1
|
Tseng WJ, Lee W, Zhao H, Liu Y, Wang W, de Bakker CM, Li Y, Osuna C, Tong W, Wang L, Ma X, Qin L, Liu XS. Short Cyclic Regimen With Parathyroid Hormone (PTH) Results in Prolonged Anabolic Effect Relative to Continuous Treatment Followed by Discontinuation in Ovariectomized Rats. J Bone Miner Res 2022; 37:616-628. [PMID: 34957605 PMCID: PMC9284987 DOI: 10.1002/jbmr.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/06/2022]
Abstract
Despite the potent effect of intermittent parathyroid hormone (PTH) treatment on promoting new bone formation, bone mineral density (BMD) rapidly decreases upon discontinuation of PTH administration. To uncover the mechanisms behind this adverse phenomenon, we investigated the immediate responses in bone microstructure and bone cell activities to PTH treatment withdrawal and the associated long-term consequences. Unexpectedly, intact female and estrogen-deficient female rats had distinct responses to the discontinuation of PTH treatment. Significant tibial bone loss and bone microarchitecture deterioration occurred in estrogen-deficient rats, with the treatment benefits of PTH completely lost 9 weeks after discontinuation. In contrast, no adverse effect was observed in intact rats, with sustained treatment benefit 9 weeks after discontinuation. Intriguingly, there is an extended anabolic period during the first week of treatment withdrawal in estrogen-deficient rats, during which no significant change occurred in the number of osteoclasts, whereas the number of osteoblasts remained elevated compared with vehicle-treated rats. However, increases in number of osteoclasts and decreases in number of osteoblasts occurred 2 weeks after discontinuation of PTH treatment, leading to significant reduction in bone mass and bone microarchitecture. To leverage the extended anabolic period upon early withdrawal from PTH, a cyclic administration regimen with repeated cycles of on and off PTH treatment was explored. We demonstrated that the cyclic treatment regimen efficiently alleviated the PTH withdrawal-induced bone loss, improved bone mass, bone microarchitecture, and whole-bone mechanical properties, and extended the treatment duration. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wonsae Lee
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chantal Mj de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos Osuna
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Tong
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqiang Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyuan Ma
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, Shandong University Qilu Hospital, Shandong University, Jinan, China
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Singh KB, Rai R, Khanka S, Singh D. Discontinuation of PTH therapy amplifies bone loss by increasing oxidative stress: An event ameliorated by sequential IL-17 neutralizing antibody therapy. Biomed Pharmacother 2021; 145:112390. [PMID: 34839260 DOI: 10.1016/j.biopha.2021.112390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis leads to excessive bone resorption which is not accompanied by equal amount of bone formation. PTH (1-34) forms the mainstay of bone anabolic therapy. Intermittent PTH (iPTH) has the ability to reconstruct skeleton, a property not shared by other anti-resorptives. In initial phases of PTH treatment, bone formation exceeds bone resorption. However, gradually this phase is replaced by increased bone resorption. Thus, a replacement post PTH discontinuation is much needed. Studies with bisphosphonates and Denosumab post PTH withdrawal have yielded promising but variable results. Thus, there is scope for trying new combinations. Our previous studies have shown the superior skeletal effects of neutralizing IL17 antibody (NIL17) over anti-RANKL antibody. Thus, here we investigated if sequential treatment of NIL17 after PTH withdrawal (SHIFT) could serve as a promising therapeutic approach for osteoporosis treatment. Our results show that PTH withdrawal (PTH-W) led to mitigation of its anabolic effects as evidenced by reduced BMD, bone trabecular and cortical microarchitectural parameters. In the continuous PTH (PTH-C) and the Shift group, all these parameters were preserved as par with the sham group. Shift therapy also significantly increased PINP levels. Most importantly, serum CTX-I levels and osteoclast numbers, which were elevated in PTH groups were significantly suppressed in NIL17 monotherapy and shift group. Also, expression of FOXO1 and ATF-4, the main regulators of redox balance and function in osteoblasts, were found to be enhanced maximally in the sequential therapy group. Our study thus advocates use of NIL17 as a replacement therapeutic option post PTH discontinuation.
Collapse
Affiliation(s)
- Krishna Bhan Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reena Rai
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sonu Khanka
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Zhang C, Song C. Combination Therapy of PTH and Antiresorptive Drugs on Osteoporosis: A Review of Treatment Alternatives. Front Pharmacol 2021; 11:607017. [PMID: 33584284 PMCID: PMC7874063 DOI: 10.3389/fphar.2020.607017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Antiresorptive drugs have been widely used for osteoporosis. Intermittent parathyroid hormone (PTH), an anabolic agent, increases osteoblast production rate and inhibits apoptosis of osteoblasts, thus increasing skeletal mass besides improving bone microarchitecture and strength. Combination therapy for osteoporosis produced great interests and controversies. Therefore, we performed a systematic literature search from PubMed, EMBASE, Scopus, Web of Science, CINDHL, and the Cochrane Database of Systematic Reviews using the search terms PTH or teriparatide combined with bisphosphonate, alendronate, ibandronate, risedronate, raloxifene, denosumab, and zoledronic acid with the limit osteoporosis. At last, 36 related articles were included for further analysis. Findings from previous studies revealed that combination therapy in different conditions of naive or previous bisphosphonate treatment might have different outcomes. The use of combination therapy, however, may be an alternative option among osteoporotic patients with a history of bisphosphonate use. Combined teriparatide with denosumab appear to show the most substantial and clinically relevant skeletal benefits to osteoporotic patients. Additional research is necessary to define optimal methods of developing sequential and/or cyclical combinations of PTH and antiresorptive agents.
Collapse
Affiliation(s)
- Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
4
|
Bakr MM, Kelly WL, Brunt AR, Paterson BC, Massa HM, Morrison NA, Forwood MR. Intermittent Parathyroid Hormone Accelerates Stress Fracture Healing More Effectively Following Cessation of Bisphosphonate Treatment. JBMR Plus 2020; 4:e10387. [PMID: 32995690 PMCID: PMC7507447 DOI: 10.1002/jbm4.10387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/28/2020] [Indexed: 11/08/2022] Open
Abstract
Parathyroid hormone (PTH) and bisphosphonates (BPs), including alendronate (ALN), have opposing effects on bone dynamics. The extent to which PTH remains effective in the treatment of stress fracture (SFx) in the presence of an ongoing BP treatment has not been tested. SFx was induced in 150 female Wistar rats, divided into five equal groups (n = 30). All rats were pretreated with ALN (1 μg/kg-1/day-1) for 14 days prior to SFx induction, followed by ALN cessation or continuation for the duration of the experiment; this was combined with daily PTH (8 μg/100 g-1/day-1) on SFx induction for 14 days, followed by cessation or continuation of ALN after SFx induction or an equivalent vehicle as a control. Ulnas were examined 2 weeks or 6 weeks following SFx. Two toluidine blue- and two tartrate-resistant acid phosphatase-stained sections were examined for histomorphometric analysis using Osteomeasure software. There was a significant interaction between the effects of time and treatment type on the woven bone width and apposition rate, as well as an improvement in the woven bone architecture. However, woven bone variables remained unaffected by the cessation or continuation of ALN. Cessation of ALN increased osteoclast number when compared with the ALN-PTH continuation group (p = 0.006), and vehicle (p = 0.024) after 2 weeks. There was a significant interaction between the effects of time and treatment type on the number of osteoclasts per unit BMU area and length. The number of osteoclasts per unit BMU area and length was significantly greater in ALN cessation groups. It was concluded that intermittent short-duration iPTH treatment effectively increased remodeling of SFx with a concurrent BP treatment, provided that BP was ceased at the time of SFx. Our results could help develop shorter iPTH treatment protocols for the clinical management of SFxs and guide clinical decision-making to cease BP treatment in cases of SFx. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mahmoud M Bakr
- School of Medical Sciences and Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia.,School of Dentistry and Oral Health Griffith University Gold Coast Queensland Australia
| | - Wendy L Kelly
- School of Medical Sciences and Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Athena R Brunt
- School of Medical Sciences and Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Bradley C Paterson
- School of Medical Sciences and Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Helen M Massa
- School of Medical Sciences and Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Nigel A Morrison
- School of Medical Sciences and Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Mark R Forwood
- School of Medical Sciences and Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| |
Collapse
|
5
|
Harris D, Garrett K, Uppuganti S, Creecy A, Nyman JS. The BALB/c mouse as a preclinical model of the age-related deterioration in the lumbar vertebra. Bone 2020; 137:115438. [PMID: 32480022 PMCID: PMC7354228 DOI: 10.1016/j.bone.2020.115438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
The likelihood of experiencing an osteoporotic fracture of one or more vertebral bodies increases with age, and this increase is not solely due to sex steroid deficiency. For the purpose of assessing the effectiveness of novel therapeutic strategies in the prevention of vertebral fractures among the elderly, we hypothesized that the BALB/c mouse model of aging phenocopies the age-related decrease in human VB strength. To test this hypothesis, we assessed the age-related changes in trabecular architecture of the L6 VB, with respect to those in the distal femur metaphysis, between 6-mo. (young adulthood, n = 20/sex) and 20-mo. of age (old age, n = 18/sex) and then determined how well the architectural characteristics, volumetric bone mineral density (vBMD), and predicted failure force from μCT-derived finite element analysis (μFEA) with linear elastic failure criteria explained the age-related variance in VB strength, which was the ultimate force during quasi-static loading of the VB in compression. While there was a pronounced age-related deterioration in trabecular architecture in the distal femur metaphysis of female and male BALB/c mice, the decrease in trabecular bone volume fraction and trabecular number between 6-mo. and 20-mo. of age occurred in male mice, but not in female mice. As such, the VB strength was lower with age in males only. Nonetheless, BV/TV and volumetric bone mineral density (vBMD) positively correlated with the ultimate compressive force of the L6 VB for both females and males. Whether using a fixed homogeneous distribution of tissue modulus (Et = 18 GPa) or a heterogeneous distribution of Et based on a positive relationship with TMD, the predicted failure force of the VB was not independent of age, thereby suggesting linear μFEA may not be a suitable replacement for mechanical-based measurements of strength with respect to age-related changes. Overall, the BALB/c mouse model of aging mimics the age-related in decline in human VB strength when comparing 6-mo. and 20-mo. old male mice. The decrease in VB strength in female mice may occur over a different age range.
Collapse
Affiliation(s)
- Dominique Harris
- Meharry Medical College, 1005 Dr. DB Todd Jr. Blvd., Nashville, TN 37208, USA
| | - Kate Garrett
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21(st) Ave. S., Suite 4200, Nashville, TN 37232, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21(st) Ave. S., Suite 4200, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amy Creecy
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21(st) Ave. S., Suite 4200, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21(st) Ave. S., Suite 4200, Nashville, TN 37232, USA; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24(th) Ave. S., Nashville, TN 37212, USA.
| |
Collapse
|
6
|
Yongyun C, Jingwei Z, Zhiqing L, Wenxiang C, Huiwu L. Andrographolide stimulates osteoblastogenesis and bone formation by inhibiting nuclear factor kappa-Β signaling both in vivo and in vitro. J Orthop Translat 2019; 19:47-57. [PMID: 31844613 PMCID: PMC6896731 DOI: 10.1016/j.jot.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis is a bone disease that is associated with a decrease in bone mineral density, deterioration of bone microarchitecture and increased fracture risk. Currently, available treatments mainly focus on either inhibiting osteoclast function, such as administration of bisphosphonate, calcitonin, oestrogen, selective oestrogen receptor modulator and so on, or stimulating osteoblasts, such as parathyroid hormone, to improve bone mass and skeletal microarchitecture. However, there is no option that is completely satisfactory because of the limitations of monotherapy with either class. Thus, it is highly appealing to investigate novel drugs with both antiresorptive and osteoanabolic activities that have the potential to be more beneficial than monotherapy because of the different mechanism of action. As has been proven in previous study that andrographolide (AP), as a key herbal medicine, could suppress osteoclast formation and function both in vivo and in vitro. The purpose of this present study was to identify the effect of AP on osteoblast differentiation and oestrogen deficiency-induced osteoporosis. It was concluded that AP significantly reduced oestrogen deficiency-induced bone loss in vivo. Furthermore, it was proved that tumor necrosis factor alpha severely impaired bone morphogenetic protein-2 (BMP-2)-induced osteoblast differentiation, and this inhibition could be greatly attenuated by AP. This was further supported by the fact that AP significantly increases the expression of osteoblast-specific markers, including runt-related transcription factor-2, osteocalcin and osteopontin. In addition, molecular analysis revealed that AP greatly ceased tumor necrosis factor alpha-mediated stimulation of nuclear factor kappa-Β activity, whereas overexpression of the nuclear factor kappa-Β subunit p65 reversed the stimulatory effects of AP on osteoblast differentiation. Thus, combined with previous study, AP was demonstrated to be a novel agent with both antiresorptive and osteoanabolic activities and had the potential to be developed as an antiosteoporosis alternative. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study provides strong evidence for the identification that AP has both antiresorptive and osteoanabolic activities and thus has great potential to be developed as a novel antiosteoporosis agent.
Collapse
Affiliation(s)
| | | | | | | | - Li Huiwu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People’s Republic of China
| |
Collapse
|
7
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Abaloparatide exhibits greater osteoanabolic response and higher cAMP stimulation and β-arrestin recruitment than teriparatide. Physiol Rep 2019; 7:e14225. [PMID: 31565870 PMCID: PMC6766518 DOI: 10.14814/phy2.14225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Teriparatide and abaloparatide are parathyroid hormone receptor 1 (PTHR1) analogs with unexplained differential efficacy for the treatment of osteoporosis. Therefore, we compared the effects of abaloparatide and teriparatide on bone structure, turnover, and levels of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). Wild-type (WT) female mice were injected daily with vehicle or 20-80 µg/kg/day of teriparatide or abaloparatide for 30 days. Femurs and spines were examined by microcomputed tomography scanning and serum levels of bone turnover markers, RANKL, and OPG, were measured by ELISA. Both analogs similarly increased the distal femoral fractional trabecular bone volume, connectivity, and number, and reduced the structure model index (SMI) at 20-80 µg/kg/day doses. However, only abaloparatide exhibited a significant increase (13%) in trabecular thickness at 20 µg/kg/day dose. Femoral cortical evaluation showed that abaloparatide caused a greater dose-dependent increase in cortical thickness than teriparatide. Both teriparatide and abaloparatide increased lumbar 5 vertebral trabecular connectivity but had no or modest effect on other indices. Biochemical analysis demonstrated that abaloparatide promoted greater elevation of procollagen type 1 intact N-terminal propeptide, a bone formation marker, and tartrate-resistant acid phosphatase 5b levels, a bone resorption marker, and lowered the RANKL/OPG ratio. Furthermore, PTHR1 signaling was compared in cells treated with 0-100 nmol/L analog. Interestingly, abaloparatide had a markedly lower EC50 for cAMP formation (2.3-fold) and β-arrestin recruitment (1.6-fold) than teriparatide. Therefore, abaloparatide-improved efficacy can be attributed to enhanced bone formation and cortical structure, reduced RANKL/OPG ratio, and amplified Gs-cAMP and β-arrestin signaling.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Pharmacologic ScienceThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Hesham A. Tawfeek
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
8
|
Lu Y, He J, Zhu H, Wang Y. Effect of parathyroid hormone on the structural, densitometric and failure behaviors of mouse tibia in the spatiotemporal space. PLoS One 2019; 14:e0219575. [PMID: 31291372 PMCID: PMC6619825 DOI: 10.1371/journal.pone.0219575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/26/2019] [Indexed: 11/19/2022] Open
Abstract
Parathyroid hormone (PTH) is an anabolic bone drug approved by the US Food and Drug Administration (FDA) to treat osteoporosis. However, previous studies using cross-sectional designs have reported variable and sometimes contradictory results. The aim of the present study was to quantify the localized effect of PTH on the structural and densitometric behaviors of mouse tibia and their links with the global mechanical behavior of bone using a novel spatiotemporal image analysis approach and a finite element analysis technique. Twelve female C57BL/6J mice were divided into two groups: the control and PTH treated groups. The entire right tibiae were imaged using an in vivo micro-computed tomography (μCT) system eight consecutive times. Next, the in vivo longitudinal tibial μCT images were rigidly registered and divided into 10 compartments across the entire tibial space. The bone volume (BV), bone mineral content (BMC), bone tissue mineral density (TMD), and tibial endosteal and periosteal areas (TEA and TPA) were quantified in each compartment. Additionally, finite element models of all the tibiae were generated to analyze the failure behavior of the tibia. It was found that both the BMC and BV started to increase in the proximal tibial region, and then the increases extended to the entire tibial region after two weeks of treatment (p < 0.05). PTH intervention significantly reduced the TEA in most tibial compartments after two weeks of treatment, and the TPA increased in most tibial regions after four weeks of treatment (p < 0.05). Tibial failure loads significantly increased after three weeks of PTH treatment (p < 0.01). The present study provided the first evidence of the localized effect of PTH on bone structural and densitometric properties, as well as their links with the global mechanical behaviors of bone, which are important pieces of information for unveiling the mechanism of PTH intervention.
Collapse
Affiliation(s)
- Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China
| | - Jintao He
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Hanxing Zhu
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Yongxuan Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
9
|
Göker F, Ersanlı S, Arısan V, Cevher E, Güzel EE, İşsever H, Ömer B, Durmuş Altun G, Morina D, Ekiz Yılmaz T, Dervişoğlu E, Del Fabbro M. Combined effect of parathyroid hormone and strontium ranelate on bone healing in ovariectomized rats. Oral Dis 2018; 24:1255-1269. [DOI: 10.1111/odi.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Funda Göker
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche; Istituto Ortopedico Galeazzi I.R.C.C.S.; Università degli Studi di Milano; Milano Italy
| | - Selim Ersanlı
- Oral Implantology Department; Faculty of Dentistry; Istanbul University; Fatih, Istanbul Turkey
| | - Volkan Arısan
- Oral Implantology Department; Faculty of Dentistry; Istanbul University; Fatih, Istanbul Turkey
| | - Erdal Cevher
- Department of Pharmaceutical Technology; Faculty of Pharmacy; Istanbul University; Beyazıt, Istanbul Turkey
| | - Emine Elif Güzel
- Department of Histology and Embryology; Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - Halim İşsever
- Department of Public Health; Faculty of Medicine; Istanbul University; Fatih, Istanbul Turkey
| | - Beyhan Ömer
- Department of Biochemistry; Faculty of Medicine; Istanbul University; Fatih, Istanbul Turkey
| | - Gülay Durmuş Altun
- Department of Nuclear Medicine; Faculty of Medicine; Trakya University; Edirne Turkey
| | - Deniz Morina
- Department of Pharmaceutical Technology; Faculty of Pharmacy; Istanbul University; Beyazıt, Istanbul Turkey
| | - Tuğba Ekiz Yılmaz
- Department of Histology and Embryology; Faculty of Medicine; Istanbul University; Istanbul Turkey
| | - Elmire Dervişoğlu
- Department of Biochemistry; Faculty of Medicine; Istanbul University; Fatih, Istanbul Turkey
| | - Massimo Del Fabbro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche; Istituto Ortopedico Galeazzi I.R.C.C.S.; Università degli Studi di Milano; Milano Italy
| |
Collapse
|
10
|
Harlow L, Sahbani K, Nyman JS, Cardozo CP, Bauman WA, Tawfeek HA. Daily parathyroid hormone administration enhances bone turnover and preserves bone structure after severe immobilization-induced bone loss. Physiol Rep 2017; 5:5/18/e13446. [PMID: 28963125 PMCID: PMC5617932 DOI: 10.14814/phy2.13446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Immobilization, as a result of motor‐complete spinal cord injury (SCI), is associated with severe osteoporosis. Whether parathyroid hormone (PTH) administration would reduce bone loss after SCI remains unclear. Thus, female mice underwent sham or surgery to produce complete spinal cord transection. PTH (80 μg/kg) or vehicle was injected subcutaneously (SC) daily starting on the day of surgery and continued for 35 days. Isolated tibias and femurs were examined by microcomputed tomography scanning (micro‐CT) and histology and serum markers of bone turnover were measured. Micro‐CT analysis of tibial metaphysis revealed that the SCI‐vehicle animals exhibited 49% reduction in fractional trabecular bone volume and 18% in trabecular thickness compared to sham‐vehicle controls. SCI‐vehicle animals also had 15% lower femoral cortical thickness and 16% higher cortical porosity than sham‐vehicle counterparts. Interestingly, PTH administration to SCI animals restored 78% of bone volume, increased connectivity to 366%, and lowered structure model index by 10% compared to sham‐vehicle animals. PTH further favorably attenuated femoral cortical bone loss to 5% and prevented the SCI‐associated cortical porosity. Histomorphometry evaluation of femurs of SCI‐vehicle animals demonstrated a marked 49% and 38% decline in osteoblast and osteoclast number, respectively, and 35% reduction in bone formation rate. In contrast, SCI‐PTH animals showed preserved osteoblast and osteoclast numbers and enhanced bone formation rate. Furthermore, SCI‐PTH animals had higher levels of bone formation and resorption markers than either SCI‐ or sham‐vehicle groups. Collectively, these findings suggest that intermittent PTH receptor activation is an effective therapeutic strategy to preserve bone integrity after severe immobilization.
Collapse
Affiliation(s)
- Lauren Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacologic Science, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York .,Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Altman-Singles AR, Jeong Y, Tseng WJ, de Bakker CMJ, Zhao H, Lott C, Robberts J, Qin L, Han L, Kim DG, Liu XS. Intermittent Parathyroid Hormone After Prolonged Alendronate Treatment Induces Substantial New Bone Formation and Increases Bone Tissue Heterogeneity in Ovariectomized Rats. J Bone Miner Res 2017; 32:1703-1715. [PMID: 28467646 PMCID: PMC5550334 DOI: 10.1002/jbmr.3165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/15/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis is often treated with bisphosphonates (eg, alendronate, [ALN]), but oversuppression of bone turnover by long-term bisphosphonate treatment may decrease bone tissue heterogeneity. Thus, alternate treatment strategies after long-term bisphosphonates are of great clinical interest. The objective of the current study was to determine the effect of intermittent parathyroid hormone (PTH) following 12 weeks of ALN (a bisphosphonate) treatment in 6-month-old, ovariectomized (OVX) rats on bone microarchitecture, bone remodeling dynamics, and bone mechanical properties at multiple length scales. By using in vivo μCT and 3D in vivo dynamic bone histomorphometry techniques, we demonstrated the efficacy of PTH following ALN therapy for stimulating new bone formation, and increasing trabecular thickness and bone volume fraction. In healthy bone, resorption and formation are coupled and balanced to sustain bone mass. OVX results in resorption outpacing formation, and subsequent bone loss and reduction in bone tissue modulus and tissue heterogeneity. We showed that ALN treatment effectively reduced bone resorption activity and regained the balance with bone formation, preventing additional bone loss. However, ALN treatment also resulted in significant reductions in the heterogeneity of bone tissue mineral density and tissue modulus. On the other hand, PTH treatment was able to shift the bone remodeling balance in favor of formation, with or without a prior treatment with ALN. Moreover, by altering the tissue mineralization, PTH alleviated the reduction in heterogeneity of tissue material properties induced by prolonged ALN treatment. Furthermore, switching to PTH treatment from ALN improved bone's postyield mechanical properties at both the whole bone and apparent level compared to ALN alone. The current findings suggest that intermittent PTH treatment should be considered as a viable treatment option for patients with prior treatment with bisphosphonates. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Allison R. Altman-Singles
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Yonghoon Jeong
- College of Dentistry, Division of Orthodontics, The Ohio State University, Columbus, OH, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chantal M. J. de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing, China
| | - Carina Lott
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juhanna Robberts
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Do-Gyoon Kim
- College of Dentistry, Division of Orthodontics, The Ohio State University, Columbus, OH, USA
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Lu Y, Boudiffa M, Dall'Ara E, Liu Y, Bellantuono I, Viceconti M. Longitudinal effects of Parathyroid Hormone treatment on morphological, densitometric and mechanical properties of mouse tibia. J Mech Behav Biomed Mater 2017; 75:244-251. [PMID: 28756285 DOI: 10.1016/j.jmbbm.2017.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/15/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023]
Abstract
The use of Parathyroid Hormone (PTH) as bone anabolic is limited due to cost-benefit assessments. Preclinical studies evaluating the effects of PTH on bone have reported variable and often contradictory results. Here, we have applied a new approach using a combination of in-vivo longitudinal µCT, image processing techniques and finite element models to monitor early local changes in the whole tibia (divided in 40 compartments) and mechanical properties of female C57BL/6J mice treated with PTH 1-34, compared to controls. Compared with standard 3D bone morphometric analysis, our new approach allowed detection of much smaller and localised changes in bone mineral content (BMC) at very early time points (1 week vs 3 weeks with standard methods) and showed that changes do not occur uniformly over time and across the anatomical space. Indeed, in the PTH treated mice, significant changes in BMC were observed in the medial and posterior sectors of the proximal tibia, a week after treatment, and in the medial sector of the tibia midshaft region a week later (p < 0.05). By the third week, two thirds of the regions showed significantly higher values of BMC (p < 0.05). The effect of PTH on bone regional volume is similar to that on BMC, but there is almost no effect of PTH on bone tissue mineral density. The differences in estimated mechanical properties became significant after three weeks of treatment (p < 0.05). These results provide the first evidence of an early and localised PTH effect on murine bone, and show that our novel partitioning approach, compared to the standard evaluation protocol, allows a more precise quantification of bone changes following treatment, which would facilitate preclinical testing of novel mono- and/or combination therapies throughout the bone.
Collapse
Affiliation(s)
- Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| | - Maya Boudiffa
- MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK.
| | - Yue Liu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Ilaria Bellantuono
- Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Marco Viceconti
- Department of Mechanical Engineering, The University of Sheffield, Sheffield, UK; Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Matheny JB, Torres AM, Ominsky MS, Hernandez CJ. Romosozumab Treatment Converts Trabecular Rods into Trabecular Plates in Male Cynomolgus Monkeys. Calcif Tissue Int 2017; 101:82-91. [PMID: 28246926 DOI: 10.1007/s00223-017-0258-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
Abstract
Treatment with sclerostin antibody (romosozumab) increases bone formation while reducing bone resorption, leading to increases in bone volume and bone mineral density. Sclerostin antibody treatment may also provide beneficial changes in trabecular microarchitecture and strength that are not reflected in bone volume and density. Here we use three-dimensional dynamic histomorphometry to determine longitudinal changes in vertebral trabecular microarchitecture in adolescent male cynomolgus monkeys (4-5 years old) treated with sclerostin antibody. Animals were treated bi-weekly with either sclerostin antibody (30 mg/kg, sc, n = 6) or vehicle (n = 6) for 10 weeks. Animals were administered fluorochrome bone formation labels on days 14 and 24 (tetracycline) and on days 56 and 66 (calcein), followed by necropsy on day 70. Cylindrical specimens of cancellous bone from the 5th lumbar vertebrae were used to generate high-resolution, three-dimensional images of bone and fluorescent labels of bone formation (0.7 × 0.7 × 5.0 µm/voxel). The three-dimensional images of the bone formation labels were used to determine the bone volume formed between days 14 and 66 and the resulting alterations in trabecular microarchitecture within each bone. Treatment with sclerostin antibody resulted in a conversion of rod-like trabeculae into plate-like trabeculae at a higher rate than in vehicle-treated animals (p = 0.01). Plate bone volume fraction was greater in the sclerostin antibody group relative to vehicle (mean 43 vs. 30%, p < 0.05). Bone formation increased the thickness of trabeculae in all three trabecular orientations (axial, oblique, and transverse, p < 0.05). The volume of bone formed between days 14 to 66 was greater in sclerostin antibody-treated groups (9.0 vs. 5.4%, p = 0.02), and new bone formation due to sclerostin antibody treatment was associated with increased apparent stiffness as determined from finite element models. Our results demonstrate that increased bone formation associated with sclerostin antibody treatment increases plate-like trabecular morphology and improves mechanical performance.
Collapse
Affiliation(s)
- Jonathan B Matheny
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 355 Upson Hall, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley M Torres
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 355 Upson Hall, Ithaca, NY, 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Michael S Ominsky
- Department of Cardiometabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 355 Upson Hall, Ithaca, NY, 14853, USA.
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
14
|
de Bakker CM, Altman-Singles AR, Li Y, Tseng WJ, Li C, Liu XS. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats. J Bone Miner Res 2017; 32:1014-1026. [PMID: 28109138 PMCID: PMC5537002 DOI: 10.1002/jbmr.3084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 12/15/2022]
Abstract
Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on postmenopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, whereas other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration, which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that whereas rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chantal Mj de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison R Altman-Singles
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Connie Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Casanova M, Herelle J, Thomas M, Softley R, Schindeler A, Little D, Schneider P, Müller R. Effect of combined treatment with zoledronic acid and parathyroid hormone on mouse bone callus structure and composition. Bone 2016; 92:70-78. [PMID: 27542660 DOI: 10.1016/j.bone.2016.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 11/20/2022]
Abstract
In recent years, great interest in combined treatment of parathyroid hormone (PTH) with anti-resorptive therapy has emerged. PTH has been suggested to aid bridging of atrophic fractures and improve strength in closed fracture models. Bisphosphonate treatments typically result in a larger woven bone callus that is slower to remodel. The combination of both drugs has been demonstrated to be effective for the treatment of osteoporotic bone loss in many preclinical studies. However, the effect of combined treatment on fracture repair is still largely unexplored. In this study, we aimed to compare these drugs as single-agent and in combination in a murine closed fracture model. We wanted to assess potential differences in material properties, morphometry and in the development of the lacuno-canalicular network. A total of 40 female, 11-week-old wild type mice underwent a closed fracture on the midshaft of the tibia and were assigned to four groups (n=8-10 per group). Beginning on post-operative day 8, animals received different subcutaneous injections. Group 1 received a single injection of saline solution and Group 2 of zoledronic acid (ZA). Group 3 received daily dosing of PTH. Group 4 received a dual treatment, starting with a single dose of ZA followed by daily injection of PTH. Three weeks after fracture, all animals were euthanized and tibiae were assessed using micro-computed tomography (micro-CT), high-resolution micro-CT (HR micro-CT), Raman spectroscopy, quantitative histomorphometry, and deconvolution microscopy (DV microscopy). Combined treatment showed a significant increase of 41% in bone volume fraction and a significant decrease of 61% in the standard deviation of the trabecular spacing compared to vehicle, both known to be strong predictors of callus strength. An analysis via HR micro-CT showed similar results on all groups for lacunar numerical density, whereas mean lacuna volume was found to be higher compared to vehicle in treated groups, but only PTH mono-treatment showed a significant increase compared to vehicle (+45%). Raman spectroscopy did not reveal detectable changes in material properties of the bone calluses. Sclerostin staining, tartrate resistant acid phosphatase (TRAP) staining and canalicular analysis with DV microscopy on a subset of samples did not display distinctive difference in any of the treatments. We therefore consider PTH+ZA treatment beneficial for bone healing. No clear negative effect on bone quality was detected during this study.
Collapse
Affiliation(s)
- Michele Casanova
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Janelle Herelle
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Marcel Thomas
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Rowan Softley
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, Australia.
| | - David Little
- Orthopaedic Research and Biotechnology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Camperdown, Australia.
| | - Philipp Schneider
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland; Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| | - Ralph Müller
- Institute for Biomechanics, HCP H 22.1, Leopold-Ruzicka-Weg 4, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
|
17
|
Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, Lee FY, Oh DS, Tawfeek HA. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response. Endocrinology 2016; 157:112-26. [PMID: 26488807 DOI: 10.1210/en.2015-1614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.
Collapse
Affiliation(s)
- Liana Tascau
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Thomas Gardner
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hussein Anan
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Charlie Yongpravat
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Francis Y Lee
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Daniel S Oh
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| |
Collapse
|
18
|
Altman AR, Tseng WJ, de Bakker CMJ, Chandra A, Lan S, Huh BK, Luo S, Leonard MB, Qin L, Liu XS. Quantification of skeletal growth, modeling, and remodeling by in vivo micro computed tomography. Bone 2015; 81:370-379. [PMID: 26254742 PMCID: PMC4641023 DOI: 10.1016/j.bone.2015.07.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
Abstract
In this study we established an image analysis scheme for the investigation of cortical and trabecular bone development during skeletal growth and tested this concept on in vivo μCT images of rats. To evaluate its efficacy, we applied the technique to young (1-month-old) and adult (3-month-old) rat tibiae with vehicle (Veh) or intermittent parathyroid hormone (PTH) treatment. By overlaying 2 sequential scans based on their distinct trabecular microarchitecture, we calculated the linear growth rate of young rats to be 0.31 mm/day at the proximal tibia. Due to rapid growth (3.7 mm in 12 days), the scanned bone region at day 12 had no overlap with the bone tissue scanned at day 0. Instead, the imaged bone region at day 12 represented newly generated bone tissue from the growth plate. The new bone of the PTH-treated rats had significantly greater trabecular bone volume fraction, number, and thickness than those of the Veh-treated rats, indicating PTH's anabolic effect on bone modeling. In contrast, the effect of PTH on adult rat trabecular bone was found to be caused by PTH's anabolic effect on bone remodeling. The cortical bone at the proximal tibia of young rats also thickened more in the PTH group (23%) than the Veh group (14%). This was primarily driven by endosteal bone formation and coalescence of trabecular bone into the cortex. This process can be visualized by aligning the local bone structural changes using image registration. As a result, the cortex after PTH treatment was 31% less porous, and had a 22% greater polar moment of inertia compared to the Veh group. Lastly, we monitored the longitudinal bone growth in adult rats by measuring the distance of bone flow away from the proximal tibial growth plate from 3 months to 19 months of age and discovered a total of 3.5mm growth in 16 months. It was demonstrated that this image analysis scheme can efficiently evaluate bone growth, bone modeling, and bone remodeling, and is ready to be translated into a clinical imaging platform.
Collapse
Affiliation(s)
- Allison R Altman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Abhishek Chandra
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Shenghui Lan
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, People's Republic of China; Department of Orthopaedic Surgery, Wuhan General Hospital of Guangzhou Military Command, Hubei Province, People's Republic of China.
| | - Beom Kang Huh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Shiming Luo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Mary B Leonard
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
19
|
Seeman E, Martin TJ. Co-administration of antiresorptive and anabolic agents: a missed opportunity. J Bone Miner Res 2015; 30:753-64. [PMID: 25736531 DOI: 10.1002/jbmr.2496] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/13/2015] [Accepted: 02/28/2015] [Indexed: 01/02/2023]
Abstract
Co-administration of antiresorptive and anabolic therapies has appeal because these treatments target the two main abnormalities in bone remodeling responsible for bone loss and microstructural deterioration. Antiresorptives reduce the number of basic multicellular units (BMUs) remodeling bone and reduce the volume of bone each BMU resorbs. Intermittent parathyroid hormone (PTH) increases the volume of bone formed by existing BMUs and those generated by PTH administration. PTH also increases bone formation by stimulating the differentiation, maturation, and longevity of osteoblast lineage cells residing upon quiescent bone surfaces. Despite these rationally targeted actions, enthusiasm for this approach waned when combined therapy blunted the increase in areal bone mineral density (aBMD) relative to that produced by PTH. Although many studies have since reported additive effects of combined therapy, whatever the aBMD result (blunting, additive, or null), these outcomes give little, if any, insight into changes in bone's material composition or microstructure and give misleading information concerning the net effects on bone strength. Combined therapy remains a potentially valuable approach to therapy. Because studies of antifracture efficacy comparing combined with single therapy are unlikely to be performed in humans, efforts should be directed toward improving methods of quantifying the net effects of combined therapy on bone's material composition, microarchitecture, and strength.
Collapse
Affiliation(s)
- Ego Seeman
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
20
|
de Bakker CMJ, Altman AR, Tseng WJ, Tribble MB, Li C, Chandra A, Qin L, Liu XS. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy. Bone 2015; 73:198-207. [PMID: 25554598 PMCID: PMC4336835 DOI: 10.1016/j.bone.2014.12.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/22/2023]
Abstract
Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed.
Collapse
Affiliation(s)
- Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Allison R Altman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mary Beth Tribble
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Connie Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Abhishek Chandra
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Salmon PL, Ohlsson C, Shefelbine SJ, Doube M. Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone. Front Endocrinol (Lausanne) 2015; 6:162. [PMID: 26528241 PMCID: PMC4602154 DOI: 10.3389/fendo.2015.00162] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022] Open
Abstract
Structure model index (SMI) is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI(+)) and negative (SMI(-)) components, bone volume fraction (BV/TV), the fraction of the surface that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile). We simulated bone resorption by eroding an image of elephant trabecule and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely <20%, of the trabecular surface is concave (CF 0.155-0.700). SMI is unavoidably influenced by aberrations induced by SMI(-), which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from the close and artifactual relationship between SMI and BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabecule. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be treated with suspicion. We propose that EF should be used instead of SMI for measurements of rods and plates in trabecular bone.
Collapse
Affiliation(s)
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Imperial College London, London, UK
| | - Michael Doube
- Department of Bioengineering, Imperial College London, London, UK
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
- *Correspondence: Michael Doube,
| |
Collapse
|
22
|
Altman AR, de Bakker CMJ, Tseng WJ, Chandra A, Qin L, Liu XS. Enhanced individual trabecular repair and its mechanical implications in parathyroid hormone and alendronate treated rat tibial bone. J Biomech Eng 2014; 137:1918234. [PMID: 25321622 DOI: 10.1115/1.4028823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/16/2014] [Indexed: 12/12/2022]
Abstract
Combined parathyroid hormone (PTH) and bisphosphonate (alendronate-ALN) therapy has recently been shown to increase bone volume fraction and plate-like trabecular structure beyond either monotherapy. To identify the mechanism through which plate-like structure was enhanced, we used in vivo microcomputed tomography (μCT) of the proximal tibia metaphysis and individual trabecular dynamics (ITD) analysis to quantify connectivity repair (incidences of rod connection and plate perforation filling) and deterioration (incidences of rod disconnection and plate perforation). Three-month-old female, intact rats were scanned before and after a 12 day treatment period of vehicle (Veh, n = 5), ALN (n = 6), PTH (n = 6), and combined (PTH+ALN, n = 6) therapy. Additionally, we used computational simulation and finite element (FE) analysis to delineate the contributions of connectivity repair or trabecular thickening to trabecular bone stiffness. Our results showed that the combined therapy group had greater connectivity repair (5.8 ± 0.5% connected rods and 2.0 ± 0.3% filled plates) beyond that of the Veh group, resulting in the greatest net gain in connectivity. For all treatment groups, increases in bone volume due to thickening (5-31%) were far greater than those due to connectivity repair (2-3%). Newly formed bone contributing only to trabecular thickening caused a 10%, 41%, and 69% increase in stiffness in the ALN, PTH, and PTH+ALN groups, respectively. Moreover, newly formed bone that led to connectivity repair resulted in an additional improvement in stiffness, with the highest in PTH+ALN (by an additional 12%), which was significantly greater than either PTH (5.6%) or ALN (4.5%). An efficiency ratio was calculated as the mean percent increase in stiffness divided by mean percent increase in BV for either thickening or connectivity repair in each treatment. For all treatments, the efficiency ratio of connectivity repair (ALN: 2.9; PTH: 3.4; PTH+ALN: 4.4) was higher than that due to thickening (ALN: 2.0; PTH: 1.7; PTH+ALN: 2.2), suggesting connectivity repair required less new bone formation to induce larger gains in stiffness. We conclude that through rod connection and plate perforation filling PTH+ALN combination therapy improved bone stiffness in a more efficient and effective manner than either monotherapy.
Collapse
|
23
|
Chiaro JA, O'Donnell P, Shore EM, Malhotra NR, Ponder KP, Haskins ME, Smith LJ. Effects of neonatal enzyme replacement therapy and simvastatin treatment on cervical spine disease in mucopolysaccharidosis I dogs. J Bone Miner Res 2014; 29:2610-7. [PMID: 24898323 PMCID: PMC4256138 DOI: 10.1002/jbmr.2290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease characterized by deficient α-L-iduronidase activity, leading to the accumulation of poorly degraded glycosaminoglycans (GAGs). Children with MPS I exhibit high incidence of spine disease, including accelerated disc degeneration and vertebral dysplasia, which in turn lead to spinal cord compression and kyphoscoliosis. In this study we investigated the efficacy of neonatal enzyme replacement therapy (ERT), alone or in combination with oral simvastatin (ERT + SIM) for attenuating cervical spine disease progression in MPS I, using a canine model. Four groups were studied: normal controls; MPS I untreated; MPS I ERT-treated; and MPS I ERT + SIM-treated. Animals were euthanized at age 1 year. Intervertebral disc condition and spinal cord compression were evaluated from magnetic resonance imaging (MRI) images and plain radiographs, vertebral bone condition and odontoid hypoplasia were evaluated using micro-computed tomography (µCT), and epiphyseal cartilage to bone conversion was evaluated histologically. Untreated MPS I animals exhibited more advanced disc degeneration and more severe spinal cord compression than normal animals. Both treatment groups resulted in partial preservation of disc condition and cord compression, with ERT + SIM not significantly better than ERT alone. Untreated MPS I animals had significantly lower vertebral trabecular bone volume and mineral density, whereas ERT treatment resulted in partial preservation of these properties. ERT + SIM treatment demonstrated similar, but not greater, efficacy. Both treatment groups partially normalized endochondral ossification in the vertebral epiphyses (as indicated by absence of persistent growth plate cartilage), and odontoid process size and morphology. These results indicate that ERT begun from a very early age attenuates the severity of cervical spine disease in MPS I, particularly for the vertebral bone and odontoid process, and that additional treatment with simvastatin does not provide a significant additional benefit over ERT alone.
Collapse
Affiliation(s)
- Joseph A Chiaro
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Odanacatib, a selective cathepsin K inhibitor, decreases bone resorption, whereas osteoclast number increases and bone formation is maintained, perhaps even increased on some cortical surfaces. In a phase 2 clinical trial, post-menopausal women receiving odanacatib presented a sustained reduction of bone resorption markers, whereas procollagen type 1 N-terminal propeptide returned to normal. In turn areal bone mineral density increased continuously at both spine and hip for up to 5 years. Blosozumab and romosozumab are sclerostin neutralizing antibodies that exert potent anabolic effects on both trabecular and cortical compartments. A phase 2 clinical trial has reported areal bone mineral density gains at spine and hip that were greater with romosozumab compared with placebo, but also with teriparatide. It also showed that antagonizing sclerostin results in a transient stimulation of bone formation but progressive inhibition of bone resorption. Other new medical entities that are promising for the treatment of osteoporosis include abaloparatide, a parathyroid hormone-related analogue with improved bone formation-resorption ratio.
Collapse
Affiliation(s)
- Serge Ferrari
- Service of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital and Faculty of Medicine, Switzerland.
| |
Collapse
|
25
|
Vegger JB, Nielsen ES, Brüel A, Thomsen JS. Additive effect of PTH (1-34) and zoledronate in the prevention of disuse osteopenia in rats. Bone 2014; 66:287-95. [PMID: 24970039 DOI: 10.1016/j.bone.2014.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022]
Abstract
Immobilization is known to cause a rapid bone loss due to increased osteoclastic bone resorption and decreased osteoblastic bone formation. Zoledronate (Zln) is a potent anti-resorptive pharmaceutical, while intermittent PTH is a potent bone anabolic agent. The aim of the present study was to investigate whether PTH or Zln alone or in combination could prevent immobilization-induced osteopenia. Immobilization was achieved by injecting 4IU Botox (BTX) into the right hind limb musculature. Seventy-two 16-week-old female Wistar rats were randomized into 6 groups; baseline (Base), control (Ctrl), BTX, BTX+PTH, BTX+Zln, and BTX+PTH+Zln. PTH (1-34) (80μg/kg) was given 5days/week and Zln (100μg/kg) was given once at study start. The animals were killed after 4weeks of treatment. The bone properties were evaluated using DEXA, μCT, dynamic bone histomorphometry, and mechanical testing. BTX resulted in lower femoral trabecular bone volume fraction (BV/TV) (-25%, p<0.05), lower tibial trabecular bone formation rate (BFR/BS) (-29%, p<0.05), and lower bone strength (Fmax) at the distal femur (-19%, p<0.001) compared with Ctrl. BTX+PTH resulted in higher femoral BV/TV (+31%, p<0.05), higher tibial trabecular BFR/BS (+297%, p<0.05), and higher Fmax at the distal femur (+11%, p<0.05) compared with BTX. BTX+Zln resulted in higher femoral BV/TV (+36%, p<0.05), lower tibial trabecular BFR/BS (-93%, p<0.05), and higher Fmax at the distal femur (+10%, p<0.05) compared with BTX. BTX+PTH+Zln resulted in higher femoral BV/TV (+70%, p<0.001), higher tibial trabecular BFR/BS (+59%, p<0.05), and higher Fmax at the distal femur (+32%, p<0.001) compared with BTX. In conclusion, BTX-induced immobilization led to lower BV/TV, BFR/BS, and Fmax. In general, PTH or Zln alone prevented the BTX-induced osteopenia, whereas PTH and Zln given in combination not only prevented, but also increased BV/TV and BFR/BS, and maintained Fmax at the distal femoral metaphysis compared with Ctrl.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Biomechanical Phenomena
- Bone Diseases, Metabolic/diagnostic imaging
- Bone Diseases, Metabolic/drug therapy
- Bone Diseases, Metabolic/physiopathology
- Bone Diseases, Metabolic/prevention & control
- Bone and Bones/diagnostic imaging
- Bone and Bones/drug effects
- Bone and Bones/pathology
- Bone and Bones/physiopathology
- Diphosphonates/pharmacology
- Diphosphonates/therapeutic use
- Drug Synergism
- Female
- Imaging, Three-Dimensional
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Muscular Disorders, Atrophic/diagnostic imaging
- Muscular Disorders, Atrophic/drug therapy
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/prevention & control
- Parathyroid Hormone/pharmacology
- Parathyroid Hormone/therapeutic use
- Rats, Wistar
- X-Ray Microtomography
- Zoledronic Acid
Collapse
Affiliation(s)
- Jens Bay Vegger
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark.
| | | | - Annemarie Brüel
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark.
| | | |
Collapse
|