1
|
Farhangnia I, Bigham-Sadegh A, Tabatabaei Naeini A, Sharifi Yazdi H. Comparative effectiveness of bone, cartilage and osteochondral xenograft (calf fetal) on healing of the critical bone defect in a rabbit model. Injury 2025; 56:112347. [PMID: 40294452 DOI: 10.1016/j.injury.2025.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Finding a suitable replacement tissue for bone loss in comminuted fractures and bone tumors with large bone defect or for treatment of delayed unions and non-unions is still the main challenge for orthopedic surgeons. The present study has been designed in vivo to evaluate the effects of xenogenic calf fetal bone and cartilage grafts in treatment of experimental critical bone defect in a rabbit model. 30 native male rabbits, 12 months old, weighing 3.0±0.5 kg were used in this study. Rabbits were randomly divided into five groups of six (negative control (NC), osteochondral group (OstCar), bone group (Ost), cartilage group (Car), and positive control (PC)). In the NC group the created empty space was left intact. In the OstCar group the osteochondral fragment of the same size as the expulsion was inserted into place. In the Ost group, the bone fragment of the fetal calf replaced the extracted bone fragment from the radius bone. The created defects were filled in 6 rabbits of the Car group with cartilage fragments of the fetal calf. In the PC group, after separating the fragment of radius bone midsection and removing from the site, it was re-placed at the site. This study investigated three types of replacement tissue for the missing bone and compared the results of radiology, CT scan, biomechanics and histopathology evaluations with positive and negative control groups. In conclusion, this study demonstrated that the calf's fetal bone fragment could promote bone regeneration in the long bone defects like the autograft in the rabbit model.
Collapse
Affiliation(s)
- Iman Farhangnia
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | | | - Hassan Sharifi Yazdi
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Mammadov J, Davudov M, Aliyev T, Isgandarova S. The Effect of Immunocorrection on Reparative Osteogenesis in Mandibular Fracture: A Histomorphometric Study. J Craniofac Surg 2025:00001665-990000000-02611. [PMID: 40202323 DOI: 10.1097/scs.0000000000011404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Fracture consolidation is a fundamental factor in understanding the biological process of bone healing in human. The objective of this study was to evaluate the effects of immunocorrection after trauma surgery on bone healing process in mandibular fracture in rabbits. METHODS This study carried out using 24 rabbits. In all rabbits, the mandibular fracture model and osteogenesis carried out on the fracture site by titanium miniplates and screws. Blood analysis performed before and during the treatment. The animals slaughtered and fractured site removed for morphologic studies at baseline and follow-up assessments. RESULTS After surgical trauma in all animals, immunologic indicators of blood including circulating immunocomplex, complements, and lysosomes have been reduced. CONCLUSION General immunity and histomorphometric evaluation of the present study showed posttraumatic immunodeficiency could affects bone healing.
Collapse
Affiliation(s)
- Jahid Mammadov
- Department of Oral and Maxillofacial Surgery, Azerbaijan Medical University, Baku, Azerbaijan
| | | | | | | |
Collapse
|
3
|
Balogh E, Tóth A, Csiki DM, Jeney V. Zinc Ameliorates High Pi and Ca-Mediated Osteogenic Differentiation of Mesenchymal Stem Cells. Nutrients 2024; 16:4012. [PMID: 39683406 DOI: 10.3390/nu16234012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Zinc is the second most abundant trace element in the human body, stored mainly in the bones. Zinc is required for bone growth and homeostasis and is also a crucial cofactor for numerous proteins that play key roles in maintaining microstructural integrity and bone remodeling. Bone marrow-derived mesenchymal stem cells (BMSCs) are multipotent progenitors found in the bone marrow stroma and can differentiate along multiple lineage pathways. In this study, we investigated the effect of zinc on the osteogenic differentiation of BMSCs. We stimulated the osteogenic differentiation of BMSCs with high phosphate and Ca-containing osteogenic medium (PiCa) in the presence or absence of zinc. We followed calcification by measuring ECM mineralization, the Ca content of the ECM, mRNA, and the protein expression of the osteo-chondrogenic transcription factor RUNX2 and SOX9 and its targets OCN and ALP. Zinc dose-dependently abolished PiCa-induced ECM mineralization and decreased the expression of RUNX2, SOX9, OCN, and ALP. Serum albumin did not alter the inhibitory effect of zinc on BMSC mineralization. Our further analysis with the zinc-chelator TPEN and ZnCl2 confirmed the specific inhibitory effect of free zinc ions on BMSC mineralization. Zinc inhibited phosphate uptake and PiCa-induced upregulation of the sodium-dependent phosphate cotransporters (PiT-1 and PiT-2). Zinc attenuated the PiCa-induced increase in ROS production. Taken together, these data suggest that zinc inhibits PiCa-induced BMSC calcification by regulating phosphate uptake and ROS production.
Collapse
Affiliation(s)
- Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dávid Máté Csiki
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
5
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
6
|
Antoniac I, Manescu (Paltanea) V, Paltanea G, Antoniac A, Nemoianu IV, Petrescu MI, Dura H, Bodog AD. Additive Manufactured Magnesium-Based Scaffolds for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8693. [PMID: 36500191 PMCID: PMC9739563 DOI: 10.3390/ma15238693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Additive manufacturing (AM) is an important technology that led to a high evolution in the manufacture of personalized implants adapted to the anatomical requirements of patients. Due to a worldwide graft shortage, synthetic scaffolds must be developed. Regarding this aspect, biodegradable materials such as magnesium and its alloys are a possible solution because the second surgery for implant removal is eliminated. Magnesium (Mg) exhibits mechanical properties, which are similar to human bone, biodegradability in human fluids, high biocompatibility, and increased ability to stimulate new bone formation. A current research trend consists of Mg-based scaffold design and manufacture using AM technologies. This review presents the importance of biodegradable implants in treating bone defects, the most used AM methods to produce Mg scaffolds based on powder metallurgy, AM-manufactured implants properties, and in vitro and in vivo analysis. Scaffold properties such as biodegradation, densification, mechanical properties, microstructure, and biocompatibility are presented with examples extracted from the recent literature. The challenges for AM-produced Mg implants by taking into account the available literature are also discussed.
Collapse
Affiliation(s)
- Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Mircea Ionut Petrescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| |
Collapse
|
7
|
Karimi Ghahfarrokhi E, Meimandi-Parizi A, Oryan A, Ahmadi N. Effects of Combination of BMP7, PFG, and Autograft on Healing of the Experimental Critical Radial Bone Defect by Induced Membrane (Masquelet) Technique in Rabbit. THE ARCHIVES OF BONE AND JOINT SURGERY 2021; 9:585-597. [PMID: 34692943 DOI: 10.22038/abjs.2020.50852.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
Background Healing of large segmental bone defects can be challenging for orthopedic surgeons. This research was conducted to provide further insight into the effects of BMP7 in combination with autograft and platelet fibrin glue (PFG) on bone regeneration by Masquelet technique (MT). Methods Twenty five domestic male rabbits, more than 6 months old, weighing 2.00±0.25 kg were randomly divided into five equal groups as follows: MT-blank cavity (without any biological or synthetic materials) (1), blank cavity (2), MT-autograft (3), MT-autograft-BMP7 (4), and MT-BMP7-PFG (5). A 20 mm segmental defect was made in radial bone in both forelimbs. The Masquelet technique was done in all groups except group 2. The study was evaluated by radiology, biomechanics, histopathology and scanning electron microscopy. Results The results showed that Masquelet technique enhanced the healing process, as, the structural and functional criteria of the injured bone showed significantly improved bone healing (P<0.05). Treatment by PFG-BMP7, Autograft-BMP7, and autograft demonstrated beneficial effects on bone healing. However, Autograft-BMP7 was more effective than autograft in healing of the radial defect in rabbits. Conclusion Our findings introduce the osteogenic materials in combination with Masquelet technique as an alternative for reconstruction of the big diaphyseal defects in the long bones in animal models. Our findings may be useful for clinical application in future.
Collapse
Affiliation(s)
| | | | - Ahmad Oryan
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrollah Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Bigham-Sadegh A, Torkestani HS, Sharifi S, Shirian S. Effects of concurrent use of royal jelly with hydroxyapatite on bone healing in rabbit model: radiological and histopathological evaluation. Heliyon 2020; 6:e04547. [PMID: 32775723 PMCID: PMC7394860 DOI: 10.1016/j.heliyon.2020.e04547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/07/2020] [Accepted: 07/22/2020] [Indexed: 11/27/2022] Open
Abstract
Background Bone grafts have been used to enhance bone fracture healing in orthopedic surgery. Bone grafts enhance bone healing either by mechanical support or acting as a scaffold for bone formation. Fresh autograft is the most effective biomaterial because it is histocompatible with less complication about transmissible disease. Hydroxyapatite is a well-established material for bone repair and very comparable to natural apatite providing a strong biomechanical interlock with host tissue. Royal jelly is the principal food for the honeybee queen. This biomaterial has been demonstrated to have several pharmacological activities, such as antiallergic, antitumor and anti-inflammatory effects. Objectives This study was design to evaluate the effect of concurrent using of Royal jelly with hydroxyapatite on bone healing in rabbit model. Methods 15 adult rabbits weighting approximately 2 kg had been used. They were divided into three groups randomly. In first group (N = 5) mid radius bone defect created and left empty. The second group (N = 5) filled with hydroxy apatite alone and the last group (N = 5) filled with royal jelly and hydroxy apatite combination. Radiological evaluation performed on days14th, 28th and 42nd after operation. Histopathological evaluation was done on 56th postoperative day. Results Radiological evaluation showed significant superior bone healing in hydroxyapatite and hydroxyapatite-Royal jelly groups in comparison to control group. Control group was the inferior group between three groups. There were not any significant differences between three groups in histopathological group. Conclusion In conclusion our study showed the best results with using the hydroxyl apatite and Royal-jelly group because they provide not only scaffold for bone healing but also do, they provide some osteoinduction materials for bone healing.
Collapse
Affiliation(s)
- Amin Bigham-Sadegh
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Haleh Sadat Torkestani
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Siavash Sharifi
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sadegh Shirian
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects. Tissue Cell 2020; 66:101386. [PMID: 32933709 DOI: 10.1016/j.tice.2020.101386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Ideal bone defect repair scaffolds should be biodegradable, biocompatible, bioactive, porous, and provide adequate mechanical support. However, it is challenging to fabricate such an ideal bone repair scaffold. Previously, we showed that 5 wt.% strontium-doped hydroxyapatite (Sr-HA) scaffolds prepared by spark plasma sintering (SPS) technology exhibited good biocompatibility. Moreover, unlike pure hydroxyapatite (HA) scaffolds, HA scaffolds containing strontium (Sr) exhibited superior bioactivity, higher proliferation rate of BMSCs and MG-63 osteoblast cells, as well as enhanced BMSCs differentiation. METHODS In this study, we prepared pure HA scaffolds and 5 wt.% strontium containing Sr-HA scaffolds by SPS technology without adhesive, ammonium bicarbonate as pore former. Subsequently, scanning electron microscope (SEM) and X-Ray diffraction (XRD) were used to characterize the properties of Sr-HA and HA scaffolds. The ability of the scaffolds to repair bone defects was evaluated using a critical-sized rabbit tibia-bone defect rabbit model. Thirty 3-month-old New Zealand white rabbits were randomly divided into three groups (blank control group, Sr-HA scaffolds implanted group and HA scaffolds implanted group) with 10 rabbits in each group. These rabbits are sacrificed after 8 weeks and 16 weeks of surgery, and the repair effects of each scaffold were evaluated with X-ray, micro-CT, and HE staining. The three-point bending test was employed to assess the mechanical property of repaired bones. RESULTS XRD pattern indicated that Sr-HA and HA scaffolds possess a similar crystal structure after sintering, and that incorporation of strontium did not form impure phase. SEM showed that the porosity of Sr-HA and HA scaffolds was about 40 %. Universal Testing Machine tests showed that Sr-HA scaffolds had better compressive strength than HA scaffolds. Bone defect was obvious, and the fibrous tissue was formed in the bone defects of rabbits in the blank control group after 8 weeks of surgery. Sr-HA and HA scaffolds enhanced osteointegration of the host bone, and extensive woven bone was formed on the surface of the Sr-HA scaffolds. After 16 weeks, the bone strump became blunt and a small amount of callus was formed in the blank control group. Comparatively, the scaffolds were substantially degraded in the Sr-HA scaffolds implanted group while scaffolds shadows still were observed in the HA implanted group. Bone remodeling and cavity recanalization were completely developed in the Sr-HA scaffolds group. The compressive strength of repaired bone in the Sr-HA scaffolds implantation group was higher than that of HA scaffolds implantation group after 8 weeks and 16 weeks of surgery. CONCLUSIONS Our results show that the Sr-HA composite scaffolds can effectively repair bone defects and have good biodegradable properties.
Collapse
|
10
|
Obeid BA. Implants and grafts used in fractures for early healing. JOURNAL OF ORTHOPAEDICS AND SPINE 2020. [DOI: 10.4103/joas.joas_45_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Ji C, Bi L, Li J, Fan J. Salvianolic Acid B-Loaded Chitosan/hydroxyapatite Scaffolds Promotes The Repair Of Segmental Bone Defect By Angiogenesis And Osteogenesis. Int J Nanomedicine 2019; 14:8271-8284. [PMID: 31686820 PMCID: PMC6800558 DOI: 10.2147/ijn.s219105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background Salvianolic acid B has been proven as an effective drug to promote osteogenesis and angiogenesis which could be beneficial for bone repair. Purpose The objective of this study was to construct a salvianolic acid B-loaded chitosan/hydroxyapatite (Sal B-CS/HA) bone scaffold with controlled release and effective bioactivity. Methods The characteristics, controlled release behavior and bioactivity of Sal B-CS/HA scaffold were evaluated in vitro. The bone repair effect was evaluated in the rabbit radius defect model. Results The results showed that chemical and physical characteristics of salvianolic acid B and chitosan/hydroxyapatite (CS/HA) material did not obviously change after the drug loading procedure; the drug release of salvianolic acid B was stable and continuous from the Sal B-CS/HA scaffold for 8 weeks in vitro; the biocompatibility of the Sal B-CS/HA was favorable by evaluation of cell morphology and proliferation; the osteogenic and angiogenic bioactivities of the Sal B-CS/HA scaffold were proved to be effective by in vivo and in vitro tests. Conclusion Our results suggest that this salvianolic acid B-loaded bone scaffold has potential to be used for bone defect repair with both osteogenic and angiogenic bioactivities.
Collapse
Affiliation(s)
- Chuanlei Ji
- Department of Orthopedics Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Long Bi
- Department of Orthopedics Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Jing Li
- Department of Orthopedics Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| | - Junjun Fan
- Department of Orthopedics Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
12
|
Paun IA, Calin BS, Mustaciosu CC, Mihailescu M, Moldovan A, Crisan O, Leca A, Luculescu CR. 3D Superparamagnetic Scaffolds for Bone Mineralization under Static Magnetic Field Stimulation. MATERIALS 2019; 12:ma12172834. [PMID: 31484381 PMCID: PMC6747966 DOI: 10.3390/ma12172834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 01/22/2023]
Abstract
We reported on three-dimensional (3D) superparamagnetic scaffolds that enhanced the mineralization of magnetic nanoparticle-free osteoblast cells. The scaffolds were fabricated with submicronic resolution by laser direct writing via two photons polymerization of Ormocore/magnetic nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of 4.9 ± 1.5 nm and saturation magnetization of 30 emu/g were added to Ormocore, in concentrations of 0, 2 and 4 mg/mL. The homogenous distribution and the concentration of the MNPs from the unpolymerized Ormocore/MNPs composite were preserved after the photopolymerization process. The MNPs in the scaffolds retained their superparamagnetic behavior. The specific magnetizations of the scaffolds with 2 and 4 mg/mL MNPs concentrations were of 14 emu/g and 17 emu/g, respectively. The MNPs reduced the shrinkage of the structures from 80.2 ± 5.3% for scaffolds without MNPs to 20.7 ± 4.7% for scaffolds with 4 mg/mL MNPs. Osteoblast cells seeded on scaffolds exposed to static magnetic field of 1.3 T deformed the regular architecture of the scaffolds and evoked faster mineralization in comparison to unstimulated samples. Scaffolds deformation and extracellular matrix mineralization under static magnetic field (SMF) exposure increased with increasing MNPs concentration. The results are discussed in the frame of gradient magnetic fields of ~3 × 10−4 T/m generated by MNPs over the cells bodies.
Collapse
Affiliation(s)
- Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania.
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania.
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Cosmin Catalin Mustaciosu
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, RO-077125 Magurele-Ilfov, Romania
| | - Mona Mihailescu
- Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042 Bucharest, Romania
| | - Antoniu Moldovan
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
| | - Ovidiu Crisan
- National Institute of Materials Physics, RO-077125 Magurele-Ilfov, Romania
| | - Aurel Leca
- National Institute of Materials Physics, RO-077125 Magurele-Ilfov, Romania
| | - Catalin Romeo Luculescu
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Ilfov, Romania
| |
Collapse
|
13
|
Kamali A, Oryan A, Hosseini S, Ghanian MH, Alizadeh M, Baghaban Eslaminejad M, Baharvand H. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:64-75. [PMID: 31029357 DOI: 10.1016/j.msec.2019.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Recruitment of mesenchymal stem cells (MSCs) to an injury site and their differentiation into the desired cell lineage are implicated in deficient bone regeneration. To date, there is no ideal structure that provides these conditions for bone regeneration. In the current study, we aim to develop a novel scaffold that induces MSC migration towards the defect site, followed by their differentiation into an osteogenic lineage. We have fabricated a gelatin/nano-hydroxyapatite (G/nHAp) scaffold that delivered cannabidiol (CBD)-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres to critical size radial bone defects in a rat model. The fabricated scaffolds were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and then analyzed for porosity and degradation rate. The release profile of CBD from the PLGA microsphere and CBD-PLGA-G/nHAp scaffold was analyzed by fluorescence spectroscopy. We performed an in vitro assessment of the effects of CBD on cellular behaviors of viability and osteogenic differentiation. Radiological evaluation, histomorphometry, and immunohistochemistry (IHC) analysis of all defects in the scaffold and control groups were conducted following transplantation into the radial bone defects. An in vitro migration assay showed that CBD considerably increased MSCs migration. qRT-PCR results showed upregulated expression of osteogenic markers in the presence of CBD. Histological and immunohistochemical findings confirmed new bone formation and reconstruction of the defect at 4 and 12 week post-surgery (WPS) in the CBD-PLGA-G/nHAp group. Immunofluorescent analysis revealed enhanced migration of MSCs into the defect areas in the CBD-PLGA-G/nHAp group in vivo. Based on the results of the current study, we concluded that CBD improved bone healing and showed a critical role for MSC migration in the bone regeneration process.
Collapse
Affiliation(s)
- Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alizadeh
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Tsai SJ, Chen MH, Lin HY, Lin CP, Chang HH. Pure type-1 collagen application to third molar extraction socket reduces postoperative pain score and duration and promotes socket bone healing. J Formos Med Assoc 2018; 118:481-487. [PMID: 30170877 DOI: 10.1016/j.jfma.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/PURPOSE Extraction of the third molar may cause post-operative complications. This study assessed whether application of pure type-1 collagen to the third molar extraction socket can reduce post-operative pain score and duration and promote socket bone healing. METHODS Fourteen patients who underwent 20 bilateral and symmetric third molar extractions were included in this study. After two tooth extractions at two different occasions in the same patient, one socket was filled with pure type-1 collagen (experimental group, n = 20) and the other socket received nothing but the blood clot (control group, n = 20). The post-operative pain score and duration, mouth-opening limitation, and the bone density at the socket site were assessed at weeks 1, 2, 4, and 8 after tooth extraction. RESULTS Patients in the experimental group had a significantly lower mean post-operative pain score (2.6 ± 1.2) than patients in the control group (4.7 ± 2.0), and had a significantly shorter post-operative pain duration (2.7 ± 1.4 days) than patients in the control group (3.7 ± 1.8 days). We also observed a significantly lower frequency of mouth-opening limitation in 20 experimental-group patients (45%) than in 20 control-group patients (90%, P = 0.007). Moreover, a significantly higher mineralization ratio (10.2%) was found in the experimental socket site than in the control socket site. CONCLUSION Application of pure type-1 collagen to the third molar extraction socket can reduce post-operative pain score and duration, decrease the frequency of mouth-opening limitation, and increase mineralization ratio at the extraction socket site.
Collapse
Affiliation(s)
- Shang-Jye Tsai
- Yonghe Cardinal Tien Hospital, New Taipei City, Taiwan, ROC; School of Dentistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Mu-Hsiung Chen
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC; Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, ROC
| | - Hung-Ying Lin
- School of Dentistry, National Taiwan University, Taipei, Taiwan, ROC; Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Chun-Pin Lin
- School of Dentistry, National Taiwan University, Taipei, Taiwan, ROC; Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hao-Hueng Chang
- School of Dentistry, National Taiwan University, Taipei, Taiwan, ROC; Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
15
|
Tovar N, Witek L, Atria P, Sobieraj M, Bowers M, Lopez CD, Cronstein BN, Coelho PG. Form and functional repair of long bone using 3D-printed bioactive scaffolds. J Tissue Eng Regen Med 2018; 12:1986-1999. [PMID: 30044544 DOI: 10.1002/term.2733] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023]
Abstract
Injuries to the extremities often require resection of necrotic hard tissue. For large-bone defects, autogenous bone grafting is ideal but, similar to all grafting procedures, is subject to limitations. Synthetic biomaterial-driven engineered healing offers an alternative approach. This work focuses on three-dimensional (3D) printing technology of solid-free form fabrication, more specifically robocasting/direct write. The research hypothesizes that a bioactive calcium-phosphate scaffold may successfully regenerate extensive bony defects in vivo and that newly regenerated bone will demonstrate mechanical properties similar to native bone as healing time elapses. Robocasting technology was used in designing and printing customizable scaffolds, composed of 100% beta tri-calcium phosphate (β-TCP), which were used to repair critical sized long-bone defects. Following full thickness segmental defects (~11 mm × full thickness) in the radial diaphysis in New Zealand white rabbits, a custom 3D-printed, 100% β-TCP, scaffold was implanted or left empty (negative control) and allowed to heal over 8, 12, and 24 weeks. Scaffolds and bone, en bloc, were subjected to micro-CT and histological analysis for quantification of bone, scaffold and soft tissue expressed as a function of volume percentage. Additionally, biomechanical testing at two different regions, (a) bone in the scaffold and (b) in native radial bone (control), was conducted to assess the newly regenerated bone for reduced elastic modulus (Er ) and hardness (H) using nanoindentation. Histological analysis showed no signs of any adverse immune response while revealing progressive remodelling of bone within the scaffold along with gradual decrease in 3D-scaffold volume over time. Micro-CT images indicated directional bone ingrowth, with an increase in bone formation over time. Reduced elastic modulus (Er ) data for the newly regenerated bone presented statistically homogenous values analogous to native bone at the three time points, whereas hardness (H) values were equivalent to the native radial bone only at 24 weeks. The negative control samples showed limited healing at 8 weeks. Custom engineered β-TCP scaffolds are biocompatible, resorbable, and can directionally regenerate and remodel bone in a segmental long-bone defect in a rabbit model. Custom designs and fabrication of β-TCP scaffolds for use in other bone defect models warrant further investigation.
Collapse
Affiliation(s)
- Nick Tovar
- Department of Biomaterials and Biomimetics, College of Dentistry New York University, New York, New York
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, College of Dentistry New York University, New York, New York
| | - Pablo Atria
- Biomaterials Department, Universidad de los Andes, Santiago, Chile
| | - Michael Sobieraj
- Department of Orthopaedic Surgery, University of Pennsylvania, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania
| | - Michelle Bowers
- Department of Biomaterials and Biomimetics, College of Dentistry New York University, New York, New York
| | - Christopher D Lopez
- Department of Biomaterials and Biomimetics, College of Dentistry New York University, New York, New York.,Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York
| | - Bruce N Cronstein
- Department of Medicine, New York University School of Medicine, New York, New York
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, College of Dentistry New York University, New York, New York.,Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York
| |
Collapse
|
16
|
Meimandi-Parizi A, Oryan A, Gholipour H. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats. Connect Tissue Res 2018; 59:332-344. [PMID: 29035127 DOI: 10.1080/03008207.2017.1387541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Different biomaterials have been used in orthopedic surgery. Evaluation of biomaterials for bone healing promotion has been a wide area of research of the orthopedic field. Sixty critical size defects of 5 mm long were bilaterally created in the radial diaphysis of 30 rats. The animals were randomly divided into six equal groups as empty defect, autograft, nanohydroxyapatite (nHA), Gelatin (Gel)-nHA, fibrin-platelet glue (FPG)-nHA, and Gel-FPG-nHA groups (n = 10 in each group). Radiographs of each forelimb were taken postoperatively on the 1st day and then at the 28th and 56th days post injury. After 56 days, the rats were euthanized and their harvested healing bone samples were evaluated by histopathology, scanning electron microscopy, and biomechanical testing. All the treated defects demonstrated significantly superior new bone formation, remodeling, and bone tissue volume. Moreover, the defects treated with FPG-nHA showed significantly higher ultimate load, yield load, and stiffness. The Gel-FPG-nHA moderately improved bone regeneration that was not close to the autograft in some parameters, whereas FPG-nHA significantly improved bone healing closely comparable with the autograft group in most parameters. In conclusion, although all the nHA-containing scaffolds had some beneficial effects on bone regeneration, the FPG-nHA scaffold was more effective in improving the structural and functional properties of the newly formed bone and was more osteoinductive than the Gel and was comparable to the autograft. Therefore, the FPG can be regarded as a promising option to be used in conjunction with mineral scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Abdolhamid Meimandi-Parizi
- a Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Ahmad Oryan
- b Department of Pathology, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| | - Hojjat Gholipour
- a Division of Surgery, Department of Clinical Sciences, School of Veterinary Medicine , Shiraz University , Shiraz , Iran
| |
Collapse
|
17
|
Oryan A, Baghaban Eslaminejad M, Kamali A, Hosseini S, Moshiri A, Baharvand H. RETRACTED ARTICLE: Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat. Cell Tissue Res 2018; 374:63-81. [DOI: 10.1007/s00441-018-2837-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/28/2018] [Indexed: 01/20/2023]
|
18
|
Shahrezaee M, Oryan A, Bastami F, Hosseinpour S, Shahrezaee MH, Kamali A. Comparative impact of systemic delivery of atorvastatin, simvastatin, and lovastatin on bone mineral density of the ovariectomized rats. Endocrine 2018; 60:138-150. [PMID: 29372484 DOI: 10.1007/s12020-018-1531-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE In addition to lipid-lowering properties, statins have been suggested to affect bone turnover by increasing the osteoblastic bone formation and blocking the osteoclastogenesis. However, there are many controversial reports regarding the beneficial effect of statins on osteoporosis. In this study, we investigated the therapeutic effects of the most important lipophilic statins administered orally for 60 days to the ovariectomized (OVX) female Sprague-Dawley rats and compared the effects on different harvested trabecular and compact bones. METHODS Thirty female rats were divided into five equal groups including the normal rats, untreated OVX rats (negative control), and the OVX rats treated with atorvastatin (20 mg/kg/day), simvastatin (25 mg/kg/day), and lovastatin (20 mg/kg/day). The osteoporotic animals were treated daily for 60 days and euthanized at the end of experiments. The effectiveness of these treatments was evaluated by biomechanical testing, histopathologic, histomorphometric, micro-CT scan, real-time PCR, and serum biochemical analysis. Moreover, the hepatotoxicity and rhabdomyolysis related with these treatments were assessed by biochemistry analysis and histopathological evaluation. RESULTS The results and statistical analysis showed that systemic delivery of simvastatin and lovastatin significantly increased serum calcium level, expression of osteogenic genes, bone mineral density (BMD), and biomechanical properties in comparison to the untreated OVX rats, especially in trabecular bones (P < 0.05). The results of different analysis also indicated that there was no statistical difference between the atorvastatin-treated animals and the negative control. Among all treatments, only atorvastatin showed an evident hepatotoxicity and myopathy. CONCLUSIONS It was concluded that the lovastatin and simvastatin efficiently ameliorated the OVX-induced osteoporosis. Moreover, the simvastatin-treated animals showed more resemblance to the normal group in terms of BMD, expression of osteogenic genes, serum biochemical parameters, histomorphometric findings, and biomechanical performance with no significant side-effects.
Collapse
Affiliation(s)
- Mostafa Shahrezaee
- Department of Orthopedic Surgery, School of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farshid Bastami
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepanta Hosseinpour
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Kamali
- Department of Orthopedic Surgery, School of Medicine, AJA University of Medical Science, Tehran, Iran.
| |
Collapse
|
19
|
The effects of gelatin, fibrin-platelet glue and their combination on healing of the experimental critical bone defect in a rat model: radiological, histological, scanning ultrastructural and biomechanical evaluation. Cell Tissue Bank 2017; 19:341-356. [PMID: 29264693 DOI: 10.1007/s10561-017-9679-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
Fibrin-platelet glue (FPG) is a blood derivative, in which platelets and fibrinogen are concentrated in a small plasma volume, by differential centrifugation and precipitation. It can form a three-dimensional and biocompatible fibrin scaffold with a myriad of growth factors and proteins that are released progressively to the local environment and contribute to the accelerated postoperative bone healing. Gelatin (Gel) is a derivative of collagen and can promote cell adhesion and proliferation due to its unique sequence of amino acids, so it is suitable for bone tissue applications. This study examined the effects of Gel, FPG and their combinations as bone scaffold on the healing of surgically created critical-size defects in rat radius. Fifty critical size defects of 5 mm long were bilaterally created in the radial diaphysis of 25 rats. The animals were randomly divided into five equal groups as empty defect, autograft, Gel, FPG and Gel-FPG groups (n = 10 in each group). Radiographs of each forelimb were taken postoperatively on the 1st day and then at the 28th and 56th days post injury to evaluate bone formation, union and remodeling of the defect. After 56 days, the rats were euthanized and their harvested healing bone samples were evaluated by histopathology, scanning electron microscopy (SEM) and biomechanical testing. The results of present study showed that the Gel alone did not significantly affect bone healing and regeneration; however, the Gel treated defects promoted healing more than those that were left untreated (negative control). Furthermore, the FPG-enhanced grafts provided a good scaffold containing numerous growth factors for proliferation of osteoinduction and was effective in improving the structural and functional properties of the newly formed bone more than that of the untreated and also the Gel treated groups. Incorporation of Gel into the FPG scaffold improved healing potential of the FPG scaffold; however, it was still inferior to the autograft (positive control). Although the Gel-FPG scaffolds had best effectiveness during bone regeneration, it still needs to be further enhanced by incorporation of the ceramic and osteoinductive biomaterials.
Collapse
|
20
|
Oryan A, Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int J Biol Macromol 2017; 104:1003-1011. [DOI: 10.1016/j.ijbiomac.2017.06.124] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 01/11/2023]
|
21
|
ORTOLANI ALESSANDRO, BIANCHI MICHELE, MOSCA MASSIMILIANO, CARAVELLI SILVIO, FUIANO MARIO, MARCACCI MAURILIO, RUSSO ALESSANDRO. The prospective opportunities offered by magnetic scaffolds for bone tissue engineering: a review. JOINTS 2016; 4:228-235. [PMID: 28217659 PMCID: PMC5297347 DOI: 10.11138/jts/2016.4.4.228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic scaffolds are becoming increasingly attractive in tissue engineering, due to their ability to enhance bone tissue formation by attracting soluble factors, such as growth factors, hormones and polypeptides, directly to the implantation site, as well as their potential to improve the fixation and stability of the implant. Moreover, there is increasing evidence that the synergistic effects of magnetic scaffolds and magnetic fields can promote bone repair and regeneration. In this manuscript we review the recent innovations in bone tissue engineering that exploit magnetic biomaterials combined with static magnetic fields to enhance bone cell adhesion and proliferation, and thus bone tissue growth.
Collapse
Affiliation(s)
- ALESSANDRO ORTOLANI
- Laboratory of Nano Biotechnology (NaBi), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - MICHELE BIANCHI
- Laboratory of Nano Biotechnology (NaBi), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - MASSIMILIANO MOSCA
- I Orthopaedic and Traumatological Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - SILVIO CARAVELLI
- I Orthopaedic and Traumatological Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - MARIO FUIANO
- I Orthopaedic and Traumatological Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - MAURILIO MARCACCI
- Laboratory of Nano Biotechnology (NaBi), Istituto Ortopedico Rizzoli, Bologna, Italy
- I Orthopaedic and Traumatological Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - ALESSANDRO RUSSO
- Laboratory of Nano Biotechnology (NaBi), Istituto Ortopedico Rizzoli, Bologna, Italy
- I Orthopaedic and Traumatological Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
22
|
Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:155. [PMID: 27590825 DOI: 10.1007/s10856-016-5766-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Gelatin and chitosan are natural polymers that have extensively been used in tissue engineering applications. The present study aimed to evaluate the effectiveness of chitosan and gelatin or combination of the two biopolymers (chitosan-gelatin) as bone scaffold on bone regeneration process in an experimentally induced critical sized radial bone defect model in rats. Fifty radial bone defects were bilaterally created in 25 Wistar rats. The defects were randomly filled with chitosan, gelatin and chitosan-gelatin and autograft or left empty without any treatment (n = 10 in each group). The animals were examined by radiology and clinical evaluation before euthanasia. After 8 weeks, the rats were euthanized and their harvested healing bone samples were evaluated by radiology, CT-scan, biomechanical testing, gross pathology, histopathology, histomorphometry and scanning electron microscopy. Gelatin was biocompatible and biodegradable in vivo and showed superior biodegradation and biocompatibility when compared with chitosan and chitosan-gelatin scaffolds. Implantation of both the gelatin and chitosan-gelatin scaffolds in bone defects significantly increased new bone formation and mechanical properties compared with the untreated defects (P < 0.05). Combination of the gelatin and chitosan considerably increased structural and functional properties of the healing bones when compared to chitosan scaffold (P < 0.05). However, no significant differences were observed between the gelatin and gelatin-chitosan groups in these regards (P > 0.05). In conclusion, application of the gelatin alone or its combination with chitosan had beneficial effects on bone regeneration and could be considered as good options for bone tissue engineering strategies. However, chitosan alone was not able to promote considerable new bone formation in the experimentally induced critical-size radial bone defects.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Soodeh Alidadi
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ali Moshiri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Guarino V, Veronesi F, Marrese M, Giavaresi G, Ronca A, Sandri M, Tampieri A, Fini M, Ambrosio L. Needle-like ion-doped hydroxyapatite crystals influence osteogenic properties of PCL composite scaffolds. ACTA ACUST UNITED AC 2016; 11:015018. [PMID: 26928781 DOI: 10.1088/1748-6041/11/1/015018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Surface topography and chemistry both play a crucial role on influencing cell response in 3D porous scaffolds in terms of osteogenesis. Inorganic materials with peculiar morphology and chemical functionalities may be proficiently used to improve scaffold properties-in the bulk and along pore surface-promoting in vitro and in vivo osseous tissue in-growth. The present study is aimed at investigating how bone regenerative properties of composite scaffolds made of poly(Ɛ-caprolactone) (PCL) can be augmented by the peculiar properties of Mg(2+) ion doped hydroxyapatite (dHA) crystals, mainly emphasizing the role of crystal shape on cell activities mediated by microstructural properties. At the first stage, the study of mechanical response by crossing experimental compression tests and theoretical simulation via empirical models, allow recognizing a significant contribution of dHA shape factor on scaffold elastic moduli variation as a function of the relative volume fraction. Secondly, the peculiar needle-like shape of dHA crystals also influences microscopic (i.e. crystallinity, adhesion forces) and macroscopic (i.e. roughness) properties with relevant effects on biological response of the composite scaffold: differential scanning calorimetry (DSC) analyses clearly indicate a reduction of crystallization heat-from 66.75 to 43.05 J g(-1)-while atomic force microscopy (AFM) ones show a significant increase of roughness-from (78.15 ± 32.71) to (136.13 ± 63.21) nm-and of pull-off forces-from 33.7% to 48.7%. Accordingly, experimental studies with MG-63 osteoblast-like cells show a more efficient in vitro secretion of alkaline phosphatase (ALP) and collagen I and a more copious in vivo formation of new bone trabeculae, thus suggesting a relevant role of dHA to support the main mechanisms involved in bone regeneration.
Collapse
Affiliation(s)
- V Guarino
- Institute of Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology National Research Council of Italy, Mostra D'Oltremare, Pad.20, V. le Kennedy 54, 80125, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hirota M, Shima T, Sato I, Ozawa T, Iwai T, Ametani A, Sato M, Noishiki Y, Ogawa T, Hayakawa T, Tohnai I. Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold. Biomaterials 2016; 75:223-236. [DOI: 10.1016/j.biomaterials.2015.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/30/2022]
|
25
|
Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther 2015; 16:213-32. [DOI: 10.1517/14712598.2016.1118458] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Abstract
Bone defects do not heal in 5-10% of the fractures. In order to enhance bone regeneration, drug delivery systems are needed. They comprise a scaffold with or without inducing factors and/or cells. To test these drug delivery systems before application in patients, they finally need to be tested in animal models. The choice of animal model depends on the main research question; is a functional or mechanistic evaluation needed? Furthermore, which type of bone defects are investigated: load-bearing (i.e. orthopedic) or non-load-bearing (i.e. craniomaxillofacial)? This determines the type of model and in which type of animal. The experiments need to be set-up using the 3R principle and must be reported following the ARRIVE guidelines.
Collapse
|
27
|
Ventura RD, Padalhin AR, Min YK, Lee BT. Bone Regeneration Using Hydroxyapatite Sponge Scaffolds with In Vivo Deposited Extracellular Matrix. Tissue Eng Part A 2015; 21:2649-61. [PMID: 26228909 DOI: 10.1089/ten.tea.2015.0024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is currently an increased interest in studying the extracellular matrix (ECM) and its potential applications for tissue engineering and regenerative medicine. The ECM plays an important role by providing adhesive substrates to cells during migration, morphogenesis, differentiation, and homeostasis by signaling biochemical and biomechanical cues to cells. In this study, the ECM was incorporated into hydroxyapatite by implanting sponge replica scaffolds in subcutaneous pockets in rats, and the implants were tested for bone regeneration potential. The resulting scaffolds were characterized using scanning electron microscopy, confocal microscopy, DNA and RNA quantification, tissue staining, energy dispersive X-ray spectroscopy analysis, compressive strength testing, porosity, and pore size distribution analysis using bare scaffolds as a control reference. Biocompatibility was assessed using MC3T3-E1 preosteoblast cells and in vivo studies were carried out by implanting decellularized scaffolds in 11 mm radial defects in New Zealand rabbits for 4 and 8 weeks to determine the effect of the in vivo deposited ECM. Material characterization indicated that a 2-week decellularized scaffold was the best among the samples, with an evenly distributed ECM visible on hematoxylin and eosin-stained tissue sections, a compressive strength of 2.53 ± 0.68 MPa, a porosity of 58.08 ± 3.32% and a pore size distribution range of 10-150 μm. In vivo results showed no severe inflammation, with increased cell infiltration followed by dense matrix deposition after 4 weeks and new bone formation at 8 weeks. The results indicate that incorporation of an in vivo deposited ECM into ceramic scaffolds can potentially improve bone regeneration.
Collapse
Affiliation(s)
- Reiza Dolendo Ventura
- 1 Department of Regenerative Medicine, College of Medicine, Soonchunhyang University , Cheonan, Republic of Korea
| | - Andrew Reyes Padalhin
- 1 Department of Regenerative Medicine, College of Medicine, Soonchunhyang University , Cheonan, Republic of Korea
| | - Young-Ki Min
- 2 Department of Physiology, College of Medicine, Soonchunhyang University , Cheonan, Republic of Korea.,3 Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University , Cheonan, Republic of Korea
| | - Byong-Taek Lee
- 1 Department of Regenerative Medicine, College of Medicine, Soonchunhyang University , Cheonan, Republic of Korea.,3 Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University , Cheonan, Republic of Korea
| |
Collapse
|
28
|
Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors 2014; 40:459-81. [PMID: 25283434 DOI: 10.1002/biof.1177] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
Healing and regeneration of large bone defects leading to non-unions is a great concern in orthopedic surgery. Since auto- and allografts have limitations, bone tissue engineering and regenerative medicine (TERM) has attempted to solve this issue. In TERM, healing promotive factors are necessary to regulate the several important events during healing. An ideal treatment strategy should provide osteoconduction, osteoinduction, osteogenesis, and osteointegration of the graft or biomaterials within the healing bone. Since many materials have osteoconductive properties, only a few biomaterials have osteoinductive properties which are important for osteogenesis and osteointegration. Bone morphogenetic proteins (BMPs) are potent inductors of the osteogenic and angiogenic activities during bone repair. The BMPs can regulate the production and activity of some growth factors which are necessary for the osteogenesis. Since the introduction of BMP, it has added a valuable tool to the surgeon's possibilities and is most commonly used in bone defects. Despite significant evidences suggesting their potential benefit on bone healing, there are some evidences showing their side effects such as ectopic bone formation, osteolysis and problems related to cost effectiveness. Bone tissue engineering may create a local environment, using the delivery systems, which enables BMPs to carry out their activities and to lower cost and complication rate associated with BMPs. This review represented the most important concepts and evidences regarding the role of BMPs on bone healing and regeneration from basic to clinical application. The major advantages and disadvantages of such biologic compounds together with the BMPs substitutes are also discussed.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | |
Collapse
|