139. [PMID: 38823567 DOI: 10.1016/j.bone.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
This study sought to further develop and validate a previously proposed physics-based model that maps denaturation kinetics from differential scanning calorimetry (DSC) to the isometric tension generated during hydrothermal isometric tension (HIT) testing of collagenous tissues. The primary objectives of this study were to verify and validate two physics-based model parameters: α, which indicates the amount of instantaneous isometric tension developed per unit of collagen denaturation, and β, which captures the proportionality between temperature and the generated isometric tension post denaturation initiation. These parameters were used as measures of bone collagen quality, employing data from HIT and DSC testing of human bone collagen from two previous studies. Additionally, given the physical basis of the model, the study aimed to further validate Max.Slope, the rate of change in isometric tensile stress with change in temperature, as an independent measure of collagen network connectivity. Max.Slope has previously been positively correlated with measures of cortical bone fracture resistance. Towards this verification and validation, the hypotheses were a) that α would correlate strongly with HIT denaturation temperature, Td, and the enthalpy of melting (ΔH) from DSC, and b) that β would correlate positively and strongly with Max.Slope. The model was employed in the analysis of HIT-DSC data from the testing of demineralized bone collagen isolated from cadaveric human femurs in two prior studies. In one study, data were collected from HIT-DSC testing of cortical bone collagen from 74 donors. Among them, 38 had a history of type 2 diabetes +/- chronic kidney disease, while the remaining 36 had no history of T2D again with or without CKD. Cortical bone specimens were extracted from the lateral mid-shaft. The second study involved 15 donor femora, with four cortical bone specimens extracted from each. Of these four, two specimens underwent a 4-week incubation in 0.1 M ribose at 37 °C to induce non-enzymatic ribation and advanced glycation endproducts, while the other two served as non-ribated controls. The examination involved investigating correlations between the model parameters α and β and various measures, such as Max.Slope, Td, ΔH, age, and duration of type 2 diabetes. The results revealed positive correlations between the model parameter β and Max.Slope (r = 0.55-0.58). The parameter α was found to be associated with Td, but also sensitive to the shape of the HIT curve around Td resulting in difficulties with variability and interpretation. As a result, while both hypotheses are confirmed, Max.Slope and β are better indicators of bone collagen quality because they are measures of the connectivity or, more generally, the integrity of the bone collagen network.
Collapse
Affiliation(s)
- Faezeh Iranmanesh
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada
| | - Daniel Y Dapaah
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America; United States Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States of America
| | - Thomas L Willett
- Composite Biomaterials System Lab, System Design Engineering Department, University of Waterloo, Ontario, Canada.
| |
Collapse
|
9
|
Øvrebø Ø, Orlando L, Rubenis K, Ciriello L, Ma Q, Giorgi Z, Tognoni S, Loca D, Villa T, Nogueira LP, Rossi F, Haugen HJ, Perale G. The role of collagen and crystallinity in the physicochemical properties of naturally derived bone grafts. Regen Biomater 2024; 11:rbae093. [PMID: 39224130 PMCID: PMC11368411 DOI: 10.1093/rb/rbae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Xenografts are commonly used for bone regeneration in dental and orthopaedic domains to repair bone voids and other defects. The first-generation xenografts were made through sintering, which deproteinizes them and alters their crystallinity, while later xenografts are produced using cold-temperature chemical treatments to maintain the structural collagen phase. However, the impact of collagen and the crystalline phase on physicochemical properties have not been elucidated. We hypothesized that understanding these factors could explain why the latter provides improved bone regeneration clinically. In this study, we compared two types of xenografts, one prepared through a low-temperature chemical process (Treated) and another subsequently sintered at 1100°C (Sintered) using advanced microscopy, spectroscopy, X-ray analysis and compressive testing. Our investigation showed that the Treated bone graft was free of residual blood, lipids or cell debris, mitigating the risk of pathogen transmission. Meanwhile, the sintering process removed collagen and the carbonate phase of the Sintered graft, leaving only calcium phosphate and increased mineral crystallinity. Microcomputed tomography revealed that the Treated graft exhibited an increased high porosity (81%) and pore size compared to untreated bone, whereas the Sintered graft exhibited shrinkage, which reduced the porosity (72%), pore size and strut size. Additionally, scanning electron microscopy displayed crack formation around the pores of the Sintered graft. The Treated graft displayed median mechanical properties comparable to native cancellous bone and clinically available solutions, with an apparent modulus of 166 MPa, yield stress of 5.5 MPa and yield strain of 4.9%. In contrast, the Sintered graft exhibited a lower median apparent modulus of 57 MPa. It failed in a brittle manner at a median stress of 1.7 MPa and strain level of 2.9%, demonstrating the structural importance of the collagen phase. This indicates why bone grafts prepared through cold-temperature processes are clinically favourable.
Collapse
Affiliation(s)
- Øystein Øvrebø
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
- Material Biomimetic AS, 0349 Oslo, Norway
| | - Luca Orlando
- Industrie Biomediche Insubri SA, 6805 Mezzovico-Vira, Switzerland
- Orlando Engineering & Consulting Srl, 20094 Corsico, Italy
| | - Kristaps Rubenis
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Luca Ciriello
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
| | - Zoe Giorgi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Stefano Tognoni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Tomaso Villa
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Liebert P Nogueira
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0318 Oslo, Norway
- Material Biomimetic AS, 0349 Oslo, Norway
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA, 6805 Mezzovico-Vira, Switzerland
- Faculty of Biomedical Sciences, University of Southern Switzerland, 6900 Lugano, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| |
Collapse
|
10
|
Bracher S, Voumard B, Simon M, Kochetkova T, Pretterklieber M, Zysset P. Bone collagen tensile properties of the aging human proximal femur. Bone Rep 2024; 21:101773. [PMID: 38778833 PMCID: PMC11109327 DOI: 10.1016/j.bonr.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Despite the dominant role of bone mass in osteoporotic fractures, aging bone tissue properties must be thoroughly understood to improve osteoporosis management. In this context, collagen content and integrity are considered important factors, although limited research has been conducted on the tensile behavior of demineralized compact bone in relation to its porosity and elastic properties in the native mineralized state. Therefore, this study aims (i) at examining the age-dependency of mineralized bone and collagen micromechanical properties; (ii) to test whether, and if so to which extent, collagen properties contribute to mineralized bone mechanical properties. Two cylindrical cortical bone samples from fresh frozen human anatomic donor material were extracted from 80 proximal diaphyseal sections from a cohort of 24 female and 19 male donors (57 to 96 years at death). One sample per section was tested in uniaxial tension under hydrated conditions. First, the native sample was tested elastically (0.25 % strain), and after demineralization, up to failure. Morphology and composition of the second specimen was assessed using micro-computed tomography, Raman spectroscopy, and gravimetric methods. Simple and multiple linear regression were employed to relate morphological, compositional, and mechanical variables with age and sex. Macro-tensile properties revealed that only elastic modulus of native samples was age dependent whereas apparent elastic modulus was sex dependent (p < 0.01). Compositional and morphological analysis detected a weak but significant age and sex dependency of relative mineral weight (r = -0.24, p < 0.05) and collagen disorder ratio (I∼1670/I∼1640, r = 0.25, p < 0.05) and a strong sex dependency of bone volume fraction while generally showing consistent results in mineral content assessment. Young's modulus of demineralized bone was significantly related to tissue mineral density and Young's modulus of native bone. The results indicate that mechanical properties of the organic phase, that include collagen and non-collagenous proteins, are independent of donor age. The observed reduction in relative mineral weight and corresponding overall stiffer response of the collagen network may be caused by a reduced number of mineral-collagen connections and a lack of extrafibrillar and intrafibrillar mineralization that induces a loss of waviness and a collagen fiber pre-stretch.
Collapse
Affiliation(s)
- Stefan Bracher
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Benjamin Voumard
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Mathieu Simon
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Tatiana Kochetkova
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Michael Pretterklieber
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Philippe Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
11
|
Emerzian SR, Wu T, Vaidya R, Tang SY, Abergel RJ, Keaveny TM. Relative Effects of Radiation-Induced Changes in Bone Mass, Structure, and Tissue Material on Vertebral Strength in a Rat Model. J Bone Miner Res 2023; 38:1032-1042. [PMID: 37191221 PMCID: PMC10524463 DOI: 10.1002/jbmr.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shannon R. Emerzian
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Tongge Wu
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Rachana Vaidya
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, Missouri, USA
- Department of Material Science & Mechanical
Engineering, Washington University, St. Louis, Missouri, USA
| | - Rebecca J. Abergel
- Department of Nuclear Engineering, University of
California, Berkeley, California, USA
| | - Tony M. Keaveny
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
- Department of Bioengineering, University of California,
Berkeley, California, USA
| |
Collapse
|
12
|
Heinemann C, Buchner F, Lee PS, Bernhardt A, Kruppke B, Wiesmann HP, Hintze V. Effects of Gamma Irradiation and Supercritical Carbon Dioxide Sterilization on Methacrylated Gelatin/Hyaluronan Hydrogels. J Funct Biomater 2023; 14:317. [PMID: 37367281 DOI: 10.3390/jfb14060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biopolymer hydrogels have become an important group of biomaterials in experimental and clinical use. However, unlike metallic or mineral materials, they are quite sensitive to sterilization. The aim of this study was to compare the effects of gamma irradiation and supercritical carbon dioxide (scCO2) treatment on the physicochemical properties of different hyaluronan (HA)- and/or gelatin (GEL)-based hydrogels and the cellular response of human bone marrow-derived mesenchymal stem cells (hBMSC). Hydrogels were photo-polymerized from methacrylated HA, methacrylated GEL, or a mixture of GEL/HA. The composition and sterilization methods altered the dissolution behavior of the biopolymeric hydrogels. There were no significant differences in methacrylated GEL release but increased methacrylated HA degradation of gamma-irradiated samples. Pore size/form remained unchanged, while gamma irradiation decreased the elastic modulus from about 29 kPa to 19 kPa compared to aseptic samples. HBMSC proliferated and increased alkaline phosphatase activity (ALP) particularly in aseptic and gamma-irradiated methacrylated GEL/HA hydrogels alike, while scCO2 treatment had a negative effect on both proliferation and osteogenic differentiation. Thus, gamma-irradiated methacrylated GEL/HA hydrogels are a promising base for multi-component bone substitute materials.
Collapse
Affiliation(s)
- Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Frauke Buchner
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Poh Soo Lee
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Benjamin Kruppke
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Hans-Peter Wiesmann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069 Dresden, Germany
| |
Collapse
|
13
|
Stanca M, Gaidau C, Zaharescu T, Balan GA, Matei I, Precupas A, Leonties AR, Ionita G. Physico-Chemical Changes Induced by Gamma Irradiation on Some Structural Protein Extracts. Biomolecules 2023; 13:biom13050774. [PMID: 37238645 DOI: 10.3390/biom13050774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, the effect of gamma irradiation (10 kGy) on proteins extracted from animal hide, scales, and wool was evidenced by calorimetric (μDSC) and spectroscopic (IR, circular dichroism, and EPR) methods. Keratin was obtained from sheep wool, collagen and bovine gelatin from bovine hide, and fish gelatin from fish scales. The μDSC experiments evidenced that gamma irradiation influences the thermal stability of these proteins differently. The thermal stability of keratin decreases, while a resistance to thermal denaturation was noticed for collagen and gelatins after gamma irradiation. The analysis of the IR spectra demonstrated that gamma irradiation determines changes in the vibrational modes of the amide groups that are associated with protein denaturation, most meaningfully in the case of keratin. As evidenced by circular dichroism for all proteins considered, exposure to gamma radiation produces changes in the secondary structure that are more significant than those produced by UV irradiation. Riboflavin has different effects on the secondary structure of the investigated proteins, a stabilizing effect for keratin and fish gelatin and a destabilizing effect for bovine gelatin, observed in both irradiated and non-irradiated samples. The EPR spectroscopy evidences the presence, in the gamma-irradiated samples, of free radicals centered on oxygen, and the increase in their EPR signals over time due to the presence of riboflavin.
Collapse
Affiliation(s)
- Maria Stanca
- Leather Research Department, Research and Development National Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 93, Ion Minulescu Street, 031215 Bucharest, Romania
| | - Carmen Gaidau
- Leather Research Department, Research and Development National Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 93, Ion Minulescu Street, 031215 Bucharest, Romania
| | | | - George-Alin Balan
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Iulia Matei
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Aurica Precupas
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Anca Ruxandra Leonties
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Gabriela Ionita
- Leather Research Department, Research and Development National Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 93, Ion Minulescu Street, 031215 Bucharest, Romania
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
14
|
Fernández MP, Schwiedrzik J, Bürki A, Peyrin F, Michler J, Zysset PK, Wolfram U. In situ synchrotron radiation μCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture. Acta Biomater 2023:S1742-7061(23)00237-4. [PMID: 37127075 DOI: 10.1016/j.actbio.2023.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The development of treatment strategies for skeletal diseases relies on the understanding of bone mechanical properties in relation to its structure at different length scales. At the microscale, indention techniques can be used to evaluate the elastic, plastic, and fracture behaviour of bone tissue. Here, we combined in situ high-resolution SRμCT indentation testing and digital volume correlation to elucidate the anisotropic crack propagation, deformation, and fracture of ovine cortical bone under Berkovich and spherical tips. Independently of the indenter type we observed significant dependence of the crack development due to the anisotropy ahead of the tip, with lower strains and smaller crack systems developing in samples indented in the transverse material direction, where the fibrillar bone ultrastructure is largely aligned perpendicular to the indentation direction. Such alignment allows to accommodate the strain energy, inhibiting crack propagation. Higher tensile hoop strains generally correlated with regions that display significant cracking radial to the indenter, indicating a predominant Mode I fracture. This was confirmed by the three-dimensional analysis of crack opening displacements and stress intensity factors along the crack front obtained for the first time from full displacement fields in bone tissue. The X-ray beam significantly influenced the relaxation behaviour independent of the tip. Raman analyses did not show significant changes in specimen composition after irradiation compared to non-irradiated tissue, suggesting an embrittlement process that may be linked to damage of the non-fibrillar organic matrix. This study highlights the importance of three-dimensional investigation of bone deformation and fracture behaviour to explore the mechanisms of bone failure in relation to structural changes due to aging or disease. STATEMENT OF SIGNIFICANCE: : Characterising the three-dimensional deformation and fracture behaviour of bone remains essential to decipher the interplay between structure, function, and composition with the aim to improve fracture prevention strategies. The experimental methodology presented here, combining high-resolution imaging, indentation testing and digital volume correlation, allows us to quantify the local deformation, crack propagation, and fracture modes of cortical bone tissue. Our results highlight the anisotropic behaviour of osteonal bone and the complex crack propagation patterns and fracture modes initiating by the intricate stress states beneath the indenter tip. This is of wide interest not only for the understanding of bone fracture but also to understand other architectured (bio)structures providing an effective way to quantify their toughening mechanisms in relation to their main mechanical function.
Collapse
Affiliation(s)
- Marta Peña Fernández
- School of Engineering and Physical Science, Institute for Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Jakob Schwiedrzik
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Thun, Switzerland
| | - Alexander Bürki
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Françoise Peyrin
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS UMR 5220, Inserm U1294, CREATIS, Lyon, France
| | - Johann Michler
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Thun, Switzerland
| | - Philippe K Zysset
- ARTORG Centre for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Uwe Wolfram
- School of Engineering and Physical Science, Institute for Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
15
|
Unal M, Uppuganti S, Dapaah DY, Ahmed R, Pennings JS, Willett TL, Voziyan P, Nyman JS. Effect of ribose incubation on physical, chemical, and mechanical properties of human cortical bone. J Mech Behav Biomed Mater 2023; 140:105731. [PMID: 36827936 PMCID: PMC10068591 DOI: 10.1016/j.jmbbm.2023.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Raman spectroscopy (RS) is sensitive to the accumulation of advanced glycation end-products (AGEs), and it measures matrix-sensitive properties that correlate with the fracture toughness of human cortical bone. However, it is unclear whether sugar-mediated accumulation of AGEs affects the fracture toughness of human cortical bone in a manner that is consistent with the negative correlations between amide I sub-peak ratios and fracture toughness. Upon machining 64 single-edge notched beam (SENB) specimens from cadaveric femurs (8 male and 7 female donors between 46 years and 61 years of age), pairs of SENB specimens were incubated in 15 mL of phosphate buffered saline with or without 0.1 M ribose for 4 weeks at 37 °C. After acquiring 10 Raman spectra per bone specimen (n = 32 per incubation group), paired SENB specimens were loaded in three-point bending at a quasi-static or a high loading rate approximating 10-4 s-1 or 10-2 s-1, respectively (n = 16 per incubation group per loading rate). While 2 amide I sub-peak ratios, I1670/I1640 and I1670/I1610, decreased by 3-5% with a 100% increase in AGE content, as confirmed by fluorescence measurements, the ribose incubation to accumulate AGEs in bone did not affect linear elastic (KIc) nor non-linear elastic (KJc) measurements of bone's ability to resist crack growth. Moreover, AGE accumulation did not affect the change in these properties when the loading rate changed. Increasing the loading rate increased KIc but decreased KJc. Ribose incubation did not affect mineral-related RS properties such as mineral-to-matrix ratios, Type B carbonate substitutions, and crystallinity. It did however increase the thermal stability of demineralized bone (differential scanning calorimetry), without affecting the network connectivity of the organic matrix (i.e., maximum slope during a hydrothermal isometric tension test of demineralized bone). In conclusion, RS is sensitive to AGE accumulation via the amide I band (plus the hydroxyproline-to-proline ratio), but the increase in AGE content due to ribose incubation was not sufficient to affect the fracture toughness of human cortical bone.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Bioengineering, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey; Department of Biophysics, Faculty of Medicine, Karamanoglu Mehmetbey University, Karaman, 70200, Turkey
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA
| | - Daniel Y Dapaah
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA
| | - Jacquelyn S Pennings
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Musculoskeletal Research, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1200, Nashville, TN, 37203, USA
| | - Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, 1611 21st Ave. S, Nashville, TN, 37212, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S, Suite 4200, Nashville, TN, 37232, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 2215B Garland Ave, Nashville, TN, 37212, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Ave. S, Nashville, TN, 37212, USA; Vanderbilt Center for Musculoskeletal Research, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 1200, Nashville, TN, 37203, USA.
| |
Collapse
|
16
|
Crocker DB, Hoffman I, Carter JL, Akkus O, Rimnac CM. Fatigue crack propagation and fracture toughness of cortical bone are radiation dose-dependent. J Orthop Res 2023; 41:823-833. [PMID: 35949192 PMCID: PMC9911555 DOI: 10.1002/jor.25424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Cortical bone allograft sterilized with a standard γ-radiation dose of 25-35kGy has demonstrated reduced static and cyclic fracture resistance compared with unirradiated bone. To mitigate radiation damage, we recently observed a dose-dependent response of high-cycle fatigue behavior of human cortical bone from 0 to 25 kGy, with lower doses exhibiting logarithmically longer fatigue lives. The objectives of this study were as follows: (1) to determine whether fracture toughness, work-to-fracture, and fatigue crack propagation resistance of human cortical bone are also radiation dose-dependent, and (2) to determine the associations of radiation dose and a Raman biomarker for collagen disorder with fracture properties. Compact tension specimens were machined from two donor femoral pairs and allocated to four treatment groups: 0 (unirradiated control), 10, 17.5, and 25 kGy. Fracture toughness specimens were monotonically loaded to failure and the critical stress intensity factor (KC ) was determined. Work-to-fracture was calculated from the load versus displacement integral up to fracture. Fatigue crack propagation specimens were cyclically loaded under constant room-temperature irrigation and fatigue crack growth rate (da/dN) and cyclic stress intensity (∆K) were calculated. Fracture toughness, work-to-fracture, and fatigue crack propagation resistance decreased 18%, 33%, and 15-fold from 0 to 25 kGy, respectively (p < 0.05). Radiation dose was more predictive of fracture properties than collagen disorder. These findings support that quasi-static and fatigue fracture properties of cortical bone are radiation dose-dependent within this dose range. The structural alterations arising from irradiation that cause these losses in fracture resistance remain to be elucidated.
Collapse
Affiliation(s)
- Dylan B. Crocker
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Isaac Hoffman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH
| | - Jennifer L.W. Carter
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH
| | - Clare M. Rimnac
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
17
|
Koulicoff LA, Chun CK, Hammond PA, Jeneske H, Magnin-Bissel G, O'Quinn TG, Zumbaugh MD, Chao MD. Structural changes in collagen and aggrecan during extended aging may improve beef tenderness. Meat Sci 2023; 201:109172. [PMID: 37003165 DOI: 10.1016/j.meatsci.2023.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The aim of this study was to characterize structural and property modifications of intramuscular connective tissue (IMCT) during extended aging. Longissimus lumborum (LL), Gluteus medius (GM), and Gastrocnemius (GT) muscles were collected from 10 USDA choice carcasses, fabricated and assigned to one of four aging periods: 3, 21, 42, or 63 days (n = 120). As expected, tenderness improved, and IMCT texture weakened after 21 days of postmortem aging (dpm; P < 0.05). In addition, transition temperature of collagen decreased (P < 0.01) after 42 dpm. It is interesting to note the collagen structure was also altered where relative % of γ chain decreased after 42 dpm (P < 0.05), and the α1 chain % increased at 63 days (P < 0.01). Finally, The LL and GT had a decrease in the 75 kDa aggrecan fragments from 3 to 21 to 42 dpm (P < 0.05). This study provided evidence that IMCT weakens during postmortem aging due to the modifications of IMCT components such as collagen and proteoglycan.
Collapse
|
18
|
Mansor A, Ariffin AF, Yusof N, Mohd S, Ramalingam S, Md Saad AP, Baharin R, Min NW. Effects of processing and gamma radiation on mechanical properties and organic composition of frozen, freeze-dried and demineralised human cortical bone allograft. Cell Tissue Bank 2023; 24:25-35. [PMID: 35610332 DOI: 10.1007/s10561-022-10013-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
Bone processing and radiation were reported to influence mechanical properties of cortical bones due in part to structural changes and denaturation of collagen composition. This comparative study was to determine effects of bone processing on mechanical properties and organic composition, and to what extent the radiation damaging after each processing. Human femur cortical bones were processed by freezing, freeze-drying and demineralisation and then gamma irradiated at 5, 15, 20, 25 and 50 kGy. In the compression test, freeze drying significantly decreased the Young's Modulus by 15%, while demineralisation reduced further by 90% (P < 0.05) when compared to the freezing. Only demineralisation significantly reduced ultimate strength of bone by 93% (P < 0.05). In the bending test, both freeze drying and demineralisation significantly reduced the ultimate strength and the work to failure. Radiation at 25 kGy showed no effect on compression for ultimate strength in each processing group. However, high dose of 50 kGy significantly reduced bending ultimate strength by 47% in demineralisation group. Alterations in collagen in bones irradiated at 25 and 50 kGy showed by the highest peak of the amide I collagen in the Fourier Transfer Infra-Red spectra indicating more collagen was exposed after calcium was removed in the demineralised bone, however radiation showed no effect on the collagen crosslink. The study confirmed that demineralisation further reduced the ability to resist deformation in response to an applied force in freeze-dried bones due to calcium reduction and collagen composition. Sterilisation dose of 25 kGy has no effect on mechanical properties and collagen composition of the processed human cortical bone.
Collapse
Affiliation(s)
- Azura Mansor
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Ainnur Farhana Ariffin
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Norimah Yusof
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Suhaili Mohd
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Saravana Ramalingam
- Bone Bank, National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Amir Putra Md Saad
- Applied Mechanics and Design, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor, 83130, Bahru, Malaysia.,Medical Device and Technology Centre (MEDiTEC), Institute of Human Centred and Engineering (iHumEn), Universiti Teknologi Malaysia, UTM Johor, 83130, Bahru, Malaysia
| | - Ruzalina Baharin
- Sinagama Irradiation Plant, Malaysian Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ng Wuey Min
- Sunway Medical Centre, Bandar Sunway, 47500, Darul Ehsan, Selangor, Malaysia
| |
Collapse
|
19
|
Sauer K, Zizak I, Forien JB, Rack A, Scoppola E, Zaslansky P. Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption. Nat Commun 2022; 13:7829. [PMID: 36539409 PMCID: PMC9768145 DOI: 10.1038/s41467-022-34247-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
X-rays are invaluable for imaging and sterilization of bones, yet the resulting ionization and primary radiation damage mechanisms are poorly understood. Here we monitor in-situ collagen backbone degradation in dry bones using second-harmonic-generation and X-ray diffraction. Collagen breaks down by cascades of photon-electron excitations, enhanced by the presence of mineral nanoparticles. We observe protein disintegration with increasing exposure, detected as residual strain relaxation in pre-stressed apatite nanocrystals. Damage rapidly grows from the onset of irradiation, suggesting that there is no minimal 'safe' dose that bone collagen can sustain. Ionization of calcium and phosphorous in the nanocrystals yields fluorescence and high energy electrons giving rise to structural damage that spreads beyond regions directly illuminated by the incident radiation. Our findings highlight photoelectrons as major agents of damage to bone collagen with implications to all situations where bones are irradiated by hard X-rays and in particular for small-beam mineralized collagen fiber investigations.
Collapse
Affiliation(s)
- Katrein Sauer
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, Department for Operative, Preventive and Pediatric Dentistry, Aßmannshauser Straße 4-6, 14197 Berlin, Germany
| | - Ivo Zizak
- grid.424048.e0000 0001 1090 3682Helmholtz-Zentrum Berlin, Department for Structure and Dynamics of Energy Materials (SE-ASD), Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Jean-Baptiste Forien
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Materials Science Division, 7000 East Ave, Livermore, CA 94550 USA
| | - Alexander Rack
- grid.5398.70000 0004 0641 6373ESRF - The European Synchrotron, Structure of Materials Group - ID19, CS 40220, F-38043, Grenoble, Cedex 9 France
| | - Ernesto Scoppola
- grid.461615.10000 0000 8925 2562Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Brandenburg Germany
| | - Paul Zaslansky
- grid.6363.00000 0001 2218 4662Charité – Universitätsmedizin Berlin, Department for Operative, Preventive and Pediatric Dentistry, Aßmannshauser Straße 4-6, 14197 Berlin, Germany
| |
Collapse
|
20
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
21
|
Creecy A, Smith C, Wallace JM. Dietary supplements do not improve bone morphology or mechanical properties in young female C57BL/6 mice. Sci Rep 2022; 12:9804. [PMID: 35697787 PMCID: PMC9192719 DOI: 10.1038/s41598-022-14068-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bone is a hierarchical material formed by an organic extracellular matrix and mineral where each component and their physical relationship with each other contribute to fracture resistance. Bone quality can be affected by nutrition, and dietary supplements that are marketed to improve overall health may improve the fracture resistance of bone. To test this, 11 week old female C57BL/6 mice were fed either collagen, chondroitin sulfate, glucosamine sulfate, or fish oil 5 times a week for 8 weeks. Femurs, tibiae, and vertebrae were scanned with micro-computed tomography and then mechanically tested. Glucosamine and fish oil lowered elastic modulus, but did not alter the overall strength of the femur. There were no differences in bone mechanics of the tibiae or vertebrae. Overall, the data suggest that dietary supplements did little to improve bone quality in young, healthy mice. These supplements may be more effective in diseased or aged mice.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, SL 220B, 723 W. Michigan St., Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Collier Smith
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, SL 220B, 723 W. Michigan St., Indianapolis, IN, 46202, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, SL 220B, 723 W. Michigan St., Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Pankratov AS, Fadeeva IS, Yurasova YB, Grinin VM, Cherkesov IV, Korshunov VV. The Osteoinductive Potential of Partially Demineralized Bone Matrix and the Possibility of Its Use in Clinical Practice. ANNALS OF THE RUSSIAN ACADEMY OF MEDICAL SCIENCES 2022; 77:143-151. [DOI: 10.15690/vramn1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Today autografts are considered to be an optimal material for bone grafting. However, the collection of material and its clinical use is associated with several serious drawbacks, and therefore, in reconstructive surgery, a search for alternative treatment approaches is being conducted. A bone transplant from another person (allo-osteoplasty) is the most natural and logical option for replacing an autobone. Since 1965, allogeneic implants of a partially demineralized bone matrix combining osteoinductive and osteoconductive action have been used in clinical practice. However, the clinical results of the use of this material turned out to be ambiguous, which is due, first of all, to the significant variability of the osteoplastic potential of its various samples. For this reason, in clinical practice, sometimes preference is given to samples of non-demineralized allobone, which retain its structure longer. In this paper, we consider factors affecting the osteoinductive activity of a partially demineralized bone matrix, related both to the technological issues of its preparation and to the clinical conditions of use. Issues of the possible improvement of this material were discussed with a view to its further use in medical practice.
Collapse
|
23
|
Vivarelli L, Govoni M, Attala D, Zoccali C, Biagini R, Dallari D. Custom Massive Allograft in a Case of Pelvic Bone Tumour: Simulation of Processing with Computerised Numerical Control vs. Robotic Machining. J Clin Med 2022; 11:jcm11102781. [PMID: 35628908 PMCID: PMC9143408 DOI: 10.3390/jcm11102781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
The use of massive bone allografts after the resection of bone tumours is still a challenging process. However, to overcome some issues related to the processing procedures and guarantee the best three-dimensional matching between donor and recipient, some tissue banks have developed a virtual tissue database based on the scanning of the available allografts for using their 3D shape during virtual surgical planning (VSP) procedures. To promote the use of future VSP bone-shaping protocols useful for machining applications within a cleanroom environment, in our work, we simulate a massive bone allograft machining with two different machines: a four-axes (computer numerical control, CNC) vs. a five-axes (robot) milling machine. The allograft design was based on a real case of allograft reconstruction after pelvic tumour resection and obtained with 3D Slicer and Rhinoceros software. Machining simulations were performed with RhinoCAM and graphically and mathematically analysed with CloudCompare and R, respectively. In this case, the geometrical differences of the allograft design are not clinically relevant; however, the mathematical analysis showed that the robot performed better than the four-axes machine. The proof-of-concept presented here paves the way towards massive bone allograft cleanroom machining. Nevertheless, further studies, such as the simulation of different types of allografts and real machining on massive bone allografts, are needed.
Collapse
Affiliation(s)
- Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Correspondence: (L.V.); (M.G.)
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Correspondence: (L.V.); (M.G.)
| | - Dario Attala
- Department of Oncological Orthopaedics—Musculoskeletal Tissue Bank, IRCCS—Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Carmine Zoccali
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Science, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Roberto Biagini
- Department of Oncological Orthopaedics, IRCCS—Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
24
|
Empirical evidence that bone collagen molecules denature as a result of bone fracture. J Mech Behav Biomed Mater 2022; 131:105220. [DOI: 10.1016/j.jmbbm.2022.105220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 04/02/2022] [Indexed: 12/11/2022]
|
25
|
Schmidt FN, Hahn M, Stockhausen KE, Rolvien T, Schmidt C, Knopp T, Schulze C, Püschel K, Amling M, Busse B. Influence of X-rays and gamma-rays on the mechanical performance of human bone factoring out intraindividual bone structure and composition indices. Mater Today Bio 2021; 13:100169. [PMID: 34927043 PMCID: PMC8649390 DOI: 10.1016/j.mtbio.2021.100169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Doses of irradiation above 25 kGy are known to cause irreversible mechanical decay in bone tissue. However, the impact of irradiation doses absorbed in a clinical setting on the mechanical properties of bone remains unclear. In daily clinical practice and research, patients and specimens are exposed to irradiation due to diagnostic imaging tools, with doses ranging from milligray to Gray. The aim of this study was to investigate the influence of irradiation at these doses ranges on the mechanical performance of bone independent of inter-individual bone quality indices. Therefore, cortical bone specimens (n = 10 per group) from a selected organ donor were irradiated at doses of milligray, Gray and kilogray (graft tissue sterilization) at five different irradiation doses. Three-point bending was performed to assess mechanical properties in the study groups. Our results show a severe reduction in mechanical performance (work to fracture: 50.29 ± 11.49 Nmm in control, 14.73 ± 1.84 Nmm at 31.2 kGy p ≤ 0.05) at high irradiation doses of 31.2 kGy, which correspond to graft tissue sterilization or synchrotron imaging. In contrast, no reduction in mechanical properties were detected for doses below 30 Gy. These findings are further supported by fracture surface texture imaging (i.e. more brittle fracture textures above 31.2 kGy). Our findings show that high radiation doses (≥31.2 kGy) severely alter the mechanical properties of bone. Thus, irradiation of this order of magnitude should be taken into account when mechanical analyses are planned after irradiation. However, doses of 30 Gy and below, which are common for clinical and experimental imaging (e.g., radiation therapy, DVT imaging, CT imaging, HR-pQCT imaging, DXA measurements, etc.), do not alter the mechanical bending-behavior of bone.
Collapse
Affiliation(s)
- Felix N. Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Forum Medical Technology Health Hamburg (FMTHH), Martinistrasse 52, 20246, Hamburg, Germany
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Kilian E. Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Constantin Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Knopp
- Interdisciplinary Competence Center for Interface Research (ICCIR), Forum Medical Technology Health Hamburg (FMTHH), Martinistrasse 52, 20246, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Lottestrasse 55, 22529, Hamburg, Germany
| | - Christian Schulze
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), Forum Medical Technology Health Hamburg (FMTHH), Martinistrasse 52, 20246, Hamburg, Germany
- Corresponding author. Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
26
|
Wang W, Shen J, Meng Y, Ye M, Lin S, Zhao Q, Wang L, Cheung KM, Wu S, Zheng Y, Liu X, Chu PK, Yeung KW, Zhang ZY. Magnesium cationic cue enriched interfacial tissue microenvironment nurtures the osseointegration of gamma-irradiated allograft bone. Bioact Mater 2021; 10:32-47. [PMID: 34901527 PMCID: PMC8637003 DOI: 10.1016/j.bioactmat.2021.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
Regardless of the advancement of synthetic bone substitutes, allograft-derived bone substitutes still dominate in the orthopaedic circle in the treatments of bone diseases. Nevertheless, the stringent devitalization process jeopardizes their osseointegration with host bone and therefore prone to long-term failure. Hence, improving osseointegration and transplantation efficiency remains important. The alteration of bone tissue microenvironment (TME) to facilitate osseointegration has been generally recognized. However, the concept of exerting metal ionic cue in bone TME without compromising the mechanical properties of bone allograft is challenging. To address this concern, an interfacial tissue microenvironment with magnesium cationc cue was tailored onto the gamma-irradiated allograft bone using a customized magnesium-plasma surface treatment. The formation of the Mg cationic cue enriched interfacial tissue microenvironment on allograft bone was verified by the scanning ion-selective electrode technique. The cellular activities of human TERT-immortalized mesenchymal stem cells on the Mg-enriched grafts were notably upregulated. In the animal test, superior osseointegration between Mg-enriched graft and host bone was found, whereas poor integration was observed in the gamma-irradiated controls at 28 days post-operation. Furthermore, the bony in-growth appeared on magnesium-enriched allograft bone was significant higher. The mechanism possibly correlates to the up-regulation of integrin receptors in mesenchymal stem cells under modified bone TME that directly orchestrate the initial cell attachment and osteogenic differentiation of mesenchymal stem cells. Lastly, our findings demonstrate the significance of magnesium cation modified bone allograft that can potentially translate to various orthopaedic procedures requiring bone augmentation. A modified interfacial Mg TME was tailored onto the GI allograft bone matrix without compromising the mechanical properties. The SIET were applied to recognize the Mg2+-cue enriched interfacial TME on the surface of the Mg-treated bone allograft. The rodent model that is analogous to the clinical use of allograft bone were applied to charaterize the osseointegration. The boundary of the Mg-enriched allograft bone was already unable to be identified and become homogeneous at D28 post-op. The Mg2+-cue enriched interfacial TME is able to convince the upregulation of several integrin receptors of MSCs.
Collapse
Affiliation(s)
- Wenhao Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Jie Shen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Yuan Meng
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Miaoman Ye
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Shaozhang Lin
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Qi Zhao
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Le Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Kenneth M.C. Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Shuilin Wu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials & Engineering, Hubei University, Wuhan, 430062, PR China
- Ministry of Education Key Laboratory for Advanced Ceramics and Machining Technology, School of Materials Science & Engineering, Tianjin University, Tianjin, 300352, PR China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Collage of Engineering, Peking University, Beijing, 100871, PR China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Paul K. Chu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, PR China
| | - Kelvin W.K. Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
- Corresponding author. Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China.
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Corresponding author. Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University Guangzhou, 510150, PR China.
| |
Collapse
|
27
|
Spatial-Temporal Patterns and Inflammatory Factors of Bone Matrix Remodeling. Stem Cells Int 2021; 2021:4307961. [PMID: 34777503 PMCID: PMC8580647 DOI: 10.1155/2021/4307961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The bone extracellular matrix (ECM) contains organic and mineral constituents. The establishment and degradation processes of ECM connect with spatial and temporal patterns, especially circadian rhythms in ECM. These patterns are responsible for the physical and biological characteristics of bone. The disturbances of the patterns disrupt bone matrix remodeling and cause diverse bone diseases, such as osteogenesis imperfecta (OI) and bone fracture. In addition, the main regulatory factors and inflammatory factors also follow circadian rhythms. Studies show that the circadian oscillations of these factors in bone ECM potentially influence the interactions between immune responses and bone formation. More importantly, mesenchymal stem cells (MSCs) within the specific microenvironments provide the regenerative potential for tissue remodeling. In this review, we summarize the advanced ECM spatial characteristics and the periodic patterns of bone ECM. Importantly, we focus on the intrinsic connections between the immunoinflammatory system and bone formation according to circadian rhythms of regulatory factors in bone ECM. And our research group emphasizes the multipotency of MSCs with their microenvironments. The advanced understandings of bone ECM formation patterns and MSCs contribute to providing optimal prevention and treatment strategies.
Collapse
|
28
|
Pendleton MM, Emerzian SR, Sadoughi S, Li A, Liu JW, Tang SY, O'Connell GD, Sibonga JD, Alwood JS, Keaveny TM. Relations Between Bone Quantity, Microarchitecture, and Collagen Cross-links on Mechanics Following In Vivo Irradiation in Mice. JBMR Plus 2021; 5:e10545. [PMID: 34761148 PMCID: PMC8567491 DOI: 10.1002/jbm4.10545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross‐linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic‐loading fatigue life, we conducted total‐body, acute, gamma‐irradiation experiments on skeletally mature (17‐week‐old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short‐term (11‐day) or long‐term (12‐week) time point after exposure. Micro‐computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post‐exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross‐links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total‐body irradiation on the trabecular bone morphology and collagen cross‐links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post‐exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Megan M Pendleton
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Shannon R Emerzian
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Saghi Sadoughi
- Department of Mechanical Engineering University of California Berkeley CA USA
| | - Alfred Li
- Endocrine Research Unit University of California and Veteran Affairs Medical Center San Francisco CA USA
| | - Jennifer W Liu
- Department of Orthopaedic Surgery Washington University St. Louis MO USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery Washington University St. Louis MO USA.,Department of Biomedical Engineering Washington University St. Louis MO USA.,Department of Mechanical Engineering and Materials Science Washington University St. Louis MO USA
| | - Grace D O'Connell
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Orthopaedic Surgery University of California San Francisco CA USA
| | - Jean D Sibonga
- Biomedical Research and Environmental Sciences Division NASA Johnson Space Center Houston TX USA
| | - Joshua S Alwood
- Space Biosciences Division NASA Ames Research Center Moffett Field CA USA
| | - Tony M Keaveny
- Department of Mechanical Engineering University of California Berkeley CA USA.,Department of Bioengineering University of California Berkeley CA USA
| |
Collapse
|
29
|
Iranmanesh F, Willett TL. A linear systems model of the hydrothermal isometric tension test for assessing collagenous tissue quality. J Mech Behav Biomed Mater 2021; 125:104916. [PMID: 34717118 DOI: 10.1016/j.jmbbm.2021.104916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
Collagen is the most abundant structural protein in the animal kingdom. Its thermal and thermomechanical properties are often measured using differential scanning calorimetry (DSC) and hydrothermal isometric tension (HIT) tests, respectively. In living tissues, not all collagenous structures (molecules, fibrils, etc.) have the same "quality," and the heterogeneity among these structures in specific tissues increases with remodeling, aging, and/or disease states. In this paper, first, a peak-fitting analysis is carried out to separate and distinguish the sequential denaturation events in a DSC endotherm, which presumably stem from heterogeneity in the collagen fibrils. The fitting analysis uses one of two functions: a Gaussian function or a function proposed by Miles. The individual endotherms were then convolved with a physics-based parametric function, J(T), proposed by the authors, to model the development of the isometric tension in two stages: 1) tension development due to a sudden increase in conformational entropy as each collagen packet denatures, and 2) additional isometric tension development due to increasing temperature, consistent with rubber thermo-elasticity. The proposed function parameters were then found by fitting to actual HIT curves using a global optimization technique. This model provides a decoupling of the effects of denaturation kinetics and collagen network connectivity and therefore an improved interpretation of HIT test results during the temperature ramp from ambient temperature to 90 °C. The simple model outputs are two parameters, α and β, that have physical meaning and aid in assessing collagenous tissue quality in terms of connectivity and integrity.
Collapse
Affiliation(s)
- Faezeh Iranmanesh
- Composite Biomaterial Systems Laboratory, Systems Design Engineering, University of Waterloo, Ontario, Canada
| | - Thomas L Willett
- Composite Biomaterial Systems Laboratory, Systems Design Engineering, University of Waterloo, Ontario, Canada.
| |
Collapse
|
30
|
Ghomashchi S, Whyne CM, Chinnery T, Habach F, Akens MK. Impact of radiofrequency ablation (RFA) on bone quality in a murine model of bone metastases. PLoS One 2021; 16:e0256076. [PMID: 34495961 PMCID: PMC8425524 DOI: 10.1371/journal.pone.0256076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
Thermal therapies such as radiofrequency ablation (RFA) are gaining widespread clinical adoption in the local treatment of skeletal metastases. RFA has been shown to successfully destroy tumor cells, yet the impact of RFA on the quality of the surrounding bone has not been well characterized. RFA treatment was performed on femora of rats with bone metastases (osteolytic and osteoblastic) and healthy age matched rats. Histopathology, second harmonic generation imaging and backscatter electron imaging were used to characterize changes in the structure, organic and mineral components of the bone after RFA. RFA treatment was shown to be effective in targeting tumor cells and promoting subsequent new bone formation without impacting the surrounding bone negatively. Mineralization profiles of metastatic models were significantly improved post-RFA treatment with respect to mineral content and homogeneity, suggesting a positive impact of RFA treatment on the quality of cancer involved bone. Evaluating the impact of RFA on bone quality is important in directing the growth of this minimally invasive therapeutic approach with respect to fracture risk assessment, patient selection, and multimodal treatment planning.
Collapse
Affiliation(s)
- Soroush Ghomashchi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cari M. Whyne
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tricia Chinnery
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Fayez Habach
- Department of Physics, University of Toronto, Ontario, Canada
| | - Margarete K. Akens
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Damrath JG, Creecy A, Wallace JM, Moe SM. The impact of advanced glycation end products on bone properties in chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:411-417. [PMID: 33928911 PMCID: PMC8154706 DOI: 10.1097/mnh.0000000000000713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) affects over 15% of Americans and results in an increased risk of skeletal fractures and fracture-related mortality. However, there remain great challenges in estimating fracture risk in CKD patients, as conventional metrics such as bone density assess bone quantity without accounting for the material quality of the bone tissue. The purpose of this review is to highlight the detrimental effects of advanced glycation end products (AGEs) on the structural and mechanical properties of bone, and to demonstrate the importance of including bone quality when assessing fracture risk in CKD patients. RECENT FINDINGS Increased oxidative stress and inflammation drive the production of AGEs in CKD patients that form nonenzymatic crosslinks between type I collagen fibrils in the bone matrix. Nonenzymatic crosslinks stiffen and embrittle the bone, reducing its ability to absorb energy and resist fracture. Clinical measurement of AGEs is typically indirect and fails to distinguish the identity and properties of the various AGEs. SUMMARY Accounting for the impact of AGEs on the skeleton in CKD patients may improve our estimation of overall bone quality, fracture risk, and treatments to improve both bone quantity and quality by reducing AGEs in patients with CKD merit investigation in order to improve our understanding of the etiology of increased fracture risk.
Collapse
Affiliation(s)
- John G. Damrath
- Purdue University Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Amy Creecy
- Indiana University – Purdue University at Indianapolis Department of Biomedical Engineering, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Indiana University – Purdue University at Indianapolis Department of Biomedical Engineering, Indianapolis, IN, United States
| | - Sharon M. Moe
- Indiana University School of Medicine, Division of Nephrology, Indianapolis, IN, United States
| |
Collapse
|
32
|
Kadir S, Rassir R, Joor F, Nolte P, Vergroesen DA. Reconstruction of Concomitant Ruptures of Peroneus Longus and Brevis Tendons: A Case Report and Literature Review. J Foot Ankle Surg 2021; 60:399-403. [PMID: 33168441 DOI: 10.1053/j.jfas.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/10/2020] [Accepted: 09/10/2020] [Indexed: 02/03/2023]
Abstract
Peroneal tendon ruptures are caused by inversion trauma of the ankle and are often mistaken for simple ankle sprains. As a result, peroneal tendon ruptures are underdiagnosed; especially a concomitant rupture of both the brevis and longus tendons is extremely rare. We describe the case of concomitant rupture of both peroneal tendons in a 50-year-old male, diagnosed with magnetic resonance imaging and treated with a flexor digitorum longus tendon transfer. The flexor digitorum longus tendon was mobilized, transferred laterally, and anchored to the distal and proximal stubs of the peroneal tendons, acting like a bridge. At final follow-up (19 months after index surgery), the patient was relieved from his symptoms and had full range of motion. Imaging demonstrated a durable reconstruction. Evidence for the preferred surgical treatment is lacking in the current literature and is limited to small case series and case reports. Randomized prospective studies should be conducted to determine the optimal treatment. Based on current available data, surgical technique should be based on clinical observation (e.g., tendon quality) and imaging findings.
Collapse
Affiliation(s)
- Srood Kadir
- Postgraduate House Officer Orthopedic Surgery, Department of Orthopaedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Rachid Rassir
- PhD Candidate Orthopedic Surgery, Department of Orthopaedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands.
| | - Fleur Joor
- Orthopedic Surgeon, Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Peter Nolte
- Orthopedic Surgeon, Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Diederik A Vergroesen
- Orthopedic Surgeon, Department of Orthopedic Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| |
Collapse
|
33
|
Bartlow CM, Mann KA, Damron TA, Oest ME. Altered mechanical behavior of demineralized bone following therapeutic radiation. J Orthop Res 2021; 39:750-760. [PMID: 32965711 PMCID: PMC8212945 DOI: 10.1002/jor.24868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 02/04/2023]
Abstract
Post-radiotherapy (RTx) bone fragility fractures are a late-onset complication occurring in bone within or underlying the radiation field. These fractures are difficult to predict, as patients do not present with local osteopenia. Using a murine hindlimb RTx model, we previously documented decreased mineralized bone strength and fracture toughness, but alterations in material properties of the organic bone matrix are largely unknown. In this study, 4 days of fractionated hindlimb irradiation (4 × 5 Gy) or Sham irradiation was administered in a mouse model (BALB/cJ, end points: 0, 4, 8, and 12 weeks, n = 15/group/end point). Following demineralization, the viscoelastic stress relaxation, and monotonic tensile mechanical properties of tibiae were determined. Irradiated tibiae demonstrated an immediate (day after last radiation fraction) and sustained (4, 8, 12 weeks) increase in stress relaxation compared to the Sham group, with a 4.4% decrease in equilibrium stress (p < .017). While tensile strength was not different between groups, irradiated tibiae had a lower elastic modulus (-5%, p = .027) and energy to failure (-12.2%, p = .012) with monotonic loading. Gel electrophoresis showed that therapeutic irradiation (4 × 5 Gy) does not result in collagen fragmentation, while irradiation at a common sterilization dose (25 kGy) extensively fragmented collagen. These results suggest that altered collagen mechanical behavior has a role in postirradiation bone fragility, but this can occur without detectable collagen fragmentation. Statement of Clinical Significance: Therapeutic irradiation alters bone organic matrix mechanics and which contribute to diminished fatigue strength, but this does not occur via collagen fragmentation.
Collapse
Affiliation(s)
- Christopher M. Bartlow
- Department of Orthopedic Surgery State University of New York Upstate Medical University Syracuse New York USA
| | - Kenneth A. Mann
- Department of Orthopedic Surgery State University of New York Upstate Medical University Syracuse New York USA
| | - Timothy A. Damron
- Department of Orthopedic Surgery State University of New York Upstate Medical University Syracuse New York USA
| | - Megan E. Oest
- Department of Orthopedic Surgery State University of New York Upstate Medical University Syracuse New York USA
| |
Collapse
|
34
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Mechanical Characterization of Human Trabecular and Formed Granulate Bone Cylinders Processed by High Hydrostatic Pressure. MATERIALS 2021; 14:ma14051069. [PMID: 33668996 PMCID: PMC7956279 DOI: 10.3390/ma14051069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022]
Abstract
One main disadvantage of commercially available allogenic bone substitute materials is the altered mechanical behavior due to applied material processing, including sterilization methods like thermal processing or gamma irradiation. The use of high hydrostatic pressure (HHP) might be a gentle alternative to avoid mechanical alteration. Therefore, we compressed ground trabecular human bone to granules and, afterwards, treated them with 250 and 300 MPa for 20 and 30 min respectively. We characterized the formed bone granule cylinders (BGC) with respect to their biomechanical properties by evaluating stiffness and stress at 15% strain. Furthermore, the stiffness and yield strength of HHP-treated and native human trabecular bone cylinders (TBC) as control were evaluated. The mechanical properties of native vs. HHP-treated TBCs as well as HHP-treated vs. untreated BGCs did not differ, independent of the applied HHP magnitude and duration. Our study suggests HHP treatment as a suitable alternative to current processing techniques for allogenic bone substitutes since no negative effects on mechanical properties occurred.
Collapse
|
36
|
Whyne CM, Ferguson D, Clement A, Rangrez M, Hardisty M. Biomechanical Properties of Metastatically Involved Osteolytic Bone. Curr Osteoporos Rep 2020; 18:705-715. [PMID: 33074529 DOI: 10.1007/s11914-020-00633-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Skeletal metastasis involves the uncoupling of physiologic bone remodeling resulting in abnormal bone turnover and radical changes in bony architecture, density, and quality. Bone strength assessment and fracture risk prediction are critical in clinical treatment decision-making. This review focuses on bone tissue and structural mechanisms altered by osteolytic metastasis and the resulting changes to its material and mechanical behavior. RECENT FINDINGS Both organic and mineral phases of bone tissue are altered by osteolytic metastatic disease, with diminished bone quality evident at multiple length-scales. The mechanical performance of bone with osteolytic lesions is influenced by a combination of tissue-level and structural changes. This review considers the effects of osteolytic metastasis on bone biomechanics demonstrating its negative impact at tissue and structural levels. Future studies need to assess the cumulative impact of cancer treatments on metastatically involved bone quality, and its utility in directing multimodal treatment planning.
Collapse
Affiliation(s)
- Cari M Whyne
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada.
- Department of Surgery, University of Toronto, Toronto, Canada.
- Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Dallis Ferguson
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Allison Clement
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Mohammedayaz Rangrez
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Michael Hardisty
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Amelia F, Abbas B, Darwis D, Estuningsih S, Noviana D. Effects of bone types, particle sizes, and gamma irradiation doses in feline demineralized freeze-dried bone allograft. Vet World 2020; 13:1536-1543. [PMID: 33061224 PMCID: PMC7522947 DOI: 10.14202/vetworld.2020.1536-1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Fracture cases significantly increase recently, demanding high quality of bone graft materials. This research aimed to evaluate the effects of bone types, particle sizes, and gamma irradiation doses on morphological performance and cell viability of feline demineralized freeze-dried bone allograft (DFDBA) through an in vitro study. Materials and Methods: Feline DFDBA derived from feline cortical and cancellous long bones was processed into four different sizes: Group A (larger than 1000 µm), B (841-1000 µm), C (420-840 µm), and D (250-419 µm) for each type of bones. The materials were then irradiated with two doses of gamma rays, 15 and 25 kGy, resulting in 16 variants of feline DFDBA. The surfaces of each material were then observed with the scanning electron microscope (SEM). The in vitro evaluation of feline DFDBA was then performed using 3-(4,5-dimethythiazol-2)-2,5-diphenyltetrazolium bromide (MTT) assay with calf pulmonary artery endothelial cells. Results: The MTT assay results showed that the lowest inhibition rate (14.67±9.17 %) achieved by feline DFDBA in Group A derived from cortical bones irradiated with 15 kGy. Group D generally showed high inhibition rate in both cancellous and cortical bones, irradiated with either 15 or 25 kGy. The SEM results showed that cancellous and cortical bones have numerous macropores and micropores structure in 170× and 3000×, respectively. Conclusion: The material derived from cortical bones in Group A (larger than 1000 µm in particle size) irradiated with 15 kGy is the best candidate for further development due to its abundance of micropores structure and ability in preserving the living cells.
Collapse
Affiliation(s)
- Frizky Amelia
- Program Study of Animal Biomedical Science, Graduate School of IPB University, Bogor, Jawa Barat 16680, Indonesia.,Diagnostic Imaging Center, Veterinary Teaching Hospital, Faculty of Veterinary Medicine IPB University, Bogor, Jawa Barat 16680, Indonesia
| | - Basril Abbas
- Centre for Isotopes and Radiation Application, National Nuclear Energy Agency (BATAN), Jakarta Selatan, DKI Jakarta 12440, Indonesia
| | - Darmawan Darwis
- Centre for Isotopes and Radiation Application, National Nuclear Energy Agency (BATAN), Jakarta Selatan, DKI Jakarta 12440, Indonesia
| | - Sri Estuningsih
- Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine IPB University, Bogor, Jawa Barat 16680, Indonesia
| | - Deni Noviana
- Diagnostic Imaging Center, Veterinary Teaching Hospital, Faculty of Veterinary Medicine IPB University, Bogor, Jawa Barat 16680, Indonesia.,Department of Clinic Reproduction and Pathology, Faculty of Veterinary Medicine IPB University, Bogor, Jawa Barat 16680, Indonesia
| |
Collapse
|
38
|
El-Hansi NS, Sallam AM, Talaat MS, Said HH, Khalaf MA, Desouky OS. Biomechanical properties enhancement of gamma radiation-sterilized cortical bone using antioxidants. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:571-581. [PMID: 32444954 DOI: 10.1007/s00411-020-00848-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Gamma radiation sterilization is the method used by the majority of tissue banks to reduce disease transmission from infected donors to recipients through bone allografts. However, many studies have reported that gamma radiation impairs the structural and mechanical properties of bone via formation of free radicals, the effect of which could be reduced using free radical scavengers. The aim of this study is to examine the radioprotective role of hydroxytyrosol (HT) and alpha lipoic acid (ALA) on the mechanical properties of gamma-sterilized cortical bone of bovine femur, using three-point bending and microhardness tests. Specimens of bovine femurs were soaked in ALA and HT for 3 and 7 days, respectively, before being exposed to 35-kGy gamma radiation. In unirradiated samples, both HT and ALA pre-treatment improved the cortical bone bending plastic properties (maximum bending stress, maximum bending strain, and toughness) without affecting microhardness. Irradiation resulted in a drastic reduction of the plastic properties and an increased microhardness. ALA treatment before irradiation alleviated the aforementioned reductions in maximum bending stress, maximum bending strain, and toughness. In addition, under ALA treatment, the microhardness was not increased after irradiation. For HT treatment, similar effects were found. In conclusion, the results indicate that HT and ALA can be used before irradiation to enhance the mechanical properties of gamma-sterilized bone allografts.
Collapse
Affiliation(s)
- Naglaa S El-Hansi
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Abdelsattar M Sallam
- Biophysics Branch, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mona S Talaat
- Biophysics Branch, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hoda H Said
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt.
| | - Mahmoud A Khalaf
- Microbiology Department (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| | - Omar S Desouky
- Biophysics Lab, Radiation Physics Department, (NCRRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt
| |
Collapse
|
39
|
Rahman N, Khan R, Hussain T, Ahmed N. Investigation of the mechanism of gamma irradiation effect on bovine bone. Cell Tissue Bank 2020; 21:249-256. [PMID: 32067198 DOI: 10.1007/s10561-020-09817-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/22/2023]
Abstract
Radiation sterilization is an effective method of bone sterilization prior to bone graft transplantation. Gamma irradiation affects the biological and mechanical properties of bone; depending on the dose of radiation. The effect of gamma irradiation on bone mechanical properties is an unwanted phenomenon. However the mechanism of the effect of irradiation on bone mechanical properties is not properly understood. In this research paper the mechanism of the effect of gamma irradiation on bovine bone is investigated using scanning electron microscopy, energy-dispersive X-rays spectroscopy and Fourier transform infrared spectroscopy techniques. Gamma irradiation affects the mineral and fiber composition of bovine bone. The mineral content of bone especially calcium, magnesium and phosphorus decrease with increasing dose of gamma radiation. At Nano-level gamma irradiation alter amide I, amide II and amide III collagen contents. High dose gamma irradiation induces collagen cross-linking reaction in bone and degrades bone properties.
Collapse
Affiliation(s)
- Noor Rahman
- International Islamic University Islamabad, Islamabad, Pakistan.
| | - Rafiullah Khan
- International Islamic University Islamabad, Islamabad, Pakistan
| | - Tanvir Hussain
- International Islamic University Islamabad, Islamabad, Pakistan
| | - Nabi Ahmed
- International Islamic University Islamabad, Islamabad, Pakistan
| |
Collapse
|
40
|
Mandair GS, Oest ME, Mann KA, Morris MD, Damron TA, Kohn DH. Radiation-induced changes to bone composition extend beyond periosteal bone. Bone Rep 2020; 12:100262. [PMID: 32258252 PMCID: PMC7125315 DOI: 10.1016/j.bonr.2020.100262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer patients receiving radiotherapy for soft tissue sarcomas are often at risk of post-irradiation (post-RTx) bone fragility fractures, but our understanding of factors controlling radiation-induced bone injury is limited. Previous studies have evaluated post-RTx changes to cortical bone composition in the periosteum of irradiated tibiae, but have not evaluated effects of irradiation in deeper tissues, such as endosteal or mid-cortical bone, and whether there are differential spatial effects of irradiation. In this study, we hypothesize that post-RTx changes to cortical bone composition are greater in endosteal compared to mid-cortical or periosteal bone. METHODS A pre-clinical mouse model of limited field hindlimb irradiation was used to evaluate spatial and temporal post-RTx changes to the metaphyseal cortex of irradiated tibiae. Irradiation was delivered unilaterally to the hindlimbs of 12-wk old female BALB/cJ mice as 4 consecutive daily doses of 5 Gy each. RTx and non-RTx tibiae were obtained at 0, 2, 4, 8, and 12 wks post-RTx (n = 9 mice/group/time). Raman spectroscopy was used to evaluate spatial and temporal post-RTx changes to cortical bone composition in age-matched RTx and non-RTx groups. RESULTS Significant early spatial differences in mineral/matrix and collagen crosslink ratios were found between endosteal and periosteal or mid-cortical bone at 2-wks post-RTx. Although spatial differences were transient, mineral/matrix ratios significantly decreased and collagen crosslink ratios significantly increased with post-RTx time throughout the entire tibial metaphyseal cortex. CONCLUSIONS Irradiation negatively impacts the composition of cortical bone in a spatially-dependent manner starting as early as 2-wks post-RTx. Long-term progressive post-RTx changes across all cortical bone sites may eventually contribute to the increased risk of post-RTx bone fragility fractures.
Collapse
Affiliation(s)
| | - Megan E. Oest
- Department of Orthopedic Surgery, Upstate Medical University, Syracuse, NY, USA
| | - Kenneth A. Mann
- Department of Orthopedic Surgery, Upstate Medical University, Syracuse, NY, USA
| | | | - Timothy A. Damron
- Department of Orthopedic Surgery, Upstate Medical University, Syracuse, NY, USA
| | - David H. Kohn
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| |
Collapse
|
41
|
Creecy A, Damrath JG, Wallace JM. Control of Bone Matrix Properties by Osteocytes. Front Endocrinol (Lausanne) 2020; 11:578477. [PMID: 33537002 PMCID: PMC7848033 DOI: 10.3389/fendo.2020.578477] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Osteocytes make up 90-95% of the cellular content of bone and form a rich dendritic network with a vastly greater surface area than either osteoblasts or osteoclasts. Osteocytes are well positioned to play a role in bone homeostasis by interacting directly with the matrix; however, the ability for these cells to modify bone matrix remains incompletely understood. With techniques for examining the nano- and microstructure of bone matrix components including hydroxyapatite and type I collagen becoming more widespread, there is great potential to uncover novel roles for the osteocyte in maintaining bone quality. In this review, we begin with an overview of osteocyte biology and the lacunar-canalicular system. Next, we describe recent findings from in vitro models of osteocytes, focusing on the transitions in cellular phenotype as they mature. Finally, we describe historical and current research on matrix alteration by osteocytes in vivo, focusing on the exciting potential for osteocytes to directly form, degrade, and modify the mineral and collagen in their surrounding matrix.
Collapse
Affiliation(s)
- Amy Creecy
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States
| | - John G. Damrath
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, United States
- *Correspondence: Joseph M. Wallace,
| |
Collapse
|
42
|
Pendleton MM, Emerzian SR, Liu J, Tang SY, O'Connell GD, Alwood JS, Keaveny TM. Effects of ex vivo ionizing radiation on collagen structure and whole-bone mechanical properties of mouse vertebrae. Bone 2019; 128:115043. [PMID: 31445224 PMCID: PMC6813909 DOI: 10.1016/j.bone.2019.115043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
Abstract
Bone can become brittle when exposed to ionizing radiation across a wide range of clinically relevant doses that span from radiotherapy (accumulative 50 Gy) to sterilization (~35,000 Gy). While irradiation-induced embrittlement has been attributed to changes in the collagen molecular structure, the relative role of collagen fragmentation versus non-enzymatic collagen crosslinking remains unclear. To better understand the effects of radiation on the bone material without cellular activity, we conducted an ex vivo x-ray radiation experiment on excised mouse lumbar vertebrae. Spinal tissue from twenty-week old, female, C57BL/6J mice were randomly assigned to a single x-ray radiation dose of either 0 (control), 50, 1000, 17,000, or 35,000 Gy. Measurements were made for collagen fragmentation, non-enzymatic collagen crosslinking, and both monotonic and cyclic-loading compressive mechanical properties. We found that the group differences for mechanical properties were more consistent with those for collagen fragmentation than for non-enzymatic collagen crosslinking. Monotonic strength at 17,000 and 35,000 Gy was lower than that of the control by 50% and 73% respectively, (p < 0.001) but at 50 and 1000 Gy was not different than the control. Consistent with those trends, collagen fragmentation only occurred at 17,000 and 35,000 Gy. By contrast, non-enzymatic collagen crosslinking was greater than control for all radiation doses (p < 0.001). All results were consistent both for monotonic and cyclic loading conditions. We conclude that the reductions in bone compressive monotonic strength and fatigue life due to ex vivo ionizing radiation are more likely caused by fragmentation of the collagen backbone than any increases in non-enzymatic collagen crosslinks.
Collapse
Affiliation(s)
- Megan M Pendleton
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Shannon R Emerzian
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Jennifer Liu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Material Science & Mechanical Engineering, Washington University, St. Louis, MO, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Tony M Keaveny
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
43
|
Haryadi BM, Hafner D, Amin I, Schubel R, Jordan R, Winter G, Engert J. Nonspherical Nanoparticle Shape Stability Is Affected by Complex Manufacturing Aspects: Its Implications for Drug Delivery and Targeting. Adv Healthc Mater 2019; 8:e1900352. [PMID: 31410996 DOI: 10.1002/adhm.201900352] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Indexed: 02/04/2023]
Abstract
The shape of nanoparticles is known recently as an important design parameter influencing considerably the fate of nanoparticles with and in biological systems. Several manufacturing techniques to generate nonspherical nanoparticles as well as studies on in vitro and in vivo effects thereof have been described. However, nonspherical nanoparticle shape stability in physiological-related conditions and the impact of formulation parameters on nonspherical nanoparticle resistance still need to be investigated. To address these issues, different nanoparticle fabrication methods using biodegradable polymers are explored to produce nonspherical nanoparticles via the prevailing film-stretching method. In addition, systematic comparisons to other nanoparticle systems prepared by different manufacturing techniques and less biodegradable materials (but still commonly utilized for drug delivery and targeting) are conducted. The study evinces that the strong interplay from multiple nanoparticle properties (i.e., internal structure, Young's modulus, surface roughness, liquefaction temperature [glass transition (Tg ) or melting (Tm )], porosity, and surface hydrophobicity) is present. It is not possible to predict the nonsphericity longevity by merely one or two factor(s). The most influential features in preserving the nonsphericity of nanoparticles are existence of internal structure and low surface hydrophobicity (i.e., surface-free energy (SFE) > ≈55 mN m-1 , material-water interfacial tension <6 mN m-1 ), especially if the nanoparticles are soft (<1 GPa), rough (Rrms > 10 nm), porous (>1 m2 g-1 ), and in possession of low bulk liquefaction temperature (<100 °C). Interestingly, low surface hydrophobicity of nanoparticles can be obtained indirectly by the significant presence of residual stabilizers. Therefore, it is strongly suggested that nonsphericity of particle systems is highly dependent on surface chemistry but cannot be appraised separately from other factors. These results and reviews allot valuable guidelines for the design and manufacturing of nonspherical nanoparticles having adequate shape stability, thereby appropriate with their usage purposes. Furthermore, they can assist in understanding and explaining the possible mechanisms of nonspherical nanoparticles effectivity loss and distinctive material behavior at the nanoscale.
Collapse
Affiliation(s)
- Bernard Manuel Haryadi
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| | - Daniel Hafner
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Ihsan Amin
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Rene Schubel
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Rainer Jordan
- Department of ChemistryDresden University of Technology Mommsenstraße 4 01069 Dresden Germany
| | - Gerhard Winter
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| | - Julia Engert
- Pharmaceutical Technology and BiopharmaceuticsDepartment of PharmacyLudwig‐Maximilians‐Universität München Butenandtstraße 5 81377 Munich Germany
| |
Collapse
|
44
|
Diniz P, Pacheco J, Flora M, Quintero D, Stufkens S, Kerkhoffs G, Batista J, Karlsson J, Pereira H. Clinical applications of allografts in foot and ankle surgery. Knee Surg Sports Traumatol Arthrosc 2019; 27:1847-1872. [PMID: 30721345 DOI: 10.1007/s00167-019-05362-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of this review is to systematically analyse current literature on the use of allografts in the surgical treatment of foot and ankle disorders in adult patients. Based on this study, we propose evidence-based recommendations. METHODS The database for PubMed was searched for all published articles. No timeframe restrictions were applied. Clinical studies eligible for inclusion met the following criteria: performed on patients over 18 years old; subject to surgical treatment of foot and ankle disorders; with report on the outcome of the use of allografts; with a report and assessment of pain and function, or equivalent; minimum follow-up of 1 year was required. Two reviewers independently screened and selected studies for full-text analysis from title and abstract. 107 studies were included from 1113 records. Studies were grouped according to surgical indications into ten categories: musculoskeletal tumours (n = 16), chronic ankle instability (n = 15), ankle arthritis (n = 14), osteochondral lesions of the talus (n = 12), Achilles tendon defects (n = 11), other tendon defects (n = 9), fusions (n = 9), fractures (n = 8), hallux rigidus (n = 3) and other indications (n = 10). RESULTS Most studies displayed evidence level of IV (n = 57) and V (n = 39). There was one level I, one level II and nine level III studies. Most studies reported allografting as a good option (n = 99; 92.5%). Overall complication rate was 17% (n = 202). CONCLUSIONS Fair evidence (Grade B) was found in favour of the use of allografts in lateral ankle ligament reconstruction or treatment of intra-articular calcaneal fracture. Fair evidence (Grade B) was found against the use of allogeneic MSCs in tibiotalar fusions. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- Pedro Diniz
- Department of Orthopaedic Surgery, Hospital de Sant'Ana, Rua de Benguela, 501, 2775-028, Parede, Portugal. .,Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal. .,Fisiogaspar, Lisbon, Portugal.
| | - Jácome Pacheco
- Department of Orthopaedic Surgery, Hospital de Sant'Ana, Rua de Benguela, 501, 2775-028, Parede, Portugal
| | - Miguel Flora
- Department of Orthopaedic Surgery, Hospital de Sant'Ana, Rua de Benguela, 501, 2775-028, Parede, Portugal
| | - Diego Quintero
- Department of Applied Anatomy in Physiatry Orthopedics and Traumatology of the Chair of Normal Anatomy, Faculty of Medical Sciences, National University of Rosario, Rosario, Argentina
| | - Sjoerd Stufkens
- Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Gino Kerkhoffs
- Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Jorge Batista
- Clinical Department Club Atletico Boca Juniores, CAJB-Centro Artroscopico, Buenos Aires, Argentina
| | - Jon Karlsson
- Department of Orthopaedics, University of Gothenburg, Gothenburg, Sweden
| | - Hélder Pereira
- Orthopaedic Department, Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal.,Ripoll y De Prado Sports Clinic: FIFA Medical Centre of Excellence, Murcia-Madrid, Spain.,University of Minho, ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
45
|
Attia T, Grynpas M, Willett T. Ribose pre-treatment can protect the fatigue life of γ-irradiation sterilized bone. Cell Tissue Bank 2019; 20:287-295. [PMID: 31020508 DOI: 10.1007/s10561-019-09767-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/16/2019] [Indexed: 11/27/2022]
Abstract
Structural bone allografts are often sterilized with γ-irradiation to decrease infection risk, which unfortunately degrades the bone collagen connectivity, making the bone weak and brittle. In previous studies, we successfully protected the quasi-static mechanical properties of human cortical bone by pre-treating with ribose, prior to irradiation. This study focused on the quasi-static and fatigue tensile properties of ribose treated irradiated sterilized bone allografts. Seventy-five samples were cut from the mid-shaft diaphysis of human femurs into standardized dog-bone shape geometries for quasi-static and fatigue tensile testing. Specimens were prepared in sets of three adjacent specimens. Each set was made of a normal (N), irradiated (I) and ribose pre-treated + irradiation (R) group. The R group was incubated in a 1.2 M ribose solution before γ-irradiation. The quasi-static tensile and decalcified tests were conducted to failure under displacement control. The fatigue samples were tested under cyclic loading (10 Hz, peak stress of 45MP, minimum-to-maximum stress ratio of 0.1) until failure or reaching 10 million cycles. Ribose pre-treatment significantly improved significantly the mechanical properties of irradiation sterilized human bone in the quasi-static tensile and decalcified tests. The fatigue life of the irradiated group was impaired by 99% in comparison to the normal control. Surprisingly, the R-group has significantly superior properties over the I-group and N-group (p < 0.01, p < 0.05) (> 100%). This study shows that incubating human cortical bone in a ribose solution prior to irradiation can indeed improve the fatigue life of irradiation-sterilized cortical bone allografts.
Collapse
Affiliation(s)
- Tarik Attia
- Musculoskeletal Research Laboratory, Mount Sinai Hospital - Lunenfeld Tanenbaum Research Institute, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc Grynpas
- Musculoskeletal Research Laboratory, Mount Sinai Hospital - Lunenfeld Tanenbaum Research Institute, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Thomas Willett
- Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
46
|
Park SSH, Zhang L, Attia T, Salat P, Banks K, Willett T, Grynpas M. Pre-clinical evaluation of bone allograft toughened with a novel sterilization method: An in vivo rabbit study. J Orthop Res 2019; 37:832-844. [PMID: 30839120 DOI: 10.1002/jor.24269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
Bone allografts often undergo γ-irradiation sterilization to decrease infection risk. However this consequently degrades bone collagen and makes the allograft brittle. Our laboratory has previously found that pre-treatment with ribose ex vivo protects the bone. However, it remains unclear whether or not ribose-treated γ-irradiated allografts are able to unite and remodel in vivo. Using New Zealand White rabbits (NZWr), we aimed to evaluate if ribose-treated allografts can unite with host bone (compared to untreated (fresh-frozen) and conventionally-irradiated allografts). A critically-sized defect was created in the radii of NZWr and reconstructed with allografts fixed with an intramedullary Kirschner wire. Healing and union were assessed at 2, 6, and 12 weeks post operation, with radiographs, µCT, static and dynamic histomorphometry, backscatter electron microscopy, and torsion testing. Intramedullary fixation achieved stable reconstructions and bony union in all groups and no differences were found in the radiographic and biomechanical parameters tested. Interestingly, γ-irradiated allografts had significantly less bone volume due to evident resorption of the grafts. In contrast, ribose pre-treatment protected γ-irradiated allografts from this bone loss, with results similar to the fresh frozen controls. In conclusion, ribose-pretreated γ-irradiated allografts were able to unite in vivo. In addition to achieving bony union with host bone, ribose pre-treatment may protect against allograft resorption. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Sam Si-Hyeong Park
- Department of Surgery, Division of Orthopaedic Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lucia Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Tarik Attia
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Peter Salat
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Kate Banks
- Division of Comparative Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Willett
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Marc Grynpas
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone 2019; 120:187-193. [PMID: 30394355 PMCID: PMC6360115 DOI: 10.1016/j.bone.2018.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
Greater understanding of the determinants of skeletal fragility is highly sought due to the great burden that bone affecting diseases and fractures have on economies, societies and health care systems. Being a complex, hierarchical composite of collagen type-I and non-stoichiometric substituted hydroxyapatite, bone derives toughness from its organic phase. In this study, we tested whether early observations that a strong correlation between bone collagen integrity measured by thermomechanical methods and work to fracture exist in a more general and heterogeneous sampling of the population. Neighboring uniform specimens from an established, highly characterized and previously published collection of human cortical bone samples (femur mid-shaft) were decalcified in EDTA. Fifty-four of the original 62 donors were included (26 male and 28 females; ages 21-101 years; aging, osteoporosis, diabetes and cancer). Following decalcification, bone collagen was tested using hydrothermal isometric tension (HIT) testing in order to measure the collagen's thermal stability (denaturation temperature, Td) and network connectivity (maximum rate of isometric tension generation; Max.Slope). We used linear regression and general linear models (GLMs) with several explanatory variables to determine whether relationships between HIT parameters and generally accepted bone quality factors (e.g., cortical porosity, pentosidine content [pen], pyridinoline content [pyd]), age, and measures of fracture toughness (crack initiation fracture toughness, Kinit, and total energy release/dissipation rate evaluated at the point of unstable fast fracture, J-int) were significant. Bone collagen connectivity (Max.Slope) correlated well with the measures of fracture toughness (R2 = 24-35%), and to a lesser degree with bound water fraction (BW; R2 = 7.9%) and pore water fraction (PW; R2 = 9.1%). Significant correlations with age, apparent volumetric bone mineral density (vBMD), and mature enzymatic [pyd] and non-enzymatic collagen crosslinks [pen] were not detected. GLMs found that Max.Slope and vBMD (or BW), with or without age as additional covariate, all significantly explained the variance in Kinit (adjusted-R2 = 36.7-49.0%). Also, the best-fit model for J-int (adjusted-R2 = 35.7%) included only age and Max.Slope as explanatory variables with Max.Slope contributing twice as much as age. Max.Slope and BW without age were also significant predictors of J-int (adjusted-R2 = 35.5%). In conclusion, bone collagen integrity as measured by thermomechanical methods is a key factor in cortical bone fracture toughness. This study further demonstrates that greater attention should be paid to degradation of the overall organic phase, rather than a specific biomarker (e.g. [pen]), when seeking to understand elevated fracture rates in aging and disease.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Y Dapaah
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mathilde Granke
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jeffry S Nyman
- Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
48
|
Rahman N, Khan R, Badshah S. Effect of x-rays and gamma radiations on the bone mechanical properties: literature review. Cell Tissue Bank 2018; 19:457-472. [PMID: 30426337 DOI: 10.1007/s10561-018-9736-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
The bone auto grafting, isografting, allografting and xenografting are used for defective bone replacement or treatment in almost all living species. The X-ray and Gamma (electromagnetic radiation) sterilization performed on the donor bone graft to prevent toxicity or migration of virus/bacterial infections from donors to reciver. Conversely, X-ray and Gamma radiation deteriorates the bone mechanical properties and bone become more susceptible to fracture. Fracture toughness as well as other mechanical properties of bone change with these radiations. In this literature review the effect of the X-rays and Gamma radiation on bone mechanical properties are discussed. All relevant literature was reviewed. After reviewing the literature only the research relating to the effect of X-rays and Gamma radiations on bone mechanical properties are included. Literature studies showed significant effect of the X-rays and Gamma radiations on the mechanical properties of the bones. In some studies the differences exists on the doses of radiations which were discussed in this study. The high energetic electromagnetic radiation (X-rays and Gamma radiations) changed/modify the collagen network of the bone, which reduced the mechanical properties of bone; however these changes depend on the radiation dose.
Collapse
Affiliation(s)
- Noor Rahman
- Department of Mechanical Engineering, Faculty of Engineering and Technology, International Islamic University, Islamabad, H-10, Pakistan.
| | - Rafiullah Khan
- Department of Mechanical Engineering, Faculty of Engineering and Technology, International Islamic University, Islamabad, H-10, Pakistan
| | - Saeed Badshah
- Department of Mechanical Engineering, Faculty of Engineering and Technology, International Islamic University, Islamabad, H-10, Pakistan
| |
Collapse
|
49
|
Bartlow CM, Mann KA, Damron TA, Oest ME. Limited field radiation therapy results in decreased bone fracture toughness in a murine model. PLoS One 2018; 13:e0204928. [PMID: 30281657 PMCID: PMC6169919 DOI: 10.1371/journal.pone.0204928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022] Open
Abstract
Fragility fractures are a well-known complication following oncologic radiotherapy, and it is suspected that radiation-induced embrittlement of bone within the treatment field may contribute to fracture risk. To explore this phenomenon, a mouse model (BALB/cJ) of fractionated, limited field, bilateral hindlimb irradiation (4x5 Gy) was used. The effects of radiation on femoral (cortical) bone fracture toughness, morphology, and biochemistry-including advanced glycation end products (AGEs)-were quantified and compared to Sham group samples prior to irradiation and at 0, 4, 8, and 12 weeks post-irradiation. Additionally, alterations to bone fracture toughness mediated directly by radiation (independent of cellular mechanisms) were determined using devitalized mouse cadaver femurs. Finally, the contribution of AGEs to reduced fracture toughness was examined by artificially ribosylating mouse femurs ex vivo. These data demonstrate that in vivo irradiation results in an immediate (-42% at 0 weeks, p < 0.001) and sustained (-28% at 12 weeks, p < 0.001) decrease in fracture toughness with small changes in morphology (-5% in cortical area at 12 weeks), and minimal changes in bone composition (tissue mineral density, mineral:matrix ratio, and AGE content). Irradiation of devitalized femurs also reduced fracture toughness (-29%, p < 0.001), but to a lesser extent than was seen in vivo. While artificial ribosylation decreased fracture toughness with time, the extent of glycation needed to induce this effect exceeded the AGE accumulation that occurred in vivo. Overall, hindlimb irradiation induced a substantial and sustained decrease in bone fracture toughness. Approximately half of this decrease in fracture toughness is due to direct radiation damage, independent of cellular remodeling. Collagen glycation in vivo was not substantially altered, suggesting other matrix changes may contribute to post-radiotherapy bone embrittlement.
Collapse
Affiliation(s)
- Christopher M. Bartlow
- Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Kenneth A. Mann
- Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Timothy A. Damron
- Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Megan E. Oest
- Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
50
|
Abstract
Limb salvage is widely practiced as standard of care in most cases of extremity bone sarcoma. Allograft and endoprosthesis reconstructions are the most widely utilized modalities for the reconstruction of large segment defects, however complication rates remain high. Aseptic loosening and infection remain the most common modes of failure. Implant integration, soft-tissue function, and infection prevention are crucial for implant longevity and function. Macro and micro alterations in implant design are reviewed in this manuscript. Tissue engineering principles using nanoparticles, cell-based, and biological augments have been utilized to develop implant coatings that improve osseointegration and decrease infection. Similar techniques have been used to improve the interaction between soft tissues and implants. Tissue engineered constructs (TEC) used in combination with, or in place of, traditional reconstructive techniques may represent the next major advancement in orthopaedic oncology reconstructive science, although preclinical results have yet to achieve durable translation to the bedside.
Collapse
|